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Abstract

Sound source separation has been an active research topic
over the years. With the advent of deep learning, there
has been many developments in this field. Some early
works include the Independent Component Analysis(ICA),
the Wave-UNet model with the advent of deep learning.
Some recent works include the HTDemucs and Open-
Unmix. Here, the work was done on the Open-Unmix
architecture. The architecture involves spectrogram cal-
culation using STFT, several Multi layer perceptron lay-
ers and three BiLSTM layers with skip connections.
A modified form of this architecture was involved in this
project where transformer was used. The result showed
a slight increase in the SDR levels and reduced training
time.
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Chapter 1

Introduction

Signal source separation, also known as blind source sep-
aration or independent component analysis, addresses
the challenge of separating mixed signals into their indi-
vidual sources without prior knowledge of the sources or
the mixing process. This problem arises in diverse fields,
including audio processing, biomedical signal analysis,
and telecommunications. In real-world scenarios, signals
captured by sensors or recording devices often contain a
mixture of multiple sources, such as simultaneous musi-
cal instruments in audio recordings or overlapping brain
signals in biomedical data. The goal of source separa-
tion is to untangle this mixture and extract the original
sources as separate signals. This task presents several
challenges, including blindness to source characteristics,
underdetermined mixtures, and temporal and spectral
overlaps between sources. Approaches to source sep-
aration include model-based methods like Independent
Component Analysis (ICA) and data-driven techniques
such as deep learning, particularly Convolutional Neu-
ral Networks (CNNs) and Recurrent Neural Networks
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(RNNs). Applications of source separation span vari-
ous domains, including enhancing speech signals in noisy
environments, isolating specific physiological signals in
biomedical recordings, and separating different users’ sig-
nals in telecommunications systems. Continued research
and advancements in computational techniques promise
further innovations in source separation methodologies
and their applications.
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Chapter 2

Related Works

2.1 Independent Component Analysis

2.1.1 Motivation

If two microphones record two time signals

x1(t) = a11s1 + a12s2....(1)

x2(t) = a21s1 + a22s2.....(2)

where a11, a12, a21, and a22 are some parameters that de-
pend on the distances of microphones from the speakers.
The estimation of the original signals s1 and s2 from only
the recorded signals is called the cocktail-party problem.
An example is shown below.

Figure 2.1: Original signal 1
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Figure 2.2: Original signal 2

Figure 2.3: Mixed signal 1

2.1.2 Definition of ICA

To rigorously define ICA[2],we can use a statistical la-
tent variables model. Assume that we observe n linear
mixtures x1 ..... xn of n independent components. Con-
sidering a particular instance of time, we can drop the
’t’ from equations (1) and (2).

xj = aj1s1 + aj2s2 + ....+ ajnsn.....(3)

, for all j.
We assume each mixture xj is a random variable and
is the sum of source random variables. Without loss of
generality, we assume that both the mixture variables
and the independent components have zero mean. Let

Figure 2.4: Mixed signal 2
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Figure 2.5: Estimated signal 1 from mixture

Figure 2.6: Estimated signal 2 from mixture

us denote x the random vector whose elements are the
mixtures x1 . . . ..xn and let s be the vector with elements
s1, . . . ., sn. Let A be the matrix with elements aij. Us-
ing this vector matrix notation, the mixing model can be
written as

x =
∑

aisi....(4)

. The statistical model in Eq.(4) is called independent
component analysis, or ICA model. We are provided
only with the random vector x, and we estimate s and
mixing matrix A using it. We assume s′is are statistically
independent. After estimating matrix A, we compute its
inverse W and then obtain the independent component
by

s = Wx

2.1.3 Principles of ICA estimation

The estimation of source signals is based on the concept
of the estimated signals being non-gaussian. The Central
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Limit Theorem[8], a classical result in probability the-
ory tells that the distribution of a sum of independent
random variables tends toward a gaussian distribution
under certain conditions. To estimate one of the inde-
pendent components, we consider a linear combination
of the x′is; y = wTx =

∑
iwixi , where w is the vector

to estimated. Making a change of variables, z = ATw,
we get : y = wTx = wTAs = zTs. Thus y is a linear
combination of si’s. Since the sum of two or more in-
dependent components tend to be more gaussian than
the variables themselves, the sum will be least gaussian
when only one component of z is non-zero. Thus, we
have to estimate a vextor w that maximizes the non-
gaussianity of wTx. This would correspond to a z in the
transformed co-ordinate system with only one non-zero
component. Thus maximizing wTx gives one of the in-
dependent components.

2.1.4 Measures of non-gaussianity

Negentropy

Entropy of a random variable H is defined by:

H(Y ) = −
∑
i

P (Y = ai) logP (Y = ai)

where ai’s are the possible values of Y. For continuous
valued random variables and vectors with density f(y)[3]
:

H(Y ) = −
∫

f(y) log f(y)dy

.According to a result of information theory, gaussian
variable has the largest entropy among all random vari-
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ables of equal variance. Thus negentropy is defined as
follows:

J(y) = H(Ygauss)−H(y)

. Estimating negentropy using this definition would re-
quire us to have an estimate of the pdf. Thefore an
approximation of negentropy is required.

Approximation of negentropy

The classical method of approximating negentropy is us-
ing higher order moments, for example:[7][6]

J(y) ≈ 1/12E(y3)2 + 1/48kurt(y)2

However, kurtosis being very susceptible to outliers this
definition beomes non-robust. So we use the following
approximation:[12]

J(y) ≈
p∑

i=1

ki[E(Gi(y))− E(Gi(v))]
2

Here ki are some positive constants, and v is a Gaussian
random variable with zero mean and unit variance. Vari-
able y is assumed to have zero mean and unit variance.
Gi are some non quadratic functions. In case we use only
one non-quadratic function, the formula becomes:

J(y) ∝ [E(G(y))− E(G(v))]2....(11)

The following choices of G have proved good results:

G1(u) = 1/a1 log cosh(a1u), G2(u) = − exp(−u2/2).....(12)

where 1 ≤ a1 ≤ 2 is a suitable constant.
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2.1.5 Maximum Likelihood Estimation

It is possible to directly formulate the ICA model and
then estimate the model by a maximum likelihood method.
Denoting by W = (w1, w2, w3, ...., wn)

T the matrix A−1,
the log-likelihood looks like:

L =
T∑
i=1

n∑
i=1

log fi(w
T
i x(t)) + T log detW...(13)

where fi are density functions of si and the x(t), t=1,
...,T are the realizations of x. The term—det W— comes
from the rule for linearly transforming random variables
and their densities[4]
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2.2 Wave-UNet

2.2.1 Introduction

The Wave-U-Net is a one dimensional adaptation of the
U-Net[11]. It can separate sources directly in the time
domain and can take large temporal dependencies into
account. Major changes in the architecture from the U-
Net is that it used one dimensional convolutions and it
uses linear interpolation to upsample feature maps in-
stead of transpose convolutions.
The Wave-U-Net[12] can process multichannel audio and
gives good multi-instrument as well as singing voice sep-
aration.

2.2.2 Architecture

The goal is to separate a mixture waveformM ∈ [1, 1]Lm×C

into K source waveforms S1, ..., SK with Sk ∈ [1, 1]Ls×C

for all k ∈ 1, ..., K, C as the number of audio channels
and Lm and Ls as the respective numbers of audio sam-
ples. For model variants with extra input context, we
have Lm > Ls and make predictions for the centre part
of the input. It computes an increasing number of higher-
level features on coarser time scales using downsampling
(DS) blocks. These features are combined with the ear-
lier computed local, high-resolution features using up-
sampling (US) blocks, yielding multi-scale features which
are used for making predictions. The network has L lev-
els in total, with each successive level operating at half
the time resolution as the previous one. For K sources to
be estimated, the model returns predictions in the inter-
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Figure 2.7: Wave UNet architecture

val (1, 1), one for each source audio sample. The detailed
architecture is shown in Table 1. Conv1D(x,y) denotes a
1D convolution with x filters of size y. It includes zero-
padding for the base architecture, and is followed by a
Leaky ReLU activation (except for the final one, which
uses tanh). Decimate discards features for every other
time step to halve the time resolution. Upsample per-
forms upsampling[5][9] in the time direction by a factor
of two, for which we use linear interpolation (see Section
3.1.1 for details). Concat(x) concatenates the current,
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high-level features with more local features x. In exten-
sions of the base architecture (see below), where Conv1D
does not involve zero-padding, x is centre-cropped first
so it has the same number of time steps as the current
layer. The detailed architecture is shown in Table 1.
Conv1D(x,y) denotes a 1D convolution with x filters of
size y. It includes zero-padding for the base architec-
ture, and is followed by a Leaky ReLU activation (ex-
cept for the final one, which uses tanh). Decimate dis-
cards features for every other time step to halve the time
resolution. Upsample performs upsampling in the time
direction by a factor of two, for which we use linear inter-
polation (see Section 3.1.1 for details). Concat(x) con-
catenates the current, high-level features with more local
features x. In extensions of the base architecture (see be-
low), where Conv1D does not involve zero-padding, x is
centre-cropped first so it has the same number of time
steps as the current layer

Figure 2.8: Block diagram of the base architecture. Shapes describe the final
output after potential repeated application of blocks, for the example of model
M1, and denote the number of time steps and feature channels, in that order.
DS block i refers to the output before decimation. Note that the US blocks are
applied in reverse order, from level L to 1.
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2.2.3 Architectural Improvement

The baseline model outputs the k source estimates us-
ing k convolutional filters and then a tanh nonlinearity.
We consider the mixture signal as a sum of its k source
signal components. However this constraint is not used.
Therefore, we use a difference output layer to constrain
the outputs S̃j, enforcing

∑k
j=1 S

j = M : only K-1 con-
volutional filters with a size of 1 are applied to the last
feature map of the network, followed by a tanh nonlin-
earity, to estimate the first K 1 source signals. The last
source is then simply computed as Sk = M −

∑k−1
j=1 S

j.

2.2.4 Results

The network was trained on the MUSDB18[10] dataset
which consists of 150 songs where 100 songs are in the
training set and 50 songs are in the test set. The network
is trained over 75 songs and 25 songs are used as vali-
dation set. During training, audio excerpts are sampled
randomly and inputs padded accordingly for models with
input context. As loss, mean squared error (MSE) is used
over all source output samples in a batch. ADAM opti-
mizer with learning rate 0.0001, decay rates β1 = 0.9 and
β2 = 0.999 and a batch size of 16 was used. The results
for vocal separation model and the multi-instrument sep-
aration are as follows.
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Figure 2.9: Results for Wave UNet model for Vocal and Instrumental separation

Figure 2.10: Multi-Instrument separation results

..
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Chapter 3

Dataset

The MUSDB18 is a dataset of 150 full length music
tracks of different genres with their isolated drums, bass,
vocals and others stems. MUSDB18 contains two fold-
ers, training set, composed of 100 songs, and a test set,
composed of 50 songs. Supervised approaches should
be trained on the training set and tested on both sets.
All signals are stereophonic and encoded at 44.1kHz.
The data from musdb18 is composed of several differ-
ent sources:

• 100 tracks are taken from the DSD100 dataset, which is
itself derived from The ’Mixing Secrets’ Free Multitrack
Download Library (opens new window).

• 46 tracks are taken from the MedleyDB[1] licensed un-
der Creative Commons (BY-NC-SA 4.0).

• 2 tracks were kindly provided by Native Instruments
originally part of their stems pack (opens new window).
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• 2 tracks are from the Canadian rock band The Eas-
ton Ellises as part of the heise stems remix competition
(opens new window), licensed under Creative Commons
(BY-NC-SA 3.0). All files from the musdb18 dataset are
encoded in the Native Instruments stems format (opens
new window)(.mp4). It is a multitrack format composed
of 5 stereo streams, each one encoded in AAC @256kbps.
These signals correspond to:

0 - The mixture,
1 - The drums,
2 - The bass,
3 - The rest of the accompaniment,
4 - The vocals.
For each file, the mixture correspond to the sum of all
the signals.

Tracks properties:
The Track objects which makes it easy to process the
audio and metadata in a pythonic way:

• Track.name, the track name, consisting of Track.artist
and Track.title.
• Track.path, the absolute path of the mixture which
might be handy to process with external applications.
• Track.audio, stereo mixture as an numpy array of shape
( nb-samples, 2 ).
• Track.rate, the sample rate of the mixture.
• Track.sources, a dictionary of sources used for this
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track.
• Track.stems, an numpy tensor of all five stereo sources
of shape (5, nb-samples, 2 ). The stems are always in
the following order: [’mixture’, ’drums’, ’bass’, ’other’,
’vocals’],
• Track.targets, a dictionary of targets provided for this
track.
Note that for MUSDB18, the sources and targets differ
only in the existence of the accompaniment, which is the
sum of all sources, except for the vocals. MUSDB18 sup-
ports the following targets: [’mixture’, ’drums’, ’bass’,
’other’, ’vocals’, ’accompaniment’, ’linear-mixture’]. Note
that some of the targets (such as accompaniment) are dy-
namically mixed on the fly.

The training was first run on the uncompressed .mp4
stems and later on .wav stems. The training with the
latter was much faster almost taking 2 minutes less on
an average per epoch.

24



Chapter 4

Approach and Methodology

4.1 Dataset Acquisition

The MUSDB18 is a dataset of 150 full lengths music
tracks ( 10h duration) of different genres along with their
isolated drums, bass, vocals and others stems.

MUSDB18 contains two folders, a folder with a train-
ing set: ”train”, composed of 100 songs, and a folder
with a test set: ”test”, composed of 50 songs. Super-
vised approaches should be trained on the training set
and tested on both sets.

All signals are stereophonic and encoded at 44.1kHz.
The data is colected from Sigsep Datasets.
Click here to access the dataset. A python package to
parse and process the MUSDB18 dataset, the largest
open access dataset for music source separation. The
tool was originally developed for the Music Separation
task as part of the Signal Separation Evaluation Cam-
paign (SISEC). Training MUSDB18 using open-unmix
comes with several design decisions that we made as part
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of our defaults to improve efficiency and performance:

• chunking: we do not feed full audio tracks into open-
unmix but instead chunk the audio into 6s excerpts
(–seq-dur 6.0).

• balanced track sampling: to not create a bias for
longer audio tracks we randomly yield one track from
MUSDB18 and select a random chunk subsequently.
In one epoch we select (on average) 64 samples from
each track.

• source augmentation: we apply random gains be-
tween 0.25 and 1.25 to all sources before mixing.
Furthermore, we randomly swap the channels the in-
put mixture.

• random track mixing: for a given target we select a
random track with replacement. To yield a mixture
we draw the interfering sources from different tracks
(again with replacement) to increase generalization
of the model.

• fixed validation split: we provide a fixed validation
split of 14 tracks. We evaluate on these tracks in full
length instead of using chunking to have evaluation
as close as possible to the actual test data.
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4.2 Data Preprocessing

The time domain signal is first preprocessed by trans-
forming into its spectrogram. A spectrogram is a visual
representation of the spectrum of frequencies in a signal
as they vary with time. The spectrogram is the magni-
tude squared of the STFT:

|X[n, k]|2

Next, to reduce the computational load during training,
the number of frequency bins are reduced by cropping the
spectrogram to 16kHz since the music bandwidth will be
within 16kHz and this corresponds to 520 frequency bins
in the spectrogram.

4.2.1 Spectrogram and STFT

The Discrete Fourier Transform (DFT) is a mathemati-
cal technique used in signal processing and related fields
to transform a finite sequence of equally spaced samples
of a function into a sequence of coefficients of a finite
combination of complex sinusoids, ordered by their fre-
quencies. Essentially, it converts a signal from the time
domain to the frequency domain. It is defined as :

X[k] =
n=N−1∑
n=0

x[n]e−j 2π
N kn

Here,

• N : total number of samples in the signal x[n]

• k : component of frequency domain
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However, the DFT does not provide information about
when the frequencies occur in time. To analyze signals
whose properties evolve over time, we can use the Short-
Time Fourier Transform (STFT). The STFT gives both
temporal and frequency information about the signal.
The idea of STFT is to divide the signal into frames of
length L. Then apply DFT to each frame to get the fre-
quency information of each frame and compute it using
the FFT algorithm. The STFT expression is as follows :

X[n, λ) =
∞∑

m=−∞
x[n+m]w[m]e−jλm

Here,

• n : location in time

• λ : frequency component

• m : sample in the current frame starting from n

Sampling the frequency at λk = 2π/Nk such that N¿L :

X[n, k] =
L−1∑
m=0

x[n+m]w[m]e−j 2π
N kn

The kth frequency bin involves x[n], x[n+1], x[n+2],.....,
x[n+L-1].
The window function we use here is the Hanning window
defined as :

w[n] = 0.5(1− cos(
2πn

M − 1
))

where n=0,1.....M-1. Generally, window size = frame
size.
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• Hop size = number of samples slid to right to get the
new frame.
• Number of frequency bins = framesize

2 + 1

• Numer of frames = No.ofsamples−framesize
hopsize + 1

The spectrogram is the magnitude squared of the STFT:

|X[n, k]|2
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4.3 Architecture of Open-Unmix[13]

Figure 4.1: Open-Unmix Archicture
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After the spectrograms are genrated, the number of
frequency bins are limited 16 kHz. The input then passes
through the Input Scaler component:

4.3.1 Input Scaler:

The input scaler standardizes each frequency bin such
that the data in each frequency bin has mean = 0 and
standard − deviation = 0. The output of this layer is
fed into a fully connected layer fc1.

4.3.2 fc1

Input dimension for this layer is : (nb samples, nb channels*nb bins)
Output dimensions : (nb samples, hidden size)
The hidden size is the dimension of the bottleneck layer
and here it is set as 512. Next, the output of this layer
is batch-normalised.

4.3.3 bn1

The output of the fc1 layer is passed through the bn1
layer where it is batch-normalised.

Batch Normalization

Batch normalization operates by normalizing the output
of a layer by subtracting the batch mean and dividing by
the batch standard deviation. This is applied indepen-
dently to each feature in the layer. Additionally, batch
normalization introduces learnable parameters (scale and
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shift) to allow the model to adapt the normalized out-
put to the specific task, increasing the representational
power of the network.

The benefits of batch normalization are multifold. First
and foremost, it helps mitigate the internal covariate
shift, leading to faster convergence during training. By
keeping the activations within a certain range, batch nor-
malization allows for more stable gradients, which in turn
accelerates the training process. Furthermore, batch nor-
malization acts as a form of regularization, reducing the
reliance on techniques like dropout and enabling the use
of higher learning rates without risking divergence.

4.3.4 tanh activation layer

The output of the batch norm layer of dimension 512
then passes through a layer of tanh activation tanh is an
activation function used in neural networks. It is defined
as :

f(x) =
ex − e−x

ex + e−x

Figure 4.2: tanh curve
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4.3.5 BiLSTM layers

Next, the output of tanh layer is fed to a series con-
nection of 3 consecutive BiLSTM’s. The BiLSTM is a
type of recurrent neural network(RNN) that processes se-
quential data in both forward and backward directions.
It involves LSTM’s with bidirectional processing so that
it can capture both past and future context of the input
sequence. Components and functionality of BiLSTM :
LSTM

LSTM is a type of RNN that introduces memory cells
and gating mechanisms to selectively retain and forget
information over time.

Figure 4.3: LSTM Architecture

The full set of equations for LSTM are as follows :
Gates

• ot = σ(Woht−1 + Uoxt + bo)

• it = σ(Wiht−1 + Uixt + bi)

• ft = σ(Wfht−1 + Ufxt + bf)
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States

• s̃ = (Wht−1 + Uxt + b)

• st = ft · st−1 + it · s̃

• ht = ot · (st)

rnnout = ht

4.3.6 concat

There exist skip connections from the output of tanh
layer to the output of BiLSTM layers. The output from
the tanh layer is concatenated with the output from BiL-
STM layers. So the dimension of this concat layer is
(1024,1)

4.3.7 fc2

Next, the output from the previous layer passes through
a fully connected network fc2 where the output of this
layer is of dimension (512, 1). The output of fc2 is
batch normalised again and fed to a ReLU activation
layer keeping the dimension same as (512, 1).

4.3.8 fc3

The output from the last layer is passed through an-
other fully connected layer fc3 such that the output of
this layer is (nb frames * nb samples, nb output bins *
nb channels). This layer is again batch normalised and
scaled as earlier.
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4.3.9 Activation layer

Finally the network passes through a ReLU activation
layer where the input spectrograms before cropping are
concatenated to give the full band output.

4.4 Training

The network was trained on the MUSDB dataset.The
train folder contains 100 songs. Certain design decisions
were made for efficient performance:

• chunking : Instead of training with entire songs, it
is trained with 6s audio excerpts.

• Track sampling : To avoid bias for continuous ex-
cerpts, the 6s excerpts are chosen randomly from
one track in one epoch. Specifically, 64 samples are
chosen from each track randomly in each epoch, the
batch size in training being 64.

• source augmentation: we apply random gains be-
tween 0.25 and 1.25 to all sources before mixing.
Furthermore, we randomly swap the channels the in-
put mixture.

• random track mixing: for a given target we select a
random track with replacement. To yield a mixture
we draw the interfering sources from different tracks
(again with replacement) to increase generalization
of the model.

Also, for faster loading and processing, the mp4 dataset
was converted to wav files from command prompt com-
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mands.
Each model (vocals, bass, drums and others) were trained
for 100 epochs, keeping the batch size as 16 and other
parameters as follows:

• STFT window length in samples : 4096

• STFT hop length in samples : 1024

• learning rate : 0.001

• bandwidth for LSTM processing : 16kHz

• number of workers for data loading : 16

The same parameters were used for both the base model
and the model where the BiLSTM layers were replaced
by a transformer.
The time taken on average for each epoch for the base
model was 20:04 minutes.
The time taken on average for each epoch for the trans-
former model was 17:29 minutes.

4.5 Architectural modification

The modification done to the baseline model was that
the three sequential BiLSTM layers were removed and
replaced by a transformer which was trained in the same
manner as mentioned before. The transformer model
premises itself upon attention, the technique of mask-
ing input data to emphasize certain features. In a single
training epoch in a transformer, the input and output
data follow the steps shown in Fig. 4.4.
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Key advantages of Transformers over BiLSTM are:

• Parallelization : Transformers enable efficient paral-
lelization which allows processing of multiple tokens
simultaneously. The speed is incresed even with the
help of GPUs compared to sequential processing of
BiLSTM blocks.

• Long range dependencies : Transformer can handle
long range dependencies in the input since it pro-
cesses using attention mechanism which relates any
two token in the input and is not dependent on the
distance between them.
BiLSTMs on the other hand, due to the sequen-
tial nature of their architecture, cannot capture long
range dependencies and has the problem of vanishing
gradients.

• Scalability ; Transformers are more scalable to very
large datasets and models. The architecture of trans-
formers, particularly the use of self-attention and
feed-forward layers, allows for easier scaling com-
pared to BiLSTM.
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4.6 Loss function

The L2 loss function was used for training. The loss func-
tion is calculated between the predicted spectrograms
and ground truth spectrograms. The initial positional
encoding algorithm creates a vector of position values
for each sample. The multi-head attention layers then
learn different features from the input data in parallel,
accentuating certain features for processing and compar-
ison; this modified data is added to the original and then
normalized before moving to the next layers. The train-
ing time is reduced and also SDR values show slight im-
provement in this case.
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Figure 4.4: Transformer architecture
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Chapter 5

Results and Discussions

5.1 Museval

The Museval python package is used to evaluate the test
set of MUSDB dataset.
The package supports various data formats commonly
used in source separation tasks, such as audio files in
WAV format and multi-channel audio signals.The pack-
age includes implementations of various evaluation met-
rics commonly used in the evaluation of music source sep-
aration algorithms. These metrics may include signal-to-
distortion ratio (SDR), signal-to-interference ratio (SIR),
signal-to-artifact ratio (SAR).

5.1.1 Signal-to-distortion ratio

The Signal-to-distortion ratio is a metric to evaluate the
quality of separated audio signals in the field of audio
source separation. It gives a measure of distortion present
in the separated signals compared to the original source
signals. Mathematically, SDR is defined as the ratio of
the energy of the original source signals to the energy
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of the distortion introduced during separation. A higher
SDR value indicates a better separation quality, as it im-
plies that the energy of the separated signals is closer to
that of the original sources. SDR is calculated using the
following formula:

SDR = 10 log10

∑
t soriginal(t)

2∑
t(soriginal(t)

2 − sseparated(t)2)

where :

• soriginal(t) is the original signal at time t.

• sseparated(t) is the signal estimated at time t.

5.1.2 Signal-to-Interference Ratio(SIR)

SIR measures the ratio between the power of the true
source signal and the power of the interference from other
sources.

SIR = 10 log10(
||strue||2

||einterf ||2
)

where:

• strue is the original signal

• sinterf is the interference from all other signals
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5.2 Performance of the models

Both the model were evaluated by executing the evalu-
ate.py file and evaluated on the MUSDB18 test set where
the audio files were already converted to .wav format.
The directories where the evaluation results and the out-
put file( predicted stem files ) will be saved are provied
in the command prompt while running evaluate.py.

Figure 5.1: Evaluation results with baseline model

Figure 5.2: Evaluation results with transformer model

Upon evaluation of the ’drums’ and ’vocals’ models for
both the baseline and transformer architecture, it is seen
that the SDR for ’vocals’ was better for the transformer
model than the baseline model. However, the SDR for
’drums’ was a little less for the transformer model.
The SIR for both ’vocals’ and ’drums’ were seemed to
increase in the transformer model compared to the BiL-
STM model.
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Chapter 6

Conclusion and Future
Work

The Open-Unmix works with spectrograms and gives
good results amonf state of the art architectures. Slight
modifiction was made on this architecture to include a
transformer and slight improvements were made on the
SDR metric.
Several scopes of modifications to this architecture as
well as dataset can be made for trying out better results.
The code in the github repo has the following structure
:

• data.py : includes different torch datasets that can
be used to train Open-Unmix

• train.py : contains the code necessary to train the
model

• model.py : contains the code where the architecture
is defined

• test.py : has the code to unmix data from test datset
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• eval.py : contains code to run evaluation using the
museval package

• utils.py : contains tools for audio and metadata load-
ing,etc.

Few modifications that can be made are:

• Jointly train targets
Open Unmix is designed in a way such that multiple
targets can be trained separately. This allows:

– training can be distributed by running training
of multiple models in parallel.

– at test time the selection of different models can
be adjusted for specific applications

1. data.py can be modified where the dataset can be
modified easily.
2. train.py can be updated such that the loss func-
tions can be changed

• End to End Time Domain Models
The model can be converted to directly run from
time domain input to time domain output if the
STFT steps are removed.
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