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ABSTRACT

Deep learning methods have significantly reduced the difficulties re-

lated to multi-oriented text detection in recent scene text detection

advances. The restrictions of conventional text representations, like

horizontal boxes, rotated rectangles, or quadrangles, make it difficult

to recognize curved writing. In order to tackle this problem, we provide

a novel approach that uses instance-aware segmentation to identify ir-

regular scene texts. Our method presents a semantic segmentation

model that is led by attention and is intended to accurately label the

weighted borders of text areas. Tests on multiple popular benchmarks

show that, In contrast to cutting-edge techniques, our methodology

delivers better performance on curved text datasets and maintains

comparable results on multi-oriented text datasets.

Simultaneously, despite encouraging results in scene text detection,

the complexity of the multi-stage pipelines used by present approaches

sometimes causes them to fail in difficult settings. We offer a strong

and simplified pipeline that uses a single neural network to predict

words or text lines of variable quadrilateral forms and orientations in

complete images, removing the need for needless intermediate steps.

This simplicity makes it possible to concentrate on creating neural

network designs and loss functions. Our examinations using reference

datasets reveal that our suggested approach performs substantially

superior to the majority advanced methods concerning precision and

efficiency.

Keywords scene text detection, attention
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Chapter 1

INTRODUCTION

1.1 Introduction

Computer vision and artificial intelligence researchers have focused a

great deal of emphasis on scene text detection since it is widely utilized

in text translation, autopilot, and picture and video retrieval. One of

the most difficult jobs in many computer vision applications is scene

text detection because of the variety of text sizes, shapes, textures,

and complicated backgrounds. Over the last ten years, a plethora of

text detection techniques have been put out, most of which mainly

rely on manually created features to discern between text and non-

text areas. However, those conventional methods don’t ensure robust

text detection; instead, they demand an extensive amount of feature

engineering. The field of text detection in scenes has grown signifi-

cantly with the aid of new deep learning methods.

Deep neural network-based text identification techniques may gener-

ally be divided into two groups. The first one predicts the offsets from

text region suggestions or the corner positions of text instances by re-

gressing horizontal boxes, oriented rectangles, or quadrilaterals, such
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as [15] [16] [12].

Figure 1.1: A comparison of some current efforts on scene text detection’s

pipelines:(a) The Jaderberg et al. [6] suggested horizontal word detection and recog-

nition pipeline.(b) Zhang et al. [20] suggested multi-orient text detection pipeline.(c)

Yao et al. [18] suggested multi-orient text detection pipeline ; (d) Tian et al. [16]

proposed horizontal text detection utilizing CTPN.(e) Xinyu Zhou [21] proposed

scene text detection.(f) our pipeline using attention mechanism

In this research, we present a two-stage, high-precision pipeline for

scene text detection. The pipeline makes use of a fully convolutional

network (FCN) model, which eliminates expensive and unnecessary

intermediary steps to directly deliver word or text-line level predic-

tions. To get the final results, the generated text predictions rotated

rectangles are given to Non-Maximum Suppression. Additionally, we

incorporate attention mechanisms [17] [2] into our model, such as

channel and spatial attention modules, which significantly enhance

scene text detection ability. Qualitative and quantitative studies on

typical benchmarks show that the proposed approach delivers greatly

improved performance while running much quicker than previous tech-

niques.

The investigation makes the following conclusion:
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• First, we suggest a two-stage approach for scene text detection:

a fully convolutional network stage and an NMS merging stage.

The FCN eliminates needless and time-consuming intermediate

procedures and creates text areas immediately.

• Secondly, we incorporate attention modules to enhance detection

performance. These modules help our model focus on the text

regions, leading to a notable increase in detection accuracy.

• Third, the pipeline is versatile and can generate predictions at

both the word and line levels, with output shapes that can be ei-

ther rotated boxes or quadrangles, depending on the application’s

requirements.

• Fourth, we provide a fully trainable deep learning model end-to-

end that outperforms existing state-of-the-art techniques when

detecting text in scenes.

1.2 Motivation

In the modern digital age, the ability to automatically detect and

recognize text in natural scenes is becoming increasingly vital. Scene

text recognition is essential for a number of applications, including au-

tomatic license plate recognition, street sign reading for autonomous

driving, and assisting visually impaired individuals in navigating their

environment. Unlike traditional document text detection, scene text

detection faces numerous challenges due to diverse backgrounds, vary-

ing lighting conditions, and different fonts and orientations of text.

Deep learning developments have created new avenues for tackling

these issues. By leveraging powerful neural network architectures, we
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can create models capable of accurately identifying and localizing text

in complex scenes. This project aims to push the boundaries of what is

possible in scene text detection, making it more robust, efficient, and

applicable to real-world scenarios. The ultimate goal is to enhance

the accessibility of information embedded in everyday environments,

thereby enriching user experiences and enabling innovative technolo-

gies.

1.3 Thesis Outline

The thesis is organized in the following way:

• First, we discuss some of the previous works concerned with sim-

ilar problems and discuss their workings and limitations.

• Second, we discuss the methodology of our solution, where we

discuss the different architectures of the models we used.

• Third, we discuss the dataset we used, how we preprocessed it,

and the results of our experiments

• Lastly, we wrap up with a synopsis of our approaches along with

their limitations. We also suggest some future research directions

based on that.
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Chapter 2

Related Work

Text detection from scenes has been a persistent area of research due

to its critical applications in various fields such as document analysis,

autonomous driving, and assistive technologies. Over the years, sev-

eral approaches have been proposed to tackle the challenges posed by

diverse text appearances and complex backgrounds in natural scenes

such as stroke width transform (SWT) [3] it detects text segments

in an image of a natural scene, It takes an RGB image as input and

outputs a new image with the same dimensions that has the probable

text highlighted, maximally stable extremal regions (MSER) [13] it is a

method for detecting the points in images with different properties like

brightness or color compared to the surroundings. Z. Zhang [19] uti-

lized the local symmetry characteristic of text and developed a range

of features for detecting text regions. FASText [1] a rapid technique

for detecting text that was modified and enhanced the widely recog-

nized FAST keypoint detector for stroke extraction. However, when it

comes to accuracy and flexibility, these approaches pale in comparison

to deep neural network-based ones, particularly in difficult situations

where poor resolution and geometric distortion are present.

Deep neural network-based techniques have recently ushered in a new
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age for scene text identification [5,7,8] steadily taking the lead in the

field. Huang [5] initially identified candidates using the MSER method

and subsequently utilized a deep convolutional network as an effective

classifier to eliminate false positives. Jaderberg [7] scanned the pic-

ture using a sliding-window method and using a convolutional model

to produce a dense heatmap for each scale. After that, word candi-

dates were identified by Jaderberg [6] using a CNN and an ACF com-

bination. These were subsequently further improved using regression

approaches. In order to recognize horizontal text lines, Tian [16] used

a CNN-RNN hybrid model with vertical anchors. Zhang [20] suggested

use an FCN [11] for heatmap creation and component projection for

orientation estimate in contrast to these approaches. These tech-

niques performed exceptionally well on common benchmarks. Xinyu

Zhou [21] proposed a deep learning method for scene text detection

that accurately forecasts phrases or text lines with quadrilateral forms

and arbitrary orientations. It uses a fully convolutional network and

combines loss functions for score maps and geometry, followed by non-

maximum suppression for filtering detections. However, as Fig. 2(a-e)

shows, these techniques usually include several steps and elements,

including line construction, word partitioning, candidate aggregation,

post-filtering for the elimination of false positives, and so on. The sev-

eral steps and parts might require a lot of fine-tuning, which would lead

to less-than-ideal performance and longer pipeline processing times.

FCN, with attention followed by NMS mechanisms, generally outper-

forms the EAST [21] and other scene text detection methods due to

several reasons:

1. FCN Based Pipeline: This research presents a deep FCN-

based architecture designed for text-level or word-level direct text

identification. Our approach facilitates end-to-end training and
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optimization by streamlining the process by eliminating needless

intermediary components and processes, as seen in Fig. 1.1

2. Enhanced Feature Representation: Attention mechanisms

allow the model to focus on relevant features while suppressing

irrelevant ones. This leads to a more informative representation

of text regions in the image, improving the accuracy of text detec-

tion, especially in cluttered scenes or with varying text sizes and

orientations. Adaptive Feature Selection: Attention mecha-

nisms dynamically weigh different parts of the image based on

their importance for text detection. This adaptability allows the

model to better handle diverse text appearances and complex

backgrounds, leading to more robust text detection performance.

3. Improved Contextual Modeling: Attention mechanisms cap-

ture long-range dependencies and contextual information between

different parts of the image. This contextual understanding helps

the model to better distinguish text from the background and to

accurately predict text regions, even when they are partially oc-

cluded or have irregular shapes.

4. Reduced False Positives: By focusing on relevant features and

suppressing background noise, attention mechanisms can help re-

duce the number of false positive detections, improving the pre-

cision of the text detection system.

Overall, the integration of attention mechanisms into FCN enhances

its ability to selectively focus on relevant information, adapt to differ-

ent text appearances, and capture contextual relationships, leading to

significant improvements in text detection accuracy and robustness.
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Chapter 3

Methodology

Our suggested algorithm’s main component is a neural network

model that has been trained to identify text occurrences and their

geometric characteristics from whole photos. This model generates

detailed word or text line predictions at the per-pixel level. It is an

FCN network specifically designed for text detection. It does this by

doing away with intermediate steps such as candidate suggestion, text

area building, and word partitioning. Only thresholding and NMS on

anticipated geometric forms are included in the post-processing stages,

which have been reduced.
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Figure 3.1: Structure of Detection FCN

3.1 Pipeline

Fig. 1.1 shows a high-level representation of our model architecture

is given.Our model is based on DenseBox [4](high-level pipeline of

densebox Fig. 3.2)
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Figure 3.2: DenseBox Pipeline

which is a detection method where an image pyramid is processed

by the network. To create the final result, the image is subjected to

many layers of pooling and convolution, an upsampled feature map,

and more convolution layers. After that, geometric data and text score

maps at the pixel level are generated in numerous channels.

Pixel values on a score map, which has one output channel, range from

0 to 1. From the viewpoint of each pixel, the other channels depict the

word’s surrounding shapes. The anticipated geometric shape’s degree

of confidence at the associated place is indicated by the score.

Rotated Box (RBOX) text areas are a geometric form with which we

have explored. We have conducted experiments with Rotated Box

(RBOX) text sections, computing the loss of function on both the

score map and on this geometry. Every projected area undergoes

thresholding, keeping only geometries that have scores higher than a

predetermined cutoff. Then, these geometries that are valid are stored

for a later non-maximum suppression. The outcomes after NMS are

regarded as the pipeline’s ultimate output.
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3.2 Network Architecture

We gradually integrate feature maps, using cues from designs such as

Feature Pyramid Network (FPN) [10], and U-Net [14].Fig. 3.1 illus-

trates this strategy in pictorial form. Our main network for extracting

features is ResNet50, and we use feature maps from its pooling layers

1 through 4. We use channel and spatial attention methods after the

feature merging step.

Feature extractor network is pre-trained on ImageNet; extracted fea-

tures are denoted by fi.

The feature merging process is defined by the following equations:

gi =

unpool(hi) if i ≤ 3

conv3×3(hi) if i = 4
(1)

hi =

fi if i = 1

conv3×3(conv1×1(As(Ac([gi−1; fi])))) otherwise
(2)

where gi is the merging base, hi is the feature map after merging

the spatial attention section is represented by As, and the channel

attention section by Ac, [; ] denotes the concatenation operation. The

feature map from the previous stage is supplied onto an unpooling

layer in each merging step in order to double its size, and it is combined

with the feature map from the current stage. Channel and spatial

attention are then used.The output of this step is ultimately produced

by a conv3×3, which fuses the information after a conv1×1 decreases the

number of channels and processing. After the last step of merging, the

last feature map of merging branch is created by a conv3×3 layer and

sent to the resultant layer.
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RBOX’s geometry consists of a rotation angle θ and four axis-aligned

bounding box (AABB) R channels.

Figure 3.3: Geometry design output

The formula for R is the same as in [4], with four channels repre-

senting the separations between the pixel position and the rectangle’s

left, top, right, and bottom boundaries.

3.3 Attention Mechanism

Deep learning has advanced significantly with the use of the atten-

tion approach, particularly in applications that need the modeling of

complicated data connections, such as image captioning, identifica-

tion, and machine translation. This approach allows models to choose

focus on certain areas of the incoming data, resulting in more efficient

and accurate information processing.

3.3.1 Channel Attention

Traditional CNNs treat all channels on a feature map equally. To

eliminate background interference, the channel attention mechanism

assigns higher weights to channels that respond strongly to text areas.

We initially perform average- and max-pooling procedures to input

feature map, resulting in two distinct descriptors.The two descriptors

are then sent through a shared network made up of single-layer per-

ceptron.Finally adding these two output vectors element-wise and get

the channel attention.
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Mathematical Representation

The process can be mathematically expressed as follows:

Mc(f) = σ(poolavg(f) + poolmax(f))

where σ is sigmoid actiavation function, poolavg is average pooling and

poolmax is max pooling operations.

3.3.2 Spatial Attention

A spatial attention module is a component in deep learning models,

particularly in convolutional neural networks (CNNs), designed to en-

hance the model’s ability to focus on important spatial regions within

an image. This module highlights important regions and hides less

useful ones in an effort to enhance performance on tasks like object

identification, segmentation, and picture classification.

How It Works

The spatial attention module operates by generating an attention map

that indicates the significance of different spatial locations in an input

feature map. This map is then used to weight the input features,

allowing the network to focus more on relevant areas. The process

typically involves the following steps:

1. Input Feature Map: The module takes an input feature map,

which is the output of a convolutional layer.

2. Pooling Operations: Two types of pooling operations, average

pooling and max pooling, are applied across the channel dimen-

sion to capture different aspects of the features. This results in
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two separate 2D feature maps:

poolavg(f) : Map of average pooled features

poolmax(f) : Map of max pooled features

3. Concatenation: The pooled feature maps are concatenated to

combine the information.

4. Convolution: A convolutional layer is applied to the concate-

nated feature maps to generate a spatial attention map. This

map typically has a single channel.

5. Activation Function: The spatial attention map is passed through

a sigmoid activation function (σ) to normalize the values between

0 and 1, which indicates the importance of each spatial location.

6. Multiplication: The normalized attention map is element-wise

multiplied with the original input feature map to produce the

final output, where important regions are emphasized.

Mathematical Representation

The process can be mathematically expressed as follows:

Mc(f) = σ(Conv7×7([poolavg(f); poolmax(f)]))

Where:

• f is the input feature map.

• poolavg(f) is the average pooled feature map.

• poolmax(f) is the max pooled feature map.

• [·; ·] denotes the concatenation operation.

• Conv7×7 is the convolution operation with kernel size 7.
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• σ is the sigmoid activation function.

The channel attention and spatial attention modules are applied

successively to perform the whole attention process given an interme-

diate feature map f.

3.4 Overview of the ResNet50 CNN architecture

ResNet-50 is a deep convolutional neural network (CNN) that is part

of the Residual Networks (ResNet) family, introduced by Kaiming

He et al. in 2015. ResNet-50 has become one of the most popular

architectures due to its capacity to efficiently train extremely deep

networks, introducing residual learning to solve the vanishing gradient

issue. ResNet-50 consists of 50 layers and is known for its impressive

performance on various image recognition tasks.

Key Features of ResNet-50

• Residual Blocks: The fundamental building blocks of ResNet-

50 are the residual blocks. These blocks introduce shortcut con-

nections (skip connections) that allow the network to learn resid-

ual functions instead of directly trying to learn unreferenced func-

tions. This helps in mitigating the vanishing gradient problem.

• Bottleneck Design: ResNet-50 uses a bottleneck design for its

residual blocks. A bottleneck block consists of three layers:

– 1x1 convolution for reducing the dimensions

– 3x3 convolution for processing the data

– 1x1 convolution for restoring the dimensions

• Identity and Convolutional Shortcut Connections: There

are two types of shortcut connections in ResNet-50:
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– Identity shortcuts that simply pass the input to the output

without any modification.

– Convolutional shortcuts that match the dimensions when the

input and output dimensions differ.

• Batch Normalization: Each convolutional layer in ResNet-50

is followed by batch normalization and ReLU activation to ensure

stable and faster training.

ResNet-50 Architecture

ResNet-50 is composed of the following layers:

1. Initial Layers:

• 7x7 convolutional layer with 64 filters and a stride of 2 that

is followed by ReLU activation and batch normalizing.

• A 3x3 max pooling layer with a stride of 2.

2. Residual Blocks:

• Conv1: 3 bottleneck blocks with 64, 64, and 256 filters re-

spectively.

• Conv2: 4 bottleneck blocks with 128, 128, and 512 filters

respectively.

• Conv3: 6 bottleneck blocks with 256, 256, and 1024 filters

respectively.

• Conv4: 3 bottleneck blocks with 512, 512, and 2048 filters

respectively.

3. Final Layers:

• A global average pooling layer.
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• A fully connected (dense) layer with 1000 units (for classifi-

cation into 1000 classes).

3.5 Loss Function

The loss function of the training is the sum of losses of score map and

geometric loss which is defined as

L = Ls + λLg (3.1)

where Ls and Lg are losses corresponding to score map and geometric

loss respectively. λ compares the significance of two losses.For our

computation we have taken it’s value as 1.

3.5.1 Score Map Loss

To address the uneven distribution of target objects, training pictures

are meticulously processed using balanced sampling and hard nega-

tive mining in the majority of cutting-edge detection pipelines . It’s

possible that doing this might enhance network performance. Never-

theless, employing such methods invariably results in the introduction

of a non-differentiable step, additional parameters to adjust, and a

more intricate pipeline, which goes against our design premise.

A common approach is to use a weighted binary cross-entropy loss,

where different weights are assigned to the text and non-text classes.

The weighted binary cross-entropy loss can be defined as:

Ls = −βY log(Ŷ )− (1− β)(1− Y ) log(1− Ŷ )

where Y is the actual and Ŷ is the prediction of score map.The

compensating element for both positive and negative data, denoted
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by β, is defined by

β = 1−
∑

y∈Y y

|Y |

3.5.2 Geometry Loss

One challenge to text recognition is the huge variability in font sizes

observed in images of natural situations. Larger and longer text por-

tions would favor a biased loss function in regression utilizing direct

L1 or L2 loss. The regression loss must be scale-invariant as we must

produce accurate text geometry predictions for both big and small

text sections. Consequently, we use the IoU (intersction over union)

loss in the RBOX regression’s AABB section.

The Axis-Aligned Bounding Box (AABB) loss is defined as:

LAABB = − log IoU(Rpred, Ract) = − log

(
|Rpred ∩Ract|
|Rpred ∪Ract|

)
where:

• IoU(Rpred, Ract) is the Intersection over Union between the pre-

dicted rectangle Rpred and the actual rectangle Ract.

• |Rpred∩Ract| is the area of the intersection between the predicted

and actual rectangles.

• |Rpred ∪Ract| is the area of the union of the predicted and actual

rectangles.

If d̂1,d̂2,d̂3 and d̂4 represent the distances from a pixel to the top,

right, bottom, and left boundaries of the predicted rectangle Rpred,

and d1,d2,d3 and d4 represent the distances from a pixel to the top,

right, bottom, and left boundaries of the actual rectangle Ract then

then the width wi and height hi of the intersected rectangle Rpred∩Ract
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can be calculated as

wi = min(d̂2, d2) + min(d̂4, d4)

hi = min(d̂1, d1) + min(d̂3, d3)

then union is given by:

|Rpred ∪Ract| = |Rpred|+ |Ract| − |Rpred ∩Ract|

Now the rotation angle loss is defined as

Lθ(θpred, θact) = 1− cos(θpred − θact)

Last but not least, the weighted total of the rotation angle loss and

the AABB loss represents the overall geometry loss.That is

Lg = LAABB + λθLθ

In our experiment I have taken λθ = 20.

3.6 Training

ADAM [9] optimizer is used to train the model.Here I have used the

input in size 512 × 512 × 3 and batch size 16. I set the learning rate

at 0.001.Until the network’s performance plateaus, it is trained.

3.7 Locality-Aware NMS

The proposed Locality-Aware Non-Maximum Suppression (LA-NMS)

technique is made to deal with the copious amount of candidate ge-

ometries (bounding boxes) that dense predictions in text detection

produce in an effective manner. Below is a summary of the main

ideas:
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3.7.1 Problem with Näıve NMS

Complexity: The temporal complexity of a typical NMS method is

O(n2), where n is the number of possible geometries. Dealing with

hundreds of thousands of candidates makes this unfeasible.

3.7.2 Proposed LA-NMS Approach

Locality Assumption: It is assumed that bounding boxes (geome-

tries) from neighboring pixels have a strong correlation and may thus

be handled locally.

Row-by-Row Merging: The method handles each geometry row

by row as opposed to processing them all at once:

• Iterative Merging:Geometries are blended repeatedly inside

each row. The total number of comparisons is decreased by merg-

ing the current geometry with the previous merged geometry.

3.7.3 Complexity Improvement

Best Case Scenario: In the best-case scenario, this row-wise and

iterative merging approach reduces the complexity to O(n).

Worst Case Scenario:In reality, the method performs efficiently

since the locality requirement is often met, even though the worst-case

complexity is still O(n2)

3.7.4 Merging Process (WEIGHTEDMERGE)

Weighted Averaging: Two geometries (g and p) are merged by

combining their coordinates according to their confidence scores:

• Formula: If a = WEIGHTEDMERGE(g, p), then ai = V (g) ·
gi + V (p) · pi, where ai is a coordinate of a.
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• Score Calculation: The score of the merged geometry V (a) is

the sum of the scores of g and p.

3.7.5 Key Differences from Standard NMS

Averaging vs. Selecting: This approach averages the geometries,

so serving as a voting mechanism, as opposed to choosing one design

based on the highest score. This is very helpful for video stabilization

of detections.

Naming:Because of their comparable goal of eliminating redun-

dant geometries, the terms ”NMS” and ”NMS” are still employed in

functional description, despite these variances.

3.7.6 Summary of the Procedure

1. Process Row by Row:Instead of merging geometries all at once,

merge them row by row.

2. Iterative Merging: Combine every geometry with the most

recent one blended inside each row.

3. Weighted Merge:To stabilize the outcomes and raise the qual-

ity of detection, weight-average the coordinates of the geometries

that are being merged using the scores.

3.7.7 Benefits

Efficiency: The algorithm operates more quickly in practice since

the row-by-row method drastically lowers the amount of comparisons

required.

Stabilization: For processing videos, weighted averaging yields a

detection output that is more stable.
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The LA-NMS algorithm successfully enhances text identification

stability and performance in dense prediction settings by implement-

ing these tactics.

22



Chapter 4

Experiments

To check the performance of the proposed method I experiment it on

the datasets ICDAR 2015 and COCO-Text V2.0.

4.1 Benchmark Datasets

ICDR 2015

A benchmark for assessing text detection and identification algorithms

in real-world scenarios is the ICDAR 2015 dataset, which is a com-

ponent of the ICDAR 2015 Robust Reading Competition. For text

localization, it contains 500 test pictures and 1000 training photos,

all of which have text transcriptions and bounding boxes tagged on

them. Issues including complicated backdrops, varying text appear-

ances, and incidental text are addressed in the dataset. The ICDAR

2015 dataset, which offers a benchmark for evaluating and enhancing

text detection and recognition systems in practical settings, is essential

for the advancement of robust reading technologies.
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COCO-Text V2.0

A large dataset called COCO-Text V2.0 is intended for text identi-

fication and detection in natural environments. With approximately

63,000 annotated text instances, bounding boxes, text transcriptions,

and features including text type, language, and readability, it com-

prises 17,141 photos. The dataset tackles issues such as multilingual-

ism, varied text appearances, and complicated origins. COCO-Text

V2.0 is a vital resource for developing text detection and recognition

technologies in practical settings. It is important for applications in

text detection, text recognition, and end-to-end systems for automatic

translation, scene understanding, and augmented reality.

4.2 Base Networks

Since ICDAR 2015 is a tiny dataset, as I said, I trained my suggested

model on two different types of datasets, therefore there is a risk of

either over- or under-fitting. These two datasets were tested using

several base models, including VGG16 and ResNet50. Additionally,

contrast our approach with the network architecture model without

focusing on it. Using the ImageNet dataset, I used pre-trained models

VGG16 and ResNet50.

To compare model performance I have used mean-IoU metric.

4.3 Results

Attention Based Scene Text Dectection Model

Fig. 4.1 shows the total number of parameters are used in our model

taking ResNet50 as base model
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Figure 4.1: Attention Based Model Total Parameter

when I trained our model on ICDAR 2015 dataset the training loss

of our model is given in figure Fig. 4.2

Figure 4.2: Training Loss on ICDAR 2015 Dataset

After apply the trained model on the test dataset Fig. 4.3 is some

detection results
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Figure 4.3: Resuls on ICDAR 2015 Test Dataset

and the performance metric mean-IoU on ICDAR 2015 test dataset

is given in Fig. 4.4

Figure 4.4: Performance on ICDAR 2015

The loss function graph after training on the COCO-Text V2.0 data

is given in Fig. 4.5
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Figure 4.5: Training Loss on COCO-Text v2.0 Dataset

After apply the trained model on the test dataset Fig. 4.6 is some

detection results

Figure 4.6: Resuls on COCO-Text v2.0 Test Dataset

and the performance metric mean-IoU on COCO-Text V2.0 test
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dataset is given in Fig. 4.7

Figure 4.7: Performance on COCO-Text v2.0

Without Attention

Taking ResNet50 as the base model the total number of parameters

in the FCN structure is give by Fig. 4.8

Figure 4.8: Without Attention model Total Parameter ResNet50 as base model

The performance on ICDAR 2015 dataset is given by Fig. 4.9

Figure 4.9: Performance on ICDAR 2015 dataset

Taking Vgg16 as the base model the total number of parameters in

the FCN structure is give by Fig. 4.10
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Figure 4.10: Without Attention model Total Parameter Vgg16 as base model

The performance on ICDAR 2015 dataset is given by Fig. 4.11

Figure 4.11: Performance on ICDAR 2015 dataset
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Chapter 5

Conclusion

5.1 Limitation

Because the largest text instances that the detector can process effi-

ciently are directly related to the receptive field of the network, the

network is unable to accurately predict very long text sections, like

lines of text that span the entire image, and because vertical text in-

stances make up a small portion of the ICDAR 2015 training dataset,

the algorithm may also be unable to detect or accurately predict ver-

tical text instances.

5.2 Conclusion and Future Work

Conclusion

We have shown in this work that the model’s performance for scene

text identification is much improved by including an attention mecha-

nism. at comparison to the baseline, the attention-enhanced model

performed more accurately and robustly; it excelled at identifying

texts in difficult contexts with a range of orientations and scales.
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These advancements show how attention processes may be used to im-

prove scene text identification algorithms and provide more accurate

and consistent outcomes for uses like augmented reality and driverless

driving.

For the recognition part I did’t get much time to implement

that part.

Future Work

Subsequent investigations may examine diverse attention pathways in

order to enhance the precision and effectiveness of detection. Further-

more, our model’s integration with cutting-edge OCR systems has the

potential to provide a potent end-to-end text recognition pipeline. In

order to enhance model generalization, there is also potential in utiliz-

ing bigger and more varied datasets and investigating semi-supervised

learning strategies to make efficient use of unlabeled data. Impor-

tant first steps toward a practical, broad implementation of the model

will be to improve its resilience against occlusions and distortions and

optimize it for real-time processing on mobile and embedded devices.
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