
DecisionMaking from Streaming Data

Dissertation submitted in partial fulfilment for the award of the degree

Master of Technology in Computer Science

by

SOUMENMANDAL

Roll No.: CS2230
M.Tech, 2nd year

Under the supervision of
Dr. Malay Bhattacharyya

Computer and Communication Sciences Division
INDIAN STATISTICAL INSTITUTE

June, 2024

CERTIFICATE

This is to certify that the work presented in this dissertation titled “Decision Making
fromStreamingData”, submitted by SoumenMandal, having the roll numberCS2230,
has been carried out under my supervision in partial fulfilment for the award of the
degree of Master of Technology in Computer Science during the session 2023-24 in
theComputer andCommunicationSciencesDivision, IndianStatistical Institute. The
contents of this dissertation, in full or in parts, have not been submitted to any other
Institute or University for the award of any degree or diploma.

—————————————
Dr. Malay Bhattacharyya

Associate Professor, Machine Intelligence Unit
Associate Member, Centre for Artificial Intelligence andMachine Learning

Associate Member, Technology Innovation Hub on Data Science, Big Data Analytics,
and Data Curation

Indian Statistical Institute, Kolkata

Acknowledgements

First and foremost, I want to express my gratitude to Dr. Malay Bhattacharyya for all
of his help, support, and encouragement during my postgraduate training. His assis-
tance with my dissertation has my sincere gratitude. It was a great experience for me
as a new researcher to work with him.

Additionally, I am grateful to Jyoti Patel and Debprasad Kundu for providing me
with the datasets utilized in this dissertation’s Chapters 1 and 2. I also thank the aca-
demicsand researchers at ISI,Kolkata, aswell asotherswhoassistedme inconducting
the survey that provided the data for Chapter 2.

I am grateful to the CSSC and ISI Library for your multifaceted assistance during
my time of need.

My parents, teachers, and friends have supported me through every stage of life,
and for that I will always be grateful. Their unwavering support has been essential to
me throughoutmy academic career, particularlywith the research I’ve beendoing the
last year.

Date: 10-06-2024
—————————————

SoumenMandal
Roll No.: CS2230
M.Tech, 2nd year

Indian Statistical Institute

Abstract

In a crowdsourcing environment, judgment analysis involves gathering opin-
ions from a diverse online crowd to reach a consensus. Traditional methods work
onlywhenall opinionsareavailable fromthestart. Ourgoal is todevelopamethod
for judgment analysis that works as opinions stream in. This dissertation is di-
vided into two parts, each focusing on judgment analysis in a crowdsourcing en-
vironment. In the first chapter, we treat all questions and annotators as having
equal weight. In the second chapter, we consider different weights for both ques-
tions and annotators tomake final decisions.We present the first algorithm capa-
ble of analyzing crowdsourced opinions in real-time. Tested on two datasets, our
method achieves accuracy close to majority voting while requiring only a small
amount of space. In the second algorithm We tested it on two datasets, showing
it matches the accuracy of majority voting and uses minimal space. This work
advances judgment analysis in crowdsourcing, providing amore reliable solution
than first for real-time decision-making with online crowdsourced opinions.

i

Contents

1 Judgement Analysis on Opinion Streams 4
1.1 Introduction . 4
1.2 Motivation . 5
1.3 Problem Formulation . 7
1.4 Preliminary Details . 7

1.4.1 Basic Terminologies . 7
1.4.2 RelatedWork . 10

1.5 Proposedmethod . 11
1.5.1 A NaiveMethod . 11
1.5.2 Time Complexity . 12
1.5.3 Space Complexity . 12
1.5.4 An Efficient Method . 12
1.5.5 Time Complexity . 17
1.5.6 Space Complexity . 17
1.5.7 Error Factor . 18

1.6 Empirical Analysis . 18
1.6.1 Results onWVSCMDataset . 18
1.6.2 Results on Fact Evaluation Dataset 19

1.7 Conclusion and FutureWork . 20

2 Weighted Judgement Analysis on Opinion Streams 23
2.1 Introduction . 23
2.2 Preliminary Details . 24

2.2.1 Basic Terminologies . 24
2.3 ProposedMethod . 24

2.3.1 Prposoed Algorithm . 25
2.3.2 Time Complexity . 29
2.3.3 Space Complexity . 29
2.3.4 Summary . 30

2.4 Empirical Analysis . 30
2.4.1 Results onWVSCMDataset . 31
2.4.2 Results on Fact Evaluation Dataset 31
2.4.3 Results on Sentiment Analysis Dataset 32

2.5 Conclusion and FutureWork . 33

ii

List of Figures

1.1 The fundamental framework for judgment analysis applied to stream-
ingopinions. The responsematrixmaintainsaconstantnumberof columns
(eachrepresentingaspecificquestion), but thenumberof rows increases
as more annotators provide responses over time. 6

1.2 This figure shows snapshots of the response matrices at various times-
tamps. Each row represents the opinions provided by a specific anno-
tator, and each column represents the opinions for a particular ques-
tion given by different annotators at a particular timestamp. There are
three response options: 1 (Yes), 0 (No), and 2 (Skip). A value of Ri j =−1

indicates that the i th annotator did not provide an opinion for the j th

question. Notably, at timestamps T1 and Ti , there are three annotators,
while at timestamp T2, there are four annotators, demonstrating that
the number of annotators varies across different timestamps. 9

1.3 To count the number of 1’s in a stream of data that includes 0’s, 1’s, and
-1’s, you can use a similar method to count the number of 0’s as well. . . 13

1

List of Tables

1 The INITIAL-BUCKETING procedure initializes buckets based on the
given parameter a. 14

2 TheOLDBUCKETprocedure identifies the oldest relevant bucket in the
data structure based on the parameters a and T S. 15

3 The UPDATE procedure merges buckets if there are more than two of
the same size. 16

4 The COUNT procedure calculates the count based on timestamps and
bucket conditions. 16

5 The RUN procedure processes each data point in the stream and up-
dates the buckets accordingly. 17

6 Performance in terms of accuracy for theWVSCM dataset. The highest
accuracy in each column is highlighted in bold. 19

7 Performance in terms of accuracy for the Fact Evaluation dataset. The
highest accuracy in each column is highlighted in bold. 20

8 Performance in terms of accuracy for theWVSCM dataset. The highest
accuracy in each column is highlighted in bold. 31

9 Performance in terms of accuracy for the Fact Evaluation dataset. The
highest accuracy in each column is highlighted in bold. 31

10 Theperformance in termsof accuracyobtained for theSentimentAnal-
ysis dataset. The best accuracy over the column is shown in bold. 33

2

CHAPTER 1

JudgementAnlysisonOpinionStreamsbased
on DGIM Algorithm

3

1 Judgement Analysis on Opinion Streams

In this chapter, we will discuss about the problem of judgement analysis on opinion
streams. In this work, we obtain decisions from the opinions of crowd through judge-
ment analysis. Here, we operate under the assumption that the annotators can only
offer ternary opinions, which are represented as 1, 0, or -1 for each question. In this
context, 1 signifies a "yes" opinion, 0 indicates a "no" opinion, and -1 represents a
"skip" or neutral stand.

1.1 Introduction

Crowdsourcing has become a powerful way to solve many decision-making tasks by
using the collective intelligence of many people. It has revolutionized how we tackle
problemsbyharnessing the combined knowledge and skills of a diverse groupof indi-
viduals [1, 2]. This approach allowsorganizations and individuals to access a vast pool
of resources, ideas, and viewpoints that were previously out of reach [3, 4]. Crowd-
sourcingpromotescollaborationand innovationby lettingpeople fromdifferentback-
grounds and locations work together towards a common goal.

The capacity of crowdsourcing to produce original and imaginative ideas is one of
its primary advantages. By bringing together different perspectives, people can build
on each other’s ideas, challenge assumptions, and find innovative solutions. Crowd-
sourcingalsoallows for efficientuseof resources. Insteadof relyingonasmall groupof
experts, organizations can tap into amuch larger talent pool, assigning tasks to those
best suited for them. This speeds up the work process and ensures a diverse range of
skills and experiences contribute to projects.

Crowd-powered systems have been around for centuries, even though they have
gainedpopularity recently [5]. AmazonMechanicalTurk (MTurk), launched in2005, is
an example of a crowdsourcing platform that allows for scalable and affordable gath-
ering of opinions [6]. Many other platforms have since emerged, like 23andMe, Kick-
starter, and Crowdfynd, which can be classified as either collaborative or competitive
based on how they use crowd workers.

Incompetitive crowdsourcing,manypeoplework independentlyon the same task,
competing against each other [7]. In collaborative crowdsourcing, people work to-
gether to solve a problem [8]. The first studies on these models were conducted in
2010 and 2011 [9, 10].

Different crowdsourcing platforms use various methods to match tasks to work-
ers. Contest-based platforms like Top-Coder and InnoCentive offer open invitations,
rewarding the best submissions [11]. Small tasks are assigned on a first-come, first-

4

served basis via microtask platforms such as Amazon Mechanical Turk. Effective al-
location algorithms are crucial for platforms involving skilled crowds and specialized
work [12].

Crowdsourcing platforms can be divided into twomodels: distributedmicro-task
and centralized models, using either specialists or non-experts. Tasks like the Netflix
Prize and DARPA’s Red Balloon competition have shown the effectiveness of expert
crowds [7].

Opinion-based judgments through crowdsourcing have been successful [13, 14].
Multiple opinions can be combined to estimate the "gold" judgment or ground truth
for a question [15]. However, involving laypeople often leads to inaccuracies. Tomake
crowdsourcing reliable, it’s important to develop algorithms that can separate truth
from conflicting and noisy information [14].

With the rise of big data from social networks, online stores, and sensors, we face
challenges in efficiently classifying data streams. Unlike traditional models, big data
must be analyzed in real-timedue to storage limitations [16]. This requires algorithms
that canhandledata streamseffectively, growing sublinearly in storage spaceandpro-
cessing time [17].

Judgment analysis has never been done in a streaming scenario. This disserta-
tion proposes a groundbreaking method for performing judgment analysis on data
streams.

1.2 Motivation

Traditionally, the problem of judgment analysis for crowdsourced opinions has been
approached ina static context . However, theneed toanalyzecontinuousdata streams
is critical for many real-world applications, as it allows for the extraction of valuable
insights and themaking of swift decisions. Given the vast number of online users en-
gaging in various activities at any moment, it is impractical to gather and process all
opinions simultaneously. Crowdsourced feedback typically arrives at different times,
making it impossible to store all responses for judgment purposes. To address this,
we introduce thefirst algorithmdesigned to analyze streamingopinions for judgment
analysis while keeping space requirements within a logarithmic bound relative to the
number of annotators. While it may seem that modern high-endmachines with am-
ple storage could handle this problem, resource-constrained environments present
a significant challenge. Additionally, current methods lack scalability, which is a pri-
mary theoretical motivation for our work.

5

Figure 1.1: The fundamental framework for judgment analysis applied to streaming
opinions. The response matrix maintains a constant number of columns (each rep-
resenting a specific question), but the number of rows increases as more annotators
provide responses over time.

6

1.3 Problem Formulation

In this section, we define the problem of judgment analysis for streaming data [16].
We consider a set of decision-making questions,Q = {q1, q2, . . . , q|Q|}, and a set of anno-
tators A = {A1, A2, . . . , A|A|} at a particular timestamp. In a streaming environment, the
annotation process is represented by a mapping functionQ × A →O at a given times-
tamp, where a window of data is received.

At each timestamp, our goal is to determine the final judgment for all questions in
Q based on the received data. For each timestamp, we receive a response matrix R,
which is a matrix of size |A|× |Q|. Each element Ri j represents the opinion of the i-th
annotator for the j -th question, where Ri j ∈O.

In a streaming setting, the data stream T = 〈T1,T2, . . . ,Tl 〉 consists of continuous
opinions. Sincewecannot storeall opinionsatonce,weprocess themusingawindow-
basedmodel, wheredata is received in chunks. Our aim is toperform judgment analy-
sis on these streamsof opinions (response columnvector) for eachquestion, ensuring
that:

• The processing time for each question isO(N).

• The storage requirement isO(polylog(N)), where N is the number of annotators.

Key points to consider:

• Annotators choose only one option for each question from the set of opinions.

• Annotators do not provide their opinions simultaneously, so responses arrive in
a streamingmanner.

• Based on the collective opinions, we need to determine the best option for each
question.

• Typically, not all annotators respond to every question, making R a sparse ma-
trix.

Our approach is inspired by the DGIM (Datar-Gionis-Indyk-Motwani) algorithm
[18].

1.4 Preliminary Details

1.4.1 Basic Terminologies

We define a few key terms in this part that are essential to comprehending judgment
analysis. The domain-specific terms used throughout the paper are explained below.
Standard terms have their usual meanings unless specified otherwise.

7

• Question: Aquestion is a formulatedquery that requires adecisionor judgment.
It is the central element around which the judgment analysis revolves.

• Annotator: An annotator is an individual, typically a crowd worker, who pro-
vides answers to specific questions. These answers help in making decisions.
Annotators may have varying levels of expertise, meaning they might be very
good at some aspects of the task but less proficient in others.

• Opinion: An opinion is the specific answer given by an annotator to a decision-
makingquestion. Opinionscanvarywidelydependingon theannotator’s knowl-
edge, experience, and perspective.

• Annotation: Annotation refers to the process of collecting these opinions from
annotators. It involves gathering diverse responses to the questions posed.

• Domain of opinions: This denotes the complete set of possible opinions that
canbe given for aparticular question. It is important tonote that this set is finite,
meaning there are limited predefined options an annotator can choose from.

• Aggregation: Aggregation is the process of combining the collected opinions
from multiple annotators to form a collective judgment for each question. By
aggregating these individual opinions, a more accurate and reliable judgment
can be obtained.

• Gold judgment: The gold judgment is the ground truth or the most accurate
opinion for each question. It serves as a benchmark against which other opin-
ions are measured.

• Question difficulty: Question difficulty refers to how challenging a particular
question is for the annotators to answer. It indicates the level of complexity in-
volved inmaking a judgment on that question.

• Annotator accuracy: Annotator accuracy measures how reliable an annotator
is in providing correct judgments. It is determined by how often an annotator’s
opinions match the gold judgment. Higher accuracy indicates a more depend-
able annotator.

Weuse the term responsematrix to describe thematrix that organizes the opinions
collected froma set of annotators (represented by rows) across a set of questions (rep-
resented by columns). Each element in thismatrix represents the opinion given by an
annotator for a specific question. A response column vector refers to a single column

8

Figure 1.2: This figure shows snapshots of the response matrices at various times-
tamps. Each row represents the opinions provided by a specific annotator, and each
column represents the opinions for a particular question given by different annota-
tors at a particular timestamp. There are three response options: 1 (Yes), 0 (No), and
2 (Skip). A value of Ri j = −1 indicates that the i th annotator did not provide an opin-
ion for the j th question. Notably, at timestamps T1 and Ti , there are three annotators,
while at timestamp T2, there are four annotators, demonstrating that the number of
annotators varies across different timestamps.

9

within the response matrix, showing all the responses from different annotators for
one particular question, even thoughmany entries might be empty if not all annota-
tors have provided their opinions.

In a streaming environment, these response column vectors are received as con-
tinuous streams of data. Therefore, our aim is to analyzemultiple streams of opinions
(response column vectors) for each question to derive the most accurate judgments.
This involves processing the data as it arrives, rather than storing all opinions at once,
ensuring efficient and real-time judgment analysis.

1.4.2 RelatedWork

Majority Voting:
The majority voting algorithm is a straightforward yet powerful method used to

combine theopinionsor judgmentsofmultiple individualsor classifiers. Thismethod
is widely used in fields like data science, machine learning, and decision-making. It
works by aggregating the individual judgments or predictions from various sources
and determining the final decision based on themost common opinion.

• Advantages:

– Simplicity: The algorithm is easy to understand and implement.
– Robustness: It can handle various types of judgments, including binary de-
cisions, categorical predictions, and numerical estimates.

– LowComputational Cost : It is efficient because it does not require complex
calculations or optimization.

• Disadvantages:

– Equal Weighting : The algorithm assumes that each source’s judgment is
equally reliable, whichmay not be true as different sourcesmight have dif-
ferent levels of expertise or accuracy.

– Correlated Judgments: If the judgments from different sources are highly
similar, the algorithmmay not capture a wide range of perspectives.

– Lack of Consensus Resolution: The algorithm does not provide a way to re-
solve conflicts or reach a consensus if there is no clear majority, which can
lead to ambiguous decisions.

WeightedMajority Voting:

10

WeightedMajority Voting (WMV) is an enhanced version of themajority voting al-
gorithm. It is used to combine the opinions or judgments of multiple experts or clas-
sifiers by assigning weights based on their perceived reliability or expertise. Experts
with higher accuracy or more experience are given more influence in the final deci-
sion.

• Advantages:

– Aggregates Diverse Perspectives: WMV integrates judgments from multiple
experts, each offering unique perspectives and approaches.

– Handles Expert Heterogeneity: By assigning different weights based on his-
torical performance, WMV ensures that more reliable experts have greater
influence while still considering all contributions.

– Improved Accuracy: Combining judgments from multiple experts can im-
prove overall accuracy by leveraging strengths and compensating forweak-
nesses.

• Disadvantages:

– Weight Assignment Challenges: Determining appropriate weights for ex-
perts can be difficult and subjective, potentially leading to biased or sub-
optimal decisions.

– Lack of Error Estimation: WMVdoes not explicitly estimate the uncertainty
or error of the aggregated decision, making it hard to quantify confidence
in the result.

– Complexity and Interpretability: The weighted aggregation process can be
complex, making it difficult to understand the influence of each expert’s
judgment.

1.5 Proposedmethod

In this section, we first present a simplemethod for streaming judgment analysis and
then describe amore practical and efficient approach.

1.5.1 A NaiveMethod

In this basic method, we use the average value of the bitstream (average of 0’s and
1’s) of opinions to determine the final judgment. We begin with the initial bit as the
startingmean and continuously update themean as newbits arrive in the stream. Let

11

m be the current mean at a given time, i be the new bit, and n be the total number of
bits processed up to that point. The updatedmean m′ is calculated as:

m′ = m · (n −1)+ i

n

This formula ensures that the mean is updated incrementally with each new bit,
effectively acting as a rolling average that takes into account both the previous mean
and the newbit. At any given time, the final judgment can be derived from the current
mean value: if the mean is greater than 0.5, the judgment is 1; if it is less than 0.5, the
judgment is 0; and if it is exactly 0.5, the result is a tie.

1.5.2 Time Complexity

The time complexity of this method is O(N), where N is the number of bits in the
stream for each question. During each iteration, the algorithm performs a constant
number of operations to update the mean based on the new bit. Since it processes
each bit exactly once, the overall time complexity is linear with respect to the number
of bits.

1.5.3 Space Complexity

The space complexity isO(|A|), where |A| is the number of annotators. The algorithm
only needs to store a few variables: the current mean, the total number of bits pro-
cessed, and a loop variable. Regardless of the size of the input stream, the space usage
of the algorithm remains constant, making it highly efficient in terms of space.

1.5.4 An Efficient Method

In this method, we keep track of the counts of 0’s and 1’s in the bitstream of opinions
to determine the final judgment. We use buckets to store these counts, where each
bucket canhold a varying number of elements, and the sizes of these buckets increase
exponentially in reverse order, inspired by the DGIM approach [18]. The counting of
0’s and 1’s is done in parallel. A bucket represents a segment of the data stream and
has the following properties: (i) The size of a bucket (number of 0’s or 1’s) follows the
form 2i , (ii) Each bucket records the timestamp of its end bit (requiringO(log |A|) bits)
and its size (requiringO(loglog |A|) bits).

Each bit in the stream is assigned a timestamp using a (mod |A|) function to map
everything within the window. The bitstream is represented as a collection of buckets
with the following characteristics:

12

• There can be one or two buckets of the same size.

• Buckets are sorted by size.

• Buckets do not overlap.

• Buckets are removed if their end-time is more than N time units in the past.

Buckets are updated whenever a new bit arrives. If the oldest bucket’s end-time is
beforeN time units from the current time, it is dropped. If the newbit is 0, no changes
are needed. If the new bit is 1, do the following: (i) Create a new bucket of size 1 con-
taining the new bit, (ii) Set the timestamp of this new bucket to the current time, and
(iii) Starting from i = 0, check if there are now three buckets of size 2i , and if so, com-
bine the oldest two to form a new bucket of size 2i+1.

When combining two buckets into a new one, the timestamp of the newest bit in
the old buckets becomes the timestamp of the new bucket. To estimate the number
of 0’s or 1’s in themost recent k ≤ N bits: (i) Consider only those buckets whose times-
tamp is atmost k bits in the past, (ii) Sum the sizes of all these buckets except the old-
est one, and (iii) Add half the size of the oldest bucket. Some instances of the above
process are highlighted in Fig. 1.3.

Figure 1.3: To count the number of 1’s in a streamof data that includes 0’s, 1’s, and -1’s,
you can use a similar method to count the number of 0’s as well.

The main algorithm is presented as Algorithm 1. In this algorithm, we take a win-
dow of the response matrix R|A|×|Q| and return the judgment vector Jud g ment , which
is an ensemble of opinions for each question inQ. For each question (steps 1-13), we

13

process a column vector representing the set of opinions given by the annotators and
construct buckets to count the number of 0’s (steps 2-6) and 1’s (steps 7-11). Based on
themajority of opinions (step 12), we derive the final judgment and return it (step 14).

Algorithm 1Main algorithm for opinion ensemble on streaming data

Input: A window of the responsematrix Rm|A|×|Q|, where |A| denotes the number of
annotators in the current window and |Q| denotes the number of questions.
Output: The judgment vector Jud g ment consists of an ensemble of opinions for
each question inQ.
Algorithmic Steps:
1: for i = 1 to |Q| do
2: t ar g et ← 0
3: T S ← 0
4: BUC K ET S ← INITIAL-BUCKETING(|A|)
5: RUN(Rm[∗][i], |A|, T S, BUC K ET S, t ar g et)
6: count0 ← COUNT(|A|, T S, BUC K ET S) ▷ Count of 0’s
7: t ar g et ← 1
8: T S ← 0
9: BUC K ET S ← INITIAL-BUCKETING(|A|)
10: RUN(Rm[∗][i], |A|, T S, BUC K ET S, t ar g et)
11: count1 ← COUNT(|A|, T S, BUC K ET S) ▷ Count of 1’s
12: Jud g ment [i] ← max(count0,count1)
13: end for
14: return Jud g ment

The INITIAL-BUCKETING procedure initializes a set of buckets based on a given
parameter a. It createsa seriesof emptybuckets representedby thevariableBUC K ET S.
The number of buckets is determined by the logarithm base 2 of a, with each bucket
initially empty. Finally, it returns the set of initialized buckets, preparing them for fur-
ther data organization and processing based on the specified parameter a.

INITIAL-BUCKETING(a)
{
1: for i := 1 to ⌊log2(a)⌋ do
2: BUC K ET S[i] ←;
3: end for
4: return BUC K ET S

}

Table 1: The INITIAL-BUCKETING procedure initializes buckets based on the given
parameter a.

14

OLDBUCKET(a, T S, BUC K ET S)
{
1: obIndex ← 0 ▷ Initialize old bucket index
2: obT S ← 0 ▷ Initialize old bucket timestamp
3: for i := 1 to si ze(BUC K ET S) do ▷ Each bucket in BUC K ET S
4: for et s ∈ BUC K ET S[i] do ▷ Each element in BUC K ET S[i]
5: if et s ≥ (T S −a) then
6: obIndex ← i
7: obT S ← et s
8: else
9: return obIndex,obT S
10: end if
11: end for
12: return obIndex,obT S
13: end for
}

Table 2: The OLDBUCKET procedure identifies the oldest relevant bucket in the data
structure based on the parameters a and T S.

The OLDBUCKET procedure identifies the oldest bucket within a specified time
window,determinedby a andT S, ina structurecalledBUC K ET S. It initializesobIndex

and obT S to 0, then iterates through each bucket and its elements. If an element’s
timestamp is within the time window (T S − a), it updates obIndex and obT S. If no
such element is found in abucket, it returns the current obIndex and obT S, effectively
locating the oldest relevant bucket in the data structure.

TheUPDATE method adjusts the buckets based on certain rules. If there aremore
than two buckets of the same size, they aremerged. The function delete(X, i) removes
the element at index i from X and returns it. The function insert(X, y, i) inserts the
element y at index i of X and shifts the subsequent elements one position forward.

TheCOUNT methodcomputesacountusing theparameters a,T S, andBUC K ET S.
It initializes a count variable to zero, finds the oldest bucket using the OLDBUCKET
function, and then iterates through the buckets. Depending on the timestamp condi-
tions, it increments the count accordingly.

TheRUNmethodprocessesa streamofdatausing theparametersC , a,T S,BUC K ET S,
and t ar g et . It iterates through eachdata point, increments the timestamp, checks the
oldest bucket, and updates the buckets if the data point matches the target. It takes
no action if the data point is -1.

15

UPDATE(BUC K ET S)
{
1: for i := 1 to si ze(BUC K ET S) do ▷ Each bucket in BUC K ET S
2: l ← leng th(BUC K ET S[i])
3: if l ≥ 2 then
4: del ete(BUC K ET S[i], l −1) ▷ Remove the last element
5: temp ← del ete(BUC K ET S[i], l −2) ▷ Remove the second last element
6: if i ̸= si ze(BUC K ET S)−1 then
7: i nser t (BUC K ET S[i], temp,0) ▷ Insert at the beginning
8: end if
9: end if
10: end for
11: return BUC K ET S

}

Table3: TheUPDATEproceduremergesbuckets if therearemore than twoof the same
size.

COUNT(a, T S, BUC K ET S)
{
1: count ← 0
2: obIndex,obT S ←OLDBUCKET(a, T S, BUC K ET S)
3: for i := 1 to si ze(BUC K ET S) do
4: if i ≥ obT S then
5: return count +1
6: end if
7: for endT S ∈ BUC K ET S[i] do
8: if endT S ≥ obT S then
9: count ← count +2i

10: else if endT S == obT S then
11: count ← count +0.5∗2i

12: end if
13: end for
14: end for
15: return count +1

}

Table 4: TheCOUNTprocedure calculates the count basedon timestamps andbucket
conditions.

16

RUN(C , a, T S, BUC K ET S, t ar g et)
{
1: for each c ∈C do ▷ Process each data point (0/1/−1) in the stream
2: T S ← T S +1
3: obIndex,obT S ←OLDBUC K ET (a,TS,BUCKETS)
4: if obT S ̸= 0 and obT S == T S −a then
5: if obT S ∈ BUC K ET S[obIndex] then
6: BUC K ET S[obIndex] ← BUC K ET S[obIndex]−obT S
7: end if
8: else if c == t ar g et then ▷ Current data matches the target (0/1)
9: BUC K ET S[0] ← {T S}∪BUC K ET S[0]
10: BUC K ET S ←U PD AT E(BUC K ET S)
11: end if ▷ Take no action if the data point is -1
12: end for
}

Table 5: The RUNprocedure processes each data point in the stream and updates the
buckets accordingly.

1.5.5 Time Complexity

Algorithm 1 processes each question in the input data by running a loop |Q| times,
where |Q| is the number of questions. For each question, the initial steps (2-3) take
constant time. The call to INITIAL-BUCKETING() (step 4) involves a loop that runs
⌊log2 |A|⌋ times, where |A| is the number of annotators, resulting in a time complexity
of O(log |A|). The RUN() function (step 5) has a time complexity of O(|A|). The COUNT()
function (step6) iterates throughall thebuckets, leading toa timecomplexityofO(log |A|).
This process (steps 2-6) for counting the number of 0’s is repeated (steps 7-11) for
counting the number of 1’s. The final judgment is computed in constant time as it
only involves comparing two values. Thus, the total time complexity is:

|Q|×

O(log |A|)+O(|A|)+O(log |A|)︸ ︷︷ ︸
steps 2-6

+O(log |A|)+O(|A|)+O(log |A|)︸ ︷︷ ︸
steps 7-11

≃O(|Q||A|).

1.5.6 Space Complexity

Algorithm1processes eachquestionby runninga loop |Q| times,where |Q| is thenum-
ber of questions. For each question, INITIAL-BUCKETING() (step 4) initializes log |A|
buckets, each with a constant length, k. Therefore, the total space required for man-
aging the BUCKETS is k · log |A|. This space is reused in the other function calls to RUN()

17

(step 5) and COUNT() (step 6). The space required for the other variables is constant,
denoted as v . The counting process (steps 2-6) for the number of 0’s is repeated (steps
7-11) for the number of 1’s. The final judgment calculation also uses a constant space,
denoted as j . Thus, the total space complexity is:

|Q|×

k · log |A|+ v︸ ︷︷ ︸
steps 2-6

+k · log |A|+ v︸ ︷︷ ︸
steps 7-11

+ j︸︷︷︸
step 12

≃O(|Q| log |A|).

The overall space complexity of the algorithm is the sum of the space complexity
for BUCKETS and the space complexity for other variables:

Overall Space Complexity= Space complexity for BUCKETS+Space complexity for other variables

Overall Space Complexity=O(log |A|)×C +D.

1.5.7 Error Factor

Since there is at least one bucket of each of the sizes less than 2i , and at least one from
the oldest bucket, the true sum is no less than 2i . Thus, the error is at most 50%.

1.6 Empirical Analysis

We used two datasets, a large-scale dataset called Fact Evaluation and a small-scale
datasetnamedWVSCM, toevaluate theperformanceofour suggestedstrategy incom-
parison to current techniques. On a system with an 11th Gen Intel(R) Core(TM) i5-
1135G7 CPU running at 2.4 GHz, 16 GB of RAM (15.8 GB usable), and a 64-bit operat-
ing system, we carried out the experiments using Python 3.0.

1.6.1 Results onWVSCMDataset

TheWVSCM dataset includes data from an experiment on Duchenne smiles, studied
byWhitehill et al. [19]. The task for theMechanical Turkworkerswas to label facial im-
ages as either Duchenne or Non-Duchenne smiles. A Duchenne smile, also known as
an “enjoyment” smile, canbedistinguished fromaNon-Duchenne smile, also called a
“social” smile, by the activation of the Orbicularis Oculi muscle around the eyes. This
distinction is important in fields such as psychology, human-computer interaction,
andmarketing research. Even experts trained in the Facial Action Coding Systemfind
it difficult to accurately identify Duchenne smiles.

18

Table 6: Performance in terms of accuracy for theWVSCMdataset. The highest accu-
racy in each column is highlighted in bold.

Algorithm Accuracy(%) Data Setting
Proposed Efficient Method 83.87 Streaming

Majority Voting 75.00 Non-Streaming
WeightedMajority Voting 75.62 Non-Streaming

In the ground truth file, each row contains two columns: the image ID and the
Duchenne label (0or 1). Outof the160 images, 58 showedDuchenne smiles. There are
64 annotatorswhoprovided their opinions. Among these annotators, 14 had an accu-
racy of 50% or higher, 13 had an accuracy of 60% or higher, 7 had an accuracy of 70%
or higher, and only 1 had an accuracy of 80% or higher. In the response file, each row
has three columns: the image ID, the labeler ID, and the label (0 for non-Duchenne, 1
for Duchenne). Missing values were discarded to improve the dataset’s reliability, and
entries where annotators skipped the evaluation were initially labeled as “-1”. Keep-
ing skipped values as “-1” acknowledges instances where annotators refrained from
making specific judgments. This refineddataset allows for clearer analysis of thepres-
ence or absence of Duchenne smiles. This pre-processing ensures consistent binary
classification, making the dataset ready for analysis.

We compared our algorithm with the well-known majority voting and weighted
majority voting algorithms on the WVSCM dataset. Table 6 shows the comparative
accuracy values. Our method, based on a streaming setting, achieved a slightly lower
accuracy. However, this difference is not statistically significant. Moreover, our space
requirements are limited by a logarithmic factor of the number of annotators, unlike
the other methods, which are not suitable for a streaming setting.

1.6.2 Results on Fact Evaluation Dataset

The Fact Evaluation dataset includes judgments about public figures on Wikipedia,
specifically focusing on whether individuals "attended or graduated from an institu-
tion." This dataset contains 42,623 examples, each evaluated by at least 5 annotators,
resulting in a total of 216,725 judgments from 57 trained annotators.

Each data entry in the full version of the dataset is represented as a triplet: the re-
lation (predicate), the subject of the relation, and the object of the relation. Subjects
and objects are identified by their FreebaseMIDs, and the relation is a Freebase prop-
erty. Evidence supporting these relations is provided as URLs and excerpts from web
pages judged by the annotators. The data is in JSON format, with each line containing

19

Table 7: Performance in termsof accuracy for the Fact Evaluationdataset. Thehighest
accuracy in each column is highlighted in bold.

Algorithm Accuracy(%) Data Setting
Proposed Efficient Method 80.87 Streaming

Majority Voting 94.54 Non-Streaming
WeightedMajority Voting 95.82 Non-Streaming

fields such as predicate, subject, object, evidence, web page, supporting text, judg-
ments from human annotators, annotator identity hash code, and annotator judg-
ment (0/1/2 for no/yes/skip, respectively).

To improve clarity, the original "2" annotation for "Skip" has been changed to "-1."
Thus, the refined scale now uses "0" for "No," "1" for "Yes," and "-1" for "Skip," mak-
ing it easier to interpret the annotations. This consistent labeling system simplifies
the analysis of the data. The dataset includes answers to 576 facts as the gold stan-
dard. The basic version of the dataset has two columns: question ID and metadata.
The metadata contains a JSON-encoded dictionary with the judgments of all raters
for each question, along with other relevant data. This dataset is provided under the
Creative Commons license.

Wecomparedour algorithmwith themajority votingandweightedmajority voting
algorithms on the Fact Evaluation dataset. Table 7 shows the comparative accuracy
values. Our method, which operates in a streaming setting, achieved lower accuracy
because of the large size of the data. However, our method’s space requirements are
limited by a logarithmic factor of the number of annotators, unlike other methods
which are not suitable for a streaming setting.

1.7 Conclusion and FutureWork

We have introduced a space-efficient method for judgment analysis in a streaming
context. Since the processes for counting 0’s and 1’s are independent, they can be ex-
ecuted concurrently. Additionally, the algorithm can handle each question in paral-
lel. Therefore, using parallel computing can greatly reduce the time required by our
algorithm. Although the error margin in our approach could be minimized further,
this would require additional space. Our method effectively counts 0’s and 1’s from
a stream of opinions, which can be used to calculate the entropy of these opinions.
This entropy measurement can help quantify the difficulty of a question. In practi-
cal terms, higher entropy indicates greater variability in opinions, suggesting a more
challenging question.

20

Moreover, our approach’s flexibility in handling large-scale datasets in a stream-
ing setting demonstrates its potential for real-world applications where data is con-
tinuously generated. The ability to process data on-the-fly without significant space
requirements makes it suitable for use in dynamic environments, such as online sur-
veys, live feedback systems, and real-timedata analysis in socialmedia platforms. Fu-
ture work could focus on optimizing the trade-off between space efficiency and er-
ror reduction, as well as exploring the integration of this method with other machine
learning algorithms to enhance its robustness and applicability.

This insight could beused to develop aweighted version of our approach for use in
streaming scenarios. By assigning weights based on the entropy of opinions, we can
better account for the varying difficulty of questions, leading to more accurate and
reliable judgments.

21

CHAPTER 2

Weighted JudgementAnalysisonOpinion
Streams

22

2 Weighted Judgement Analysis on Opinion Streams

In the previous chapter, we analyzed opinions without considering the reliability of
different annotators and the difficulty of the questions. However, to achievemore ac-
curate results, weneed to account for both the annotator’s reliability and the difficulty
of the questions.

2.1 Introduction

Crowdsourcing has become a powerful tool, using the collective knowledge and skills
ofmany people to solve various tasks on a large scale. By tapping into the insights and
abilities of a diverse group, crowdsourcing has changed the way we solve problems,
innovate, and collaborate in our connected world. It allows organizations and indi-
viduals to access a wide range of ideas and perspectives that were previously out of
reach [3, 4].

In decision-making, crowdsourcing can create new and innovative solutions by
combining different viewpoints and ideas. This collective intelligence often leads to
creative thinkingandgroundbreakingdiscoveries that traditionalmethodsmightmiss
[8]. Crowdsourcing also helps allocate resources efficiently by connecting tasks with
the people who have the right skills to complete them [12].

While crowdsourcing isn’t new, advances in technology and the rise of online plat-
formshavemade itmorepopular [6]. Platforms likeAmazonMechanicalTurk (MTurk)
have made it easier and more affordable to access human intelligence for tasks such
as information gathering and opinion collection [10]. However, as these platforms
evolve, there is a growing need for effective algorithms to manage skilled crowds and
specialized tasks [20].

One importantarea for thesealgorithms is judgmentanalysis,wheremultipleopin-
ions are combined to determine the correct answers to various questions [15]. Tradi-
tional crowdsourcing models often struggle with accuracy due to noise and conflict-
ing opinions from non-experts [13]. To address these issues, we need algorithms that
can identify the truth in noisy crowdsourced data, especially in scenarios involving
continuous data streams [14].

The influx of data from social networks, sensors, and online platforms has created
newchallenges for decision-making andanalysis [17]. Traditional data analysismeth-
ods are not equipped to handle the speed and volume of streaming data, prompt-
ing the need for new algorithms designed for this environment [16]. The Streamed
Weighted Majority Voting algorithm offers a promising solution for real-time judg-
ment analysis, providing efficient and accurate aggregation of opinions in dynamic

23

data streams.
Previously, judgment analysis for crowdsourced opinions was done using static

methods. However, with the increasing prevalence of streaming data, it’s essential to
adapt thesemethods for continuous data streams. This shift to streaming data analy-
sis is both necessary and challenging.

In this chapter, we propose a new method for analyzing judgments in streaming
data, usingweightedmajority voting toachieve reliable results inchangingdata streams.

This introduction highlights the importance of crowdsourcing, the challenges it
faces, and the need for innovative algorithms like the Streamed Weighted Majority
Voting algorithm to handle these challenges in streaming data analysis.

2.2 Preliminary Details

2.2.1 Basic Terminologies

Herewepresent somemorebasic terminology related to this chapter streamedweighted
majority voting.

• Annotator Weight: Not all annotators are equally reliable. Some may consis-
tently provide accurate answers, while others may not. By assigning weights to
annotators based on their past performance, we can give more importance to
the opinions of reliable annotators.

• QuestionDifficulty: Some questions are harder to answer correctly than others.
By considering the difficulty of each question, we can adjust our expectations
and calculations accordingly. For example, a correct answer to a difficult ques-
tionmight bemore significant than a correct answer to an easy one.

• Entropy: Entropy is a measure of uncertainty or randomness. In the context of
judgment analysis, it is used to quantify the difficulty of a question based on the
distribution of responses.

2.3 ProposedMethod

In the realm of increasing streaming data, the real-time analysis of annotator judg-
ments is paramount for applications such as sentiment analysis and opinion min-
ing. This methodology introduces the StreamedWeighted Majority Voting algorithm
(SWM algorithm), a novel approach aiming to provide an accurate and dynamically
adapting ensemble of opinions from annotators as streaming data unfolds.

24

2.3.1 Prposoed Algorithm

The StreamedWeighted Majority Voting (SWM) algorithm starts by accepting key in-
put parameters. These include the response_matrix, which captures annotator re-
sponses, and lists lst_0bit and lst_1bit, which count the 0 and 1 bits for each col-
umn. The acc parameter represents annotator accuracies, and lr is the learning rate
for dynamic updates.

The SWM algorithm combines weightedmajority voting and dynamic learning to
analyze annotator responses in a streaming data window. It focuses on annotator ac-
curacy, question difficulty, and a learning rate to adapt over time.

First, the initial questiondifficulty is calculatedusing the entropy of 0 and 1bits for
each column. The variables a and b are set tomark the start and end of the streaming
window. The algorithm sets up a matrix M to store weighted opinions and initializes
the Wmr list. Annotator accuracies are initializedwith given values. The algorithmpro-
cesses the streaming data by updating question difficulty with each new window of
data. For each column in the window, the DGIM algorithm counts the 0 and 1 bits,
updating lst_0bit_new and lst_1bit_new. The SWM algorithm then updates matrix
Mwithweightedopinionsbasedon the currentwindowandannotator accuracies. The
weightedmajority result is calculated, and annotator accuracies are updated dynam-
ically using this result and the question difficulty, incorporating the learning rate.

This process continues, with the streaming window moving forward until all the
data isprocessed. Thealgorithm’sperformance ismeasuredbycomparing theweighted
majority result to ground truth labels, providing insights into its real-timeadaptability
and accuracy.

The swm() subroutine implements a dynamic updating mechanism for weighted
majority voting in the context of streamed data. It calculates the entropy of each col-
umn in the current window of responses, assigning higher importance to columns
with lower entropy. Using the provided accuracy of annotators and a learning rate,
it updates the weightedmajority matrix accordingly, favoring more accurate and less
uncertain columns. This adaptive approach allows for real-time adjustments to the
model based on incoming data, enhancing its robustness and accuracy in processing
streaming data.

The function calc_q_entropy takes lists of counts for 0’s and 1’s in each question.
It calculates the uncertainty or randomness of each question’s responses by finding
the proportion of 1s, then computing the entropy. Finally, it returns a list of entropy
values for each question.

The calculate_entropy function computes the entropy of a given probability dis-
tribution. If the probability is either 0 or 1, indicating absolute certainty, the entropy

25

Algorithm 2Main algorithm for weighted judgment analysis on streaming data

Input:Matrix Rm with shape (r,c) containing annotator responses, List L0b
containing counts of 0 bits for each column, List L1b containing counts of 1 bits for
each column, List acc representing annotator accuracies, Float l r representing the
learning rate and also import numpy Python library as np.
Output: The judgment vector Jd consists of weighted ensemble of opinions
corresponding to each question inQ.

1: # Initialization
2: Qd ← calc_q_entropy(L0b, L1b)
3: a ← 0
4: b ← 50
5: M ← init_matrix(p, r , c, −1)
6: W mr ← init_list(r , −1)
7: annot ator_accur ac y ← [1] * Rm.columns
8: while b ≤ Rm.r ow s do
9: A ← get_window(Rm, a, b)
10: # Update question difficulty based on the newwindow
11: set L0b_new to empty List
12: set L1b_new to empty List
13: for i from 0 to Rm.columns −1 do
14: t ar g et ← 0
15: T S ← 0
16: BUC K ET S ← INITIAL-BUCKETING(|A|)
17: RUN(Rm[a,b][i], |A|, T S, BUC K ET S, t ar g et)
18: r es_0b ← COUNT(|A|, T S, BUC K ET S)
19: L0b_new .Append(r es_0b)
20: t ar g et ← 1
21: T S ← 0
22: BUC K ET S ← INITIAL-BUCKETING(|A|)
23: RUN(Rm[a,b][i], |A|, T S, BUC K ET S, t ar g et)
24: r es_1b ← COUNT(|A|, T S, BUC K ET S)
25: L1b_new .Append(r es_1b)
26: end for
27: M ← swm(M , A, a, annot ator_accur ac y , L1b_new , L0b_new , l r)
28: W mr ← argmax(M , axis=1)
29: # Calculate new question difficulty
30: Qd ← calc_q_entropy(L0b_new , L1b_new)
31: acc ← update_acc(acc,W mr , A)
32: a ← b
33: b ← b +50
34: end while
35: returnW mr

26

Algorithm 3 swm() Subroutine

Input:Matrix J representing current weightedmajority, Matrix bl ock representing
the current window of responses, Integer a representing the starting index of the
window, List accur ac y representing accuracy of annotators, Lists l st_ f or_1bi t and
l st_ f or_0bi t representing counts of 1s and 0s for each column, Float lear ni ng_r ate
representing the learning rate.
Output: Updatedmatrix J after applying streamed weightedmajority.

1: entr opy_l st ← calc_q_entropy(l st_ f or_1bi t , l st_ f or_0bi t)
2: for j from 0 to number of columns in block −1 do
3: column_entr opy ← entr opy_l st [j]
4: i mpor t ance_ f actor ← exp(−column_entr opy) · l ear ni ng_r ate
5: for k from 0 to number of rows in block −1 do
6: if bl ock[k][j] ̸= −1 then
7: J [j][bl ock[k][j]] += accur ac y[a +k] · i mpor t ance_ f actor
8: end if
9: end for
10: end for
11: return J

Algorithm 4 calc_q_entropy() Subroutine

Input: List L0b representing counts of 0s for each column, List L1b representing
counts of 1s for each column
Output: List l st_ f or_ques_di f f representing question difficulties for each column

1: for i from 0 to length(L0b)−1 do
2: pr ob ← calculate_probability(L0b[i],L1b[i])
3: entr opy ← calculate_entropy(pr ob)
4: Append entr opy to l st_ f or_ques_di f f
5: end for
6: return l st_ f or_ques_di f f

27

is considered to be 0. Otherwise, it calculates the entropy using the formula for Shan-
non’s entropy and returns the result. This function quantifies the amount of uncer-
tainty or randomness in a probability distribution.

Algorithm 5 Calculate_Entropy() Subroutine

Input: Float pr ob representing a probability value
Output: Float representing the calculated entropy

1: if prob= 0 or prob= 1 then
2: return 0
3: else
4: return −(prob · log2(prob)+ (1−prob) · log2(1−prob))
5: end if

The functionupdate_accuracy(update_acc) adjusts theaccuracy scoresof annota-
tors basedon their responses to awindowofdata compared to the aggregated result of
thatwindow. It iterates over each annotator’s response, updating their accuracy score.
If an annotator’s response matches the window result, their accuracy score is incre-
mented slightly. Otherwise, it’s decremented. The function returns the updated ac-
curacy scores. Thismechanismhelps dynamically adjust annotators’ reliability based
on their performance over time.

Algorithm 6 update_acc() Subroutine

Input: List accur ac y representing annotator accuracies, List wi ndow_r esul t
representing the results from the current window, List annot ator_r esponses
representing annotator responses
Output: Updated list accur ac y after applying adjustments

1: for i from 0 to length(annot ator_r esponses)−1 do
2: if not array_equal(annot ator_r esponses[i], −1) then
3: if array_equal(annot ator_r esponses[i], wi ndow_r esul t [i]) then
4: accur ac y[i] += 0.1
5: else
6: accur ac y[i] −= 0.1
7: end if
8: end if
9: end for
10: return accur ac y

28

2.3.2 Time Complexity

Algorithm 2 processes each question in the input data by running a loop |Q| times,
where |Q| is the number of questions. For the overall time complexity of the main al-
gorithm:

• Initialization steps:

– calc_q_entropy(L0b, L1b): O(c)

– init_matrix(p, r, c, -1): O(pr c)

– init_list(r, -1): O(r)

– Initializing annotator_accuracy: O(c)

• While loop runs n
50 times (assuming Rm.r ow s = n):

– get_window(Rm, a, b): O(c)

– Processing each columnwithin the loop:

* INITIAL-BUCKETING(|A|): O(log |A|)
* RUN(Rm[a,b][i], |A|, TS, BUCKETS, target): O(|A|)
* COUNT(|A|, TS, BUCKETS):O(log |A|)
* Total for each column: O(|A|)

– swm(M, A, a, annotator_accuracy, L1b_new, L0b_new, lr): O(r c)

– argmax(M, axis=1): O(r c)

– calc_q_entropy(L0b_new, L1b_new): O(c)

– update_acc(acc, Wmr, A):O(r)

Combining these, the overall time complexity per while loop iteration is:

O(c)+O(r c)+O(c)+O(r c)+O(r) =O(r c)

Thus, the total time complexity for the while loop is:

n

50
×O(r c) =O(nr c)

2.3.3 Space Complexity

For each question, INITIAL-BUCKETING() (line 21) initializes log |A| buckets, eachwith
a constant length, k. Therefore, the total space required for managing the BUCKETS is

29

k · log |A|. This space is reused in the other function calls to RUN() (line 22) and COUNT()
(line 23). The space required for the other variables is constant, denoted as v . The
counting process (lines 21-25) for the number of 0’s is repeated (lines 27-31) for the
number of 1’s. The final judgment calculation also uses a constant space, denoted as
j . Thus, the total space complexity is:

|Q|×

k · log |A|+ v︸ ︷︷ ︸
lines 21-25

+k · log |A|+ v︸ ︷︷ ︸
lines 27-31

+ j︸︷︷︸
final judgment

≃O(|Q| log |A|).

The overall space complexity of the algorithm is the sum of the space complexity
for BUCKETS and the space complexity for other variables:

Overall Space Complexity= Space complexity for BUCKETS+Space complexity for other variables

Overall Space Complexity=O(|Q| log |A|)+O(|Q|).

Considering thematrix and other variables, the space complexity becomes:

O(pr c)+O(r c)+O(c)+O(r)

Thus, the final space complexity is:

O(pr c)

2.3.4 Summary

• Time Complexity: O(nr c)

• Space Complexity: O(pr c)

2.4 Empirical Analysis

We used three datasets, two large-scale dataset called Fact Evaluation and Sentiment
Analysis Dataset and a small-scale dataset named WVSCM, to evaluate the effective-
ness of our suggested methodology in comparison to current methods. On a system
with an 11thGen Intel(R) Core(TM) i5-1135G7CPU running at 2.4GHz, 16GBof RAM

30

(15.8 GB usable), and a 64-bit operating system, we carried out the experiments using
Python 3.0.

2.4.1 Results onWVSCMDataset

The dataset details are already given in the previous chapter. Hence, the results of
weighted judgement analysis is only provided below.

Table 8: Performance in terms of accuracy for theWVSCMdataset. The highest accu-
racy in each column is highlighted in bold.

Algorithm Accuracy(%) Data Setting
Proposed Efficient Method 75.00 Streaming

Majority Voting 75.00 Non-Streaming
WeightedMajority Voting 75.62 Non-Streaming

2.4.2 Results on Fact Evaluation Dataset

The dataset details are already given in the previous chapter. Hence, the results of
weighted judgement analysis is only provided below.

Table 9: Performance in termsof accuracy for the Fact Evaluationdataset. Thehighest
accuracy in each column is highlighted in bold.

Algorithm Accuracy(%) Data Setting
Proposed Efficient Method 94.73 Streaming

Majority Voting 94.54 Non-Streaming
WeightedMajority Voting 95.82 Non-Streaming

31

2.4.3 Results on Sentiment Analysis Dataset

Weusedasentimentanalysisdatasetprovidedby thecrowd-poweredcompanyCrowd-
Flower. Thisdatasetasksannotators to judge thesentimentof tweetsabout theweather.
It has 98,979 tweets in all, with at least five annotators evaluating each one, for a total
of roughly 569,375 answers.

The dataset includes detailed information such as:

• Question ID: The ID of the tweet being evaluated.

• Rater ID: The ID of the annotator.

• Judgment: The annotator’s answer, which can be one of the following:

– 0: Negative
– 1: Neutral (the author is just sharing information)
– 2: Positive
– 3: Tweet not related to the weather
– 4: Cannot determine the sentiment

• Tweet Text: The content of the tweet.

• Country, Region, City: The location details of the annotator.

• Started At: The time when the annotator started the evaluation.

• Created At: The time when the annotator finished the evaluation.

For our analysis, we used a simpler version of this dataset with just three columns:

• Question ID: The ID of the tweet.

• Rater ID: The ID of the annotator.

• Judgment: The annotator’s answer (0 to 4).

In our experiment, we converted the judgments as follows:

• 0 (Negative) remains 0.

• 2 (Positive) becomes 1.

• 4 (Cannot determine) becomes -1.

We ignored the other responses (1 and 3) in our analysis.

32

Table 10: The performance in terms of accuracy obtained for the Sentiment Analysis
dataset. The best accuracy over the column is shown in bold.

Algorithm Accuracy(%) Data Setting
Proposed Efficient Method 94.26 Streaming

Majority Voting 90.67 Non-Streaming
WeightedMajority Voting 97.12 Non-Streaming

2.5 Conclusion and FutureWork

We have proposed a space-efficient approach to judgment analysis in a streaming
setting.The provided code implements a dynamic sentiment analysis framework that
adapts over time by incorporating streamed weighted majority voting. The utiliza-
tion of the Extended DGIM algorithm efficiently handles the processing of binary re-
sponseswithin a slidingwindow, contributing to the real-timenatureof the approach.
Annotator accuracy andquestiondifficulty aredynamically updatedbasedon incom-
ing responses, allowing the system to learn and adjust continuously. Here, the learn-
ing rate is a hyperparameter, which can be adaptively adjusted, potentially represent-
ing a future direction for this paper.

Availability

The GitHub repository where the code is hosted is as follows:

• Codes applied on theWVSCMDataset (Table 8)

• Codes applied on the Fact Evalution Dataset (Table 9)

• Codes applied on the Sentiment Analysis Dataset (Table 10)

33

https://github.com/Soumen-Mandal/M.Tech-Dissertation/tree/weighted-judgement-analysis/Weighted_Judgement_Analysis/WVSCM
https://github.com/Soumen-Mandal/M.Tech-Dissertation/tree/weighted-judgement-analysis/Weighted_Judgement_Analysis/Fact_Evaluation
https://github.com/Soumen-Mandal/M.Tech-Dissertation/tree/weighted-judgement-analysis/Weighted_Judgement_Analysis/Sentiment_Analysis

References

[1] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw, J. Zimmerman,
M. Lease, and J. Horton, “The future of crowd work,” in Proceedings of the 2013
Conference on Computer Supported Cooperative Work, 2013, pp. 1301–1318.

[2] S. Amer-Yahia and S. B. Roy, “Human factors in crowdsourcing,” Proceedings of
the VLDB Endowment, vol. 9, no. 13, pp. 1615–1618, 2016.

[3] T. Buecheler, J. H. Sieg, R. M. Füchslin, and R. Pfeifer, “Crowdsourcing, open in-
novation and collective intelligence in the scientific method: a research agenda
andoperational framework,” inThe 12th International Conference on the Synthe-
sis and Simulation of Living Systems, Odense, Denmark, 19-23 August 2010. MIT
Press, 2010, pp. 679–686.

[4] B. Li, Y. Cheng, Y. Yuan, Y. Yang, Q. Jin, and G. Wang, “Acta: Autonomy and coor-
dination task assignment in spatial crowdsourcing platforms,”Proceedings of the
VLDB Endowment, vol. 16, no. 5, pp. 1073–1085, 2023.

[5] D. C. Brabham, Crowdsourcing. TheMIT Press, 2013.

[6] G. Paolacci, J. Chandler, and P. G. Ipeirotis, “Running experiments on amazon
mechanical turk,” JudgmentandDecisionMaking, vol. 5, no. 5, pp. 411–419, 2010.

[7] J. C. Tang, M. Cebrian, N. A. Giacobe, H.-W. Kim, T. Kim, and D. B. Wickert,
“Reflecting on the darpa red balloon challenge,” Communications of the ACM,
vol. 54, no. 4, pp. 78–85, 2011.

[8] S. Chatterjee and M. Bhattacharyya, “Judgment analysis of crowdsourced opin-
ions using biclustering,” Information Sciences, vol. 375, pp. 138–154, 2017.

[9] P. G. Ipeirotis, “Analyzing the amazon mechanical turk marketplace,” XRDS:
Crossroads, The ACMmagazine for students, vol. 17, no. 2, pp. 16–21, 2010.

[10] K. J. Boudreau, N. Lacetera, and K. R. Lakhani, “Incentives and problem un-
certainty in innovation contests: An empirical analysis,” Management science,
vol. 57, no. 5, pp. 843–863, 2011.

[11] T.X.Liu, J. Yang, L.A.Adamic, andY.Chen, “Crowdsourcingwithall-payauctions:
Afield experiment on taskcn,”Management Science, vol. 60, no. 8, pp. 2020–2037,
2014.

34

[12] K. J. Boudreau and K. R. Lakhani, “Using the crowd as an innovation partner.”
Harvard business review, vol. 91, no. 4, pp. 60–9, 2013.

[13] R. Snow, B. O’connor, D. Jurafsky, and A. Y. Ng, “Cheap and fast–but is it good?
evaluating non-expert annotations for natural language tasks,” in Proceedings of
the 2008 conference on empirical methods in natural language processing, 2008,
pp. 254–263.

[14] A. Sorokin and D. Forsyth, “Utility data annotation with amazon mechanical
turk,” in 2008 IEEE computer society conference on computer vision and pattern
recognition workshops. IEEE, 2008, pp. 1–8.

[15] S. Chatterjee, A. Mukhopadhyay, and M. Bhattacharyya, “A review of judgment
analysis algorithms for crowdsourced opinions,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 32, no. 7, pp. 1234–1248, 2019.

[16] S. Muthukrishnan et al., “Data streams: Algorithms and applications,” Founda-
tions and Trends® in Theoretical Computer Science, vol. 1, no. 2, pp. 117–236,
2005.

[17] R. Rubinfeld and A. Shapira, “Sublinear time algorithms,” SIAM Journal on Dis-
crete Mathematics, vol. 25, no. 4, pp. 1562–1588, 2011.

[18] M.Datar, A. Gionis, P. Indyk, and R.Motwani, “Maintaining stream statistics over
sliding windows,” SIAM Journal on Computing, vol. 31, no. 6, pp. 1794–1813,
2002.

[19] J. Whitehill, T.-f. Wu, J. Bergsma, J. Movellan, and P. Ruvolo, “Whose vote should
count more: Optimal integration of labels from labelers of unknown expertise,”
Advances in Neural Information Processing Systems, vol. 22, 2009.

[20] L. R. Varshney, S. Agarwal, Y.-M. Chee, R. R. Sindhgatta, D. V. Oppenheim, J. Lee,
and K. Ratakonda, “Cognitive coordination of global service delivery,” arXiv
preprint arXiv:1406.0215, 2014.

35

	Judgement Analysis on Opinion Streams
	Introduction
	Motivation
	Problem Formulation
	Preliminary Details
	Basic Terminologies
	Related Work

	Proposed method
	A Naive Method
	Time Complexity
	Space Complexity
	An Efficient Method
	Time Complexity
	Space Complexity
	Error Factor

	Empirical Analysis
	Results on WVSCM Dataset
	Results on Fact Evaluation Dataset

	Conclusion and Future Work

	Weighted Judgement Analysis on Opinion Streams
	Introduction
	Preliminary Details
	Basic Terminologies

	Proposed Method
	Prposoed Algorithm
	Time Complexity
	Space Complexity
	Summary

	Empirical Analysis
	Results on WVSCM Dataset
	Results on Fact Evaluation Dataset
	Results on Sentiment Analysis Dataset

	Conclusion and Future Work

