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ABSTRACT

In recent years, there has been a surge of interest in using machine
learning algorithms (MLAs) in oncology, particularly for biomedical
applications such as drug discovery, drug repurposing, diagnostics, clinical trial
design, and pharmaceutical production. The accurate prediction of the half-
maximal inhibitory concentration (IC50) of chemical compounds is pivotal for
advancing personalized medicine and accelerating drug discovery. This
dissertation presents a comprehensive performance evaluation of several state-
of-the-art IC50 prediction models, including PaccMann, Precily, tCNN, AGMI,
and DeepCDR. Each model employs distinct methodologies ranging from graph
neural networks and convolutional neural networks to deep learning
architectures tailored for multi-omics data integration. The primary objective of
this study is to compare these models' predictive capabilities, robustness, and
applicability across diverse datasets of cancer cell lines and chemical
compounds. We employ rigorous cross-validation techniques and various
performance metrics such as mean absolute error (MAE), root mean squared
error (RMSE), and Pearson correlation coefficient to assess each model's
effectiveness. Additionally, we analyze the models' performance in terms of
computational efficiency and scalability, as these factors are crucial for practical
implementation in large-scale drug screening processes. Our findings highlight
the strengths and limitations of each approach, providing critical insights into
their potential clinical and pharmacological applications. This evaluation aims
to guide future research in selecting and optimizing predictive models for IC50,
ultimately contributing to more effective and personalized cancer treatments.
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Chapter 1
INTRODUCTION

The prediction of the half-maximal inhibitory concentration (IC50) of
chemical compounds is a fundamental task in the fields of pharmacology and
oncology. IC50 values are a crucial measure of a drug's potency, representing
the concentration required to inhibit a biological process by 50%. Accurate IC50
predictions can significantly enhance the drug discovery process, enabling the
identification of promising therapeutic candidates and the optimization of
personalized treatment strategies. This dissertation focuses on evaluating the
performance of several state-of-the-art IC50 prediction models, namely
PaccMann, Precily, tCNN, AGMI and DeepCDR.

1.1 Cell Line and its representations:

A cell line is a population of cells derived from a single cell and grown in
a controlled laboratory environment. These cells are often used in biomedical
research to study biological processes, drug responses, and disease mechanisms.
Cancer cell lines are critical for screening potential anticancer compounds and
understanding their effects on different types of cancer cells.

({ Genomics \

¢ .\"

Transcriptomics

Epigenomics
\\/’/‘/‘Z/?/Z/ Y,
Cancer
patient Multi-omics data

Figure 1: Cancer cell line representations



Cell lines are extensively characterized using various "-omic" profiles,
providing comprehensive data crucial for IC50 prediction models. These
profiles include genomic, epigenetic, transcriptomic, and proteomic
information, each contributing unique insights into the biological state of the
cells.

Genomics:

The genomic profile of a disease state is identified through genetic
sequencing, revealing key mutations that influence disease onset and outcomes.
These mutations can include single-nucleotide variants, insertions, deletions,
copy number variations, and translocations. The genomic mutational profile
serves as a critical feature for machine learning models, with mutational status
and copy number variations frequently used to predict the efficacy of new
therapeutics. Example Mutational Profile of three cell lines described below:

Mutations Cell Line 1 Cell Line 2 Cell Line 3
ENST00000371733/c.2296G>A 1 0 1
ENST00000231790/¢c.329T>C 0 1 1
ENST00000326873/c.595G>T 1 1 0

Figure 2: Genomics Profile

Transcriptomics:

Transcriptomic profiles, captured through RNA sequencing (RNA-seq),
are widely used in computational bioinformatics. These profiles reveal the
degree of mRNA expression, indicating which genes are active or inhibited in
each cell. RNA-seq can be conducted on bulk populations or single cells, with
high-throughput methods providing spatiotemporal data on mRNA expression
changes over time and across different cell regions.



Transcriptomics Profile

Genes Cell Line 1 (TPM) Cell Line 2 (TPM) Cell Line 3 (TPM)
Gene_X (ENSG000001) 50 120 80

Gene_Y (ENSG000002) 75 60 110

Gene_Z (ENSG000003) 90 45 130

Note: TPM (Transcripts Per Million) is a common unit for RNA-seq data.

Figure 3: Transcriptomics Profile

Epigenetics:

Epigenetic modifications provide deeper insights into the biological
processes underlying a disease state. One significant epigenetic feature is
chromatin accessibility, assessed using methods like human assay for
transposase-accessible chromatin with high-throughput sequencing (ATAC-seq).
Databases of epigenetic information are rapidly growing, offering valuable data
for bioinformatics analyses.

Epigenetics Profile

Chromatin Accessibility Cell Line 1 Cell Line 2 Cell Line 3
Regions (Accessibility) (Accessibility) (Accessibility)
Region_A (chr1:12345-67890) 1 0 1

Region_B (chr2:23456-78901) 0 1 1

Region_C (chr3:34567-89012) 1 1 0

Note: Accessibility values (0 or 1) indicate whether the chromatin region is accessible (1) or not (0).

Figure 4: Epigenetics Profile



Proteomics:

Proteomic profiles encompass data on protein structure, properties,
interactions, and abundances. Resources like UNIPROT provide structural
properties and amino acid sequences of proteins, aiding in the creation of
protein embeddings and therapeutic target features. Databases such as
CHEMBL and ProteomicsDB offer key features and mass spectrometry data,
respectively, which inform drug prediction models and provide a proteomic
overview of the disease state.

Proteomics Profile

Proteins Cell Line 1 (Abundance) Cell Line 2 (Abundance) Cell Line 3 (Abundance)
Protein_A (P12345) 100 150 200

Protein_B (P67890) 80 120 90

Protein_C (P54321) 60 110 130

Note: Protein abundance values are arbitrary units representing the relative abundance of the proteins.

Figure 5: Proteomics Profile

1.2 Drug and its representations:

A drug refers to any chemical compound used for therapeutic purposes,
specifically those intended to treat cancer. These compounds can vary widely in
their chemical structures and mechanisms of action. Understanding how
different drugs interact with various cancer cell lines is essential for developing
effective treatments.

Constructing a machine learning (ML) algorithm to connect a molecular
state reflecting a disease with the response to a therapeutic intervention requires
selecting the best computer-readable form to represent the therapeutic agent.
Various methods are available for representing small molecules in a computer-
readable manner, each with its own advantages and challenges.



SMILE (Simplified Molecular Input Line Entry System):

SMILE is a chemical annotation system that represents molecular
structures using characters for atoms and special symbols for bonds and higher-
order structural properties. However, SMILE strings might not always
correspond to valid molecules, leading to the development of SELFIES (Self-
referencing Embedded Strings) to ensure all generated strings refer to valid
molecules. These character representations often need to be converted into
numerical forms for ML models.

Drug Molecule SMILE Representation

Aspirin CC(=0)OC1=CC=CC=C1C(=0)0O
Drug Molecule SELFIES Representation

Aspirin CICIC[O]ICMCICICICICI1CIO]

Figure 6: SMILES and STRINGS representation

Fingerprinting:

Fingerprinting converts a chemical structure into a binary vector of
predetermined size, capturing the structural information of the compound.
Morgan fingerprinting is a widely used technique that allows ML models
expecting binary vector input to process chemical structures effectively.

Drug Molecule Morgan Fingerprint (Binary Vector)

Aspirin 101010100111000101010100111000101010

Figure 7: Fingerprint Representation



Natural Language Processing (NLP):

NLP approaches to chemical structure embedding involve tokenizing
SMILE/SELFIE strings and training a specific language model to embed the
chemical structure. This method captures higher-order relationships within the
molecule and can outperform traditional fingerprinting in various classification

tasks.
Drug Molecule NLP Tokenized Representation
Aspirin G Gt i © 0 Pl G P O G i Gl — Bl © e 0 3l
Figure 8: Cell line Representation using NLP Techniques
Molecular Graphs:

This representation is particularly useful for larger therapeutics such as
proteins and peptides.

Drug Molecule Molecular Graph (Node-Edge List) HsC 0 O
Aspirin Nodes: [C,C,0,0,C C C, C H, H, H] OH

Edges: [(C-C), (C=0), (0O-C), (C-C), ..]

Figure 9: Molecular Graph Representation of a drug



Task-Assisted Protein Embeddings (TAPE):

TAPE builds on NLP and semi-supervised ML paradigms, creating
protein embeddings from amino acid sequences through biologically relevant
tasks such as structure prediction, homology detection, and protein engineering.
These embeddings have been widely adopted in higher-order models like IBM’s
PaccMannRL.

Protein TAPE Embedding (Feature Vector)

Example Protein [0.24, -0.13, 0.05, ..., 0.78, 0.33]

Figure 10: TAPE Representation sample

1.3 Introducing 1C50:

Half-maximal inhibitory concentration (IC50) is the most widely used
and informative measure of a drug's efficacy. It indicates how much
concentration of a drug is needed to inhibit a biological process by half, thus
providing a measure of potency.

120

40+

Inhibition [% of control]

20+

-20

] 160 260 3450
Concentration [pM]

Figure 11:1C50 vs Concentration graph



LN_IC50 stands for the natural logarithm of the half-maximal inhibitory
concentration (IC50). The IC50 value represents the concentration of a drug
required to inhibit a biological process or the growth of cells by 50%. Taking
the natural logarithm (LN) of the IC50 value helps in stabilizing the variance
and normalizing the distribution of these values, which is particularly useful for
statistical analyses and modelling.

Why Use LN_IC50?

Normalization:

Raw IC50 values can span several orders of magnitude, and taking
the natural logarithm helps in compressing this range, making the
data more manageable and suitable for various machine learning
algorithms.

Stabilizing Variance:

Biological data often exhibit heteroscedasticity, where the variance
changes across different levels of an independent variable. The
logarithmic transformation helps in stabilizing the variance.

Improving Model Performance:

Many predictive models perform better when the input data follow
a normal distribution or have less skewness, which is often
achieved through logarithmic transformation.



Chapter 2
PROBLEM DEFINITION

In the rapidly advancing field of drug discovery, predicting the half-
maximal inhibitory concentration (IC50) of drug molecules is crucial for
understanding their efficacy against specific cell lines. Accurate prediction of
IC50 values can significantly streamline the drug development process,
reducing time and costs associated with experimental testing. Each model
leverages different methodologies and representations of molecular and cellular
data to predict drug efficacy. By systematically comparing these models, we aim
to identify their strengths and weaknesses, ultimately contributing to the
improvement of computational approaches in drug discovery.

2.1 What is the need?

Traditional experimental approaches to determine IC50 values are time-
consuming, labour-intensive, and costly.

1. Personalized Medicine:

Accurate 1C50 predictions tailored to specific cell lines can aid in
developing personalized treatment plans, improving patient outcomes
by identifying the most effective drugs for individual genetic profiles.

2. Ethical Considerations:

Improving IC50 prediction models reduces the need for animal
testing, addressing ethical concerns and minimizing the use of animals
in the drug development process.

3. Resource Optimization:

By improving prediction models, we can optimize the use of
resources in pharmaceutical research, focusing efforts on the most
promising compounds and reducing the attrition rate of drug
development projects.



Chapter 3
DATASET DETAILS

In this study, we utilized publicly available gene expression and drug
IC50 data from well-known datasets in cancer research to train and evaluate our
models. These datasets provide comprehensive information on the genetic
profiles of various cancer cell lines and their responses to a wide range of
anticancer compounds, facilitating the development of predictive models for
drug sensitivity.

3.1 Genomics of Drug Sensitivity in Cancer (GDSC) Dataset

The GDSC database is a rich resource that includes screening results for
over a thousand genetically profiled human pan-cancer cell lines treated
with a diverse array of anticancer compounds. These compounds include
both traditional chemotherapeutic agents and modern targeted therapeutics
from various sources

- Itincludes 969 Cell Lines data

- Over 290 wide range of anticancer compounds

- GDSC2 dataset includes 2,43,466 Drug-Cell Line pairs with its
IC50 values, gene expression, mutations, and copy number

variations.

The GDSC dataset has been instrumental in understanding drug

response mechanisms and identifying potential therapeutic targets.



3.2 Cancer Cell Line Encyclopedia (CCLE) Dataset

The CCLE dataset provides detailed genomic profiles of a large collection
of cancer cell lines. It includes data on gene expression, gene mutations,
and copy number variations (CNV), which are crucial for understanding the
molecular basis of cancer and predicting drug responses. The CCLE dataset
complements the GDSC dataset by providing additional genomic
information that enhances the accuracy of predictive models.

- It includes comprehensive genomic profiles of cancer cell lines
- Data includes gene expression, mutations, and CNV

- Widely used for cancer research and drug discovery

3.3 Drug Datasets

In addition to the GDSC and CCLE datasets, we leveraged various drug
datasets that include detailed information on the chemical properties and
biological activities of anticancer compounds. These datasets are essential
for constructing drug representations that can be used in predictive models.

- PubChem: A large-scale bioactivity database providing
information on drug-like compounds and their biological
activities.

- DrugBank: A comprehensive resource that combines detailed

drug data with drug-target interaction information.



3.4 Data Preparation

GDSC2 includes 243,466 drug-cell line pairs below is the sample dataset,
which consist of 969 cancer cell lines and 297 drugs.

COSMIC_ID  CELL_LINE.NAME  TCGA_DESC DRUG_ID DRUG_NAME PATHWAY_NAME LN_IC50 MIN_CONC  MAX_CONC  IC50
684052 A673 UNCLASSIFIED 1003 Camptothecin DNA replication -4.869447  0.0001 0.1 0.00767761

688027 NCI-H69 SCLC 1013 Nilotinib ABL signaling 2.000039 0.002001 10 7.389344278

Table 1: GDSC2 Sample dataset

From the initial dataset containing 243,466 drug-cell line pairs, we
applied a filtering criterion based on the IC50 values. Specifically, we
considered only those drug-cell line pairs where the IC50 value lies between the
minimum concentration (MIN_CONC) and the maximum concentration
(MAX_CONC) recorded in the dataset. This filtering step is crucial to ensure
the reliability of the IC50 values used in our models.

After applying this filter, we retained approximately 51,652 drug-cell line
pairs with 969 cell lines and 202 drugs, which provided a robust dataset for
training and evaluating our IC50 prediction models.

We will utilize the filtered dataset of 51,652 drug-cell line pairs, where
IC50 values lie within the specified concentration ranges, to evaluate the
performance of Paccmann, Precily, tCNN, AGMI, and DeepCDR, ensuring
reliable and meaningful comparisons across these different approaches to 1C50
prediction.

The table below provides a summary of the various predictive models
evaluated in this study, highlighting their respective representations for both cell
lines and drug molecules. Each model employs distinct methods for encoding
biological and chemical information, which is crucial for their performance in
predicting drug sensitivity (LN_IC50 values). The cell line representations
range from transcriptomics to genomics, while drug representations include
SMILES strings, molecular fingerprints, and molecular graphs.



Model Cell Line Representation Drug Representation

Paccmann Transcriptomics SMILES

Precily Transcriptomics SMILES

tCNN Genomics SMILES
DeeplC50 Genomics Fingerprints
AGMI Genomics & Transcriptomics Molecular Graph
DeepCDR Genomics & Transcriptomics Molecular Graph

Table 2: Cell and Drug Representations of the models

Each of this model predicts LN_IC50 values 1.e the natural logarithm of
the half-maximal inhibitory concentration (IC50). Taking the natural logarithm
(LN) of the IC50 value helps in stabilizing the variance and normalizing the
distribution of these values, which is particularly useful for statistical analyses
and modelling.



Chapter 4
METHODOLOGY

In this section, we outline the methodology employed to evaluate the
performance of various predictive models using a common dataset of 51,652
drug-cell line pairs, filtered to ensure IC50 values lie within specified
concentration ranges. This dataset includes gene expression, mutations, and
copy number variations for cell lines, along with drug descriptors such as
SMILES strings and molecular fingerprints. The use of this common dataset
ensures that all models are evaluated on the same basis, allowing for direct
comparisons of their performance.

Each predictive model will be evaluated individually, documenting key
aspects such as drug embedding, cell line embedding, model structure, and
performance of each model. The model structure section will detail the
architecture and design of each model, highlighting notable features or
techniques such as convolutional neural networks or attention mechanisms.
Performance metrics will be assessed using Root Mean Square Error (RMSE),
correlation, and R-squared (R2?), providing a comprehensive view of each
model's predictive accuracy and reliability.

4.1 PaccMann:

PaccMann is a novel approach for predicting the sensitivity of anticancer
compounds using multi-modal attention-based neural networks. This method
integrates three critical aspects of drug sensitivity: the molecular structure of
compounds, transcriptomic profiles of cancer cells, and prior knowledge about
protein interactions within cells. PaccMann processes a drug-cell pair, which
consists of the SMILES encoding of a compound and the gene expression
profile of a cancer cell, to predict an IC50 sensitivity value.



The PaccMann framework includes three different encoders for SMILES
strings: bidirectional recurrent, convolutional, and attention-based encoders.
These diverse encoders are designed to capture various structural features of the
compounds.

4.1.2 Drug Embedding:

PaccMann employs SMILES drug embedding, utilizing the text
encodings to represent the structural information of the compounds. To encode
these SMILES strings they have used the attention-based encoders which not
only captures the intricate details of the molecular structures effectively but also
enhances the overall predictive accuracy of the model.

4.1.3 Cell Line Embedding:

In PaccMann, cell line embedding relies on gene expression data, The
STRING protein-protein interaction (PPI) network is employed to incorporate
intracellular interactions, Through a weighting and propagation scheme,
relevant genes are identified, and the top 20 genes across all compounds are
pooled to create a subset of 2,128 informative genes. Now, Cell Lines are
represented by the gene expression values of a subset of these 2,128 genes.

4.1.4 Model Architecture:

Cells are represented by the gene expression values of a subset of 2,128
genes, selected for having the highest weights following the network
propagation. Compound structures are represented in the SMILES formats. The
gene-vector is fed into an attention-based encoder that assigns higher weights to
the most informative genes. SMILES encoding of compounds is employed by
an array of encoders that are combined with a representation of gene expression
to obtain a drug sensitivity prediction.



PaccMann predicts normalised IC50 values which lies between 0 & 1. So
it uses the below formula to convert these normalised IC50 value(§) to

LN_IC50 value(y).

y = § 4+ (ic50_max - ic50_min) + ic50_min

PaccMann
R, :
@O@Q“ @ :/C50
Dense
Layers
Sttt

| Encoded Gene Expression | Encoded SMILES or FPs |

Gene Expression Encoder SMILES Encoders:

— Attention Encoder
— CNN Encoder

Genes Subset

] — RNN Encoder

A
.

Propagation

Inputs:

4.2 Precily:

Gene Expression
~16000 genes

SMILES:[..CCOHNCCCCIH..]

or
FPs: [ 00000000010 ... 00000000010 ]

Figure 12: PaccMann Model Architecture

Precily introduces a novel predictive modelling approach for inferring
treatment response in cancers using gene expression data. This framework
emphasizes the incorporation of pathway activity estimates alongside drug
descriptors as features. Utilizing a deep neural network (DNN)-based

framework, Precily predicts the response to cancer therapy based on gene
expression profiles and drug descriptors, providing insights into the biological
mechanisms underlying drug resistance through the explicit use of pathway

enrichment scores.



4.2.1 Drug Embedding:

In Precily, Drug Embeddings are numeric molecular descriptors for anti-
cancer compounds are obtained using SMILESVec, by supplying simplified

molecular-input line-entry system (SMILES) notation.

4.2.2 Cell Embedding:

In Precily, they have considered the 500 top highly variable gene

expressions for each cell line.

4.2.3 Model Architecture:

0 S —
@0 ~ PR~ B
( 8 £3% 8
- . 7% :
Cell lines palnWay gt
Can_cer Gene expression Processed data GDSC GDSC
cell lines matrix (CCLE) for ML drug response drug descriptors

- -k -k

Dropout Dropout
laver (0.1 layer (0.1) layer (0.1)
Input layer kernel Dense layer yer it} Dense layer Dense layer Output layer

Figure 13: Precilt model architecture

A deep neural network (DNN) was trained using the Keras framework.

The DNN architecture comprised one input layer entailing all the 600 features
(500 gene features and drug descriptors of size 100), followed by one hidden
layer of size 512, with Rectified Linear Unit(RELU) as an activation function

was used to predict the LN_IC50 values.



4.3 tCNN:

tCNN employs a convolutional network to extract features from the
simplified molecular input line entry specification (SMILES) format for drugs.
Simultaneously, another convolutional network is utilized to extract features
from genetic feature vectors of cancer cell lines. These extracted features are
then combined in a fully connected network to predict interactions between
drugs and cancer cell lines. However, the model's performance decreases
significantly when the training and testing sets are divided exclusively based on
either drugs or cell lines, resulting in R? values that are barely above zero.

4.3.1 Drug Embedding:

In tCNN, the SMILES format for drugs, containing 72 different symbols,
is converted into a one-hot matrix, where each drug is represented as a 72 x 188
matrix with binary values (0 or 1) where 188 1s the size of longest SMILES. In
the one-hot matrix for a drug, a value 1 at row i and column j means that the ith
symbol appears at j* position in the SMILES format for the drug. The 1D
convolutional operation is applied along each row, confining the operation
within the same chemical element, thus enabling the model to extract relevant
features from the drug's SMILES representation.

4.3.2 Cell Line Embedding:

In tCNN, The cell line features are acquired from GDSC which represents
each cell line by a 735 feature vector where each feature either belongs to
mutation state or copy number alteration. A 1D CNN is applied along the 1D
feature vectors for cell lines.



4.3.3 Model Architecture:
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Figure 14: tCNN model architecture

The left-hand side is the input data of one-hot representations for drugs
and the feature vectors for cell lines. The black square stands for ‘1’ and empty
square stands for ‘0’. In the middle, there are a CNN branch to process the drug
inputs and a CNN branch to process cell lines inputs, respectively. They take the
one-hot representations and feature vectors as input data respectively, and their
outputs can be interpreted as the abstract features for drugs and cell lines. The
structures of the two convolution neural networks are similar. The two CNN’s
are then connected to a fully-connected neural network to predict IC50 values.

For training, tCNN normalizes the logarithmic IC50 values into the (0,1)
interval. Given a logarithmic IC50 value x, first it takes the exponential of it to
get the real IC50 value y=e* and then use the following function to normalize:

Usually y is very small (<1073), and the parameter —0.1 is chosen to
distribute the result more uniformly on the interval (0,1).



4.4 AGMI:

The Attention-Guided Multi-omics Integration (AGMI) approach
introduces a novel method for IC50 prediction. AGMI constructs a Multi-edge
Graph (MeG) for each cell line and integrates multi-omics features using a
unique structure called the Graph edge-aware Network (GeNet). This approach
1s groundbreaking as it explores gene constraint-based multi-omics integration
for prediction of IC50 across genome the entire using Graph Neural Networks
(GNNs), offering a new dimension in predictive modelling for drug response.

4.4.1 Drug Embedding:

AGMI uses a Graph Isomorphism Network (GIN) to generate drug
embedding, It collect SMILES from PubChem and uses RDKit package to
construct molecular graphs where atoms are described as nodes and bonds
between any two atoms are described as edges. The GIN network generates a
128 size vector embedding for each drug.

4.4.2 Cell Line Embedding:

The AGMI approach constructs a Multi-edge Graph (MeG) for each cell
line, where each node represents a gene with its expression level, mutation state,
and copy number variation (CNV) as features. Edges represent different types
of relations between genes, such as protein-protein interactions (proteomics),
gene pathway relations (metabolomics), and PCC of gene expression. Now, they
introduced node-level GRU (nGRU) after this they introduce a graph-level
GRU (gGRU) this will map the node features and edge features of the whole
graph to a cell line feature vector of size 128.



4.4.3 Model Architecture:
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Figure 15: AGMI model architecture

AGMI integrates multi-omics data by modelling a cell line as a graph
with multip