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ABSTRACT

In the pursuit of personalized cancer treatment, predicting drug response in specific cell
lines is a critical challenge. This study presents a novel approach for predicting the half-
maximal inhibitory concentration (IC50) of drugs on various cell lines using a
Convolutional Neural Network (CNN) architecture. The proposed model,
IC50Predictor, integrates drug and cell line features through separate CNN pipelines,
combining the extracted features to make robust predictions. We evaluated the model
using three data splitting strategies: random split, cell-line split, and drug split, to assess
its generalization capabilities. Additionally, an analysis of drug properties was
conducted to determine their impact on prediction accuracy and error. The performance
of the model was measured using metrics such as R?, RMSE, and Pearson correlation
coefficient. Our results demonstrate the efficacy of the CNN-based approach in
accurately predicting drug responses and highlight the significance of drug properties
in refining these predictions, showcasing its potential in the advancement of
personalized medicine. The model achieved an Pearson correlation of 0.941 in the
random split, 0.895 in cell line split and 0.421 in drug split, indicating its robustness

and effectiveness.
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Chapter 1

INTRODUCTION

Cancer, a multifaceted and heterogeneous disease, continues to pose a significant
challenge to healthcare systems worldwide. Traditional cancer treatments often employ
a generalized approach, leading to varied outcomes due to the unique genetic and
molecular profiles of individual tumors. Personalized medicine seeks to address this
variability by tailoring treatments based on the specific characteristics of each patient's

cancer, promising more effective and less toxic therapies.

A critical aspect of personalized cancer therapy is the ability to predict how
different cancer cell lines will respond to various drugs. The half-maximal inhibitory
concentration (IC50) is a key measure in this context, indicating the concentration of a
drug required to inhibit cell growth by 50%. Accurate prediction of IC50 values can
streamline drug development, optimize treatment regimens, and improve patient

outcomes by ensuring the most effective drugs are used at appropriate dosages.

However, predicting IC50 values is a complex task due to the intricate
relationships between drug properties and cell line responses. Traditional machine
learning methods often struggle to capture these complexities, necessitating the
development of more advanced predictive models. This research aims to introduce a
novel approach to address these challenges and improve the accuracy of IC50

predictions.



1.1 What is IC50?

IC50, or the half maximal inhibitory concentration, measures the concentration
of an inhibitor needed to inhibit a specific biological process by 50%, and is expressed
in molarity (M), typically in nM or uM. In our context, it essentially gauges the potency
of a drug for a given cell line. IC50 is determined by plotting a dose-response curve of

the drug for the cell line, with drug concentrations usually plotted on a log scale.
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Figure 1: IC50 vs Concentration graph

LN_IC50 represents the natural logarithm of the half-maximal inhibitory
concentration (IC50). The IC50 value indicates the concentration of a drug needed to
inhibit a biological process or cell growth by 50%. Taking the natural logarithm (LN)
of the IC50 value helps stabilize variance and normalize the distribution, making it

particularly useful for statistical analyses and modelling.



1.2 Drug Representation

A drug refers to any chemical compound used for therapeutic purposes,
particularly for treating cancer. These compounds can vary widely in their chemical
structures and mechanisms of action. Understanding the interactions between different

drugs and various cancer cell lines is crucial for developing effective treatments.

= SMILE (Simplified Molecular Input Line Entry System):

It is a chemical annotation system that represents molecular
structures using characters for atoms and special symbols for bonds

and higher-order structural properties.

= Fingerprinting:

Fingerprinting transforms a chemical structure into a binary vector of

a fixed size, encapsulating the compound's structural information.

=  Molecular Graphs:

Graphical representations depict each atom as a node and each
bond as an edge within a graph. Software tools like RDKit in Python

enable the creation of these molecular graphs.



1.3 Cell Representation

Cell lines undergo extensive characterization using various "-omic" profiles,

which provide comprehensive data crucial for IC50 prediction models. These profiles

encompass genomic, epigenetic, transcriptomic, and proteomic information, each

offering distinct insights into the biological state of the cells.

Mutation Profile:

The mutation profile of a cancer cell line refers to the specific
genetic alterations present within its genome. This includes identifying
mutations such as single-nucleotide variants (SNVs), insertions,
deletions, copy number variations (CNVs), and structural variations like
translocations. The mutation profile helps researchers determine the
genetic drivers of cancer in specific cell lines and may guide

personalized treatment strategies.

Gene Expressions:

Gene expression profiling involves measuring the activity
(expression) levels of thousands of genes within a cancer cell line. Gene
expression profiles can provide insights into the biological processes that
are dysregulated in cancer cells compared to normal cells. It helps in
identifying biomarkers, predicting drug responses, and understanding

the molecular mechanisms underlying cancer progression.

Protein Embeddings:

Protein embeddings represent a computational method to encode
and analyze the characteristics of proteins based on their sequences or
structures. This approach helps in understanding how proteins interact
within cancer cells, identifying potential drug targets, and predicting

protein functions related to cancer biology.



Chapter 2

PROBLEM DEFINITION

Personalized cancer treatment depends heavily on accurately predicting how
different cancer cell lines will respond to various drugs. The IC50 value is a crucial
metric for assessing drug efficacy, but its prediction is complicated by the diverse and
complex nature of biological systems and chemical structures. Accurate IC50
predictions can significantly enhance drug development and treatment personalization,

ultimately improving patient outcomes.
Problem Statement

The primary objective of this research is to develop a reliable and accurate
model to predict IC50 values for drug-cell line pairs. The specific challenges and

goals of this research include:

1. Understanding Complex Data: Integrating and analysing the diverse and
complex features of both drugs and cell lines to make accurate predictions.

2. Ensuring Generalization: Evaluating the model's ability to generalize to new,
unseen data by testing it with different data splitting strategies, such as random
splits, cell-line splits, and drug splits.

3. Incorporating Drug Properties: Investigating the impact of specific chemical
and physical properties of drugs on prediction accuracy and incorporating these

insights to improve the model’s performance.



Research Questions

To achieve these objectives, the research focuses on answering the following

key questions:

1. Prediction Accuracy: Can the proposed model accurately predict IC50 values,
outperforming traditional machine learning approaches?

2. Generalization: How well does the model generalize across different data
splitting strategies, ensuring robustness and reliability?

3. Drug Properties: What is the influence of specific drug properties on
prediction accuracy, and how can these properties be effectively integrated into

the model to enhance its performance?

By addressing these questions, this research aims to develop a model that not
only improves the accuracy of IC50 predictions but also enhances our understanding
of the factors influencing drug efficacy. This will contribute significantly to the
advancement of personalized cancer therapy, optimizing treatment regimens and

improving patient outcomes.



Chapter 3

LITERATURE REVIEW

To establish a benchmark for evaluating the performance of the IC50Predictor
model, three established baseline models were implemented: the Paccmann model, the
Precily model, and the tCNN model. These models are widely recognized in the field
for their effectiveness in predicting drug response, providing a solid foundation for
comparison. To Evaluate the baseline models we have used the data from GDSC2
database. After applying the filter, we have approximately 51,652 drug-cell line pairs

which consist of 969 cancer cell lines and 202 drugs, which provided a robust

dataset for training and evaluating our IC50 prediction models.

1. PaccMann Model

The PaccMann is a noval approach which uses multi-modal attention-
based neural networks. PaccMann takes SMILES encoding of the drug
compound and gene expression of a cancer cell to predict the IC50 value.
Below are the results after 5-Fold cross validation for random, cell line

and drug split:

o Random Split:

= RMSE =[0.0922 + 0.0035],

= Pearson correlation = [0.7714 £ 0.021]
o Cell-line Split:

= RMSE =[0.0784 + 0.004],

= Pearson correlation = [0.792 + 0.02]



o Drug Split:
= RMSE =[0.169 £+ 0.013],
= Pearson correlation = [0.197 £+ 0.087]

2. Precily Model

Precily utilizes a deep neural network (DNN)-based framework which
predicts the IC50 based on gene expression profiles for each cell line and
drug Embeddings are numeric molecular descriptors for anti-cancer

compounds are obtained from SMILESVec by taking SMILES as input.

o Random Split:
= RMSE =[1.132 £0.153],
= Pearson correlation =[0.7912 £ 0.013]
= R2=10.642 + 0.012]
o Cell-line Split:
= RMSE =[1.315+0.214],
= Pearson correlation = [0.733 £ 0.041]
= R>=1[0.614 + 0.025]
o Drug Split:
= RMSE =[2.232 £ 0.652],
= Pearson correlation = [0.291 £+ 0.091]

- R2=[-0.451 +0.38]



3. tCNN Model

tCNN uses a convolutional network to extract features from the simplified
molecular input line entry specification (SMILES) format for drugs. At the
same time, another convolutional network extracts features from genetic
feature vectors of cancer cell lines. These features are then combined in a
fully connected network to predict interactions between the drugs and the

cancer cell lines.

o Random Split:
= RMSE =[0.259 + 0.003],
= Pearson correlation = [0.826 + 0.024]
= R2=[0.681+0.018]

o Cell-line Split:
= RMSE =[0.0297 £ 0.002],
= Pearson correlation =[0.814 + 0.011]
= R2=[0.654+0.014]

o Drug Split:
= RMSE =[0.061 £ 0.026],
= Pearson correlation = [0.280 + 0.084]
= R2=1[-0.378 + 0.281]

These baseline models provide a crucial reference point for assessing the
performance of the IC50Predictor model. By comparing the results across different data
splitting strategies, the advantages and improvements of the CNN-based approach can
be clearly demonstrated. The detailed results of these baseline models will help in

highlighting the relative strengths and areas of enhancement of the IC50Predictor.



Chapter 4
DATASET DETAILS

Our main dataset was obtained from Genomics of Drug Sensitivity in Cancer
(GDSC2), which has around 243,466 drug-cell line IC50 pairs, with 297 drugs and 969

cell lines.

COSMIC CELL LINE DREC DR LN_IC50 MIN_ CONC MAX _CONC IC50

ID NAME ID NAME
684052 A673 1003  Camptothecin -4.8694 0.0001 0.1 0.0076
688027 NCI-H69 1013 Nilotinib 2.0001 0.0020 10 7.3893
924239 L-363 2145 PBD-288 -1.0939 0.0050 5 0.3348

Table 1: GDSC2 Dataset Sample

In the above example:

- COSMIC ID: Unique identifier given to each cell line.

- CELL_LINE NAME: Name of the cancer cell line

-  DRUG ID: Unique identifier for the drug being tested.

- DRUG NAME: Name of the drug being tested

- LN_ICS50: Natural logarithm of the half-maximal inhibitory
concentration (IC50), which stabilizes variance and normalizes the
distribution of IC50 values for statistical analysis.

- MIN_CONC: Minimum concentration of the drug tested.

-  MAX_CONC: Maximum concentration of the drug tested.

- IC50: Half-maximal inhibitory concentration, representing the
concentration of the drug required to inhibit a biological process or cell

growth by 50%



We applied a filtering method based on the IC50 values. We have considered
only those drug-cell line pairs where its IC50 values lies between MIN CONC
(minimum concentration) and MAX CONC (maximum concentration) in the dataset.
This is a very crucial step which ensures the practical relevance and reliability of the

1C50 values used in our model.

After this filtering step, our dataset has approximately 51,652 drug-cell line
pairs out of which 202 are drugs and contains 969 cell lines. Now we utilize this

dataset to train, validate and test our model.

4.1 GENE EMBEDDING:

We based our models on gene expression data, as it has been shown to be more
predictive of drug sensitivity than genomics (i.e., copy number variation and mutations)
or epigenomics (i.e., methylation) data. STRING protein-protein interaction (PPI)
network was used to incorporate intracellular interactions in our model which was used
by PaccMann. STRING PPI network reduces the dimensionality of the cell line gene
expression profile, consisting of 16,000 genes to smaller subset containing the most

informative 2128 genes.

4.2 DRUG EMBEDDING:

The three models employed used SMILES embeddings, trained on
approximately 200 drugs. To improve prediction accuracy, we opted to utilize
ChemBERT embeddings, which are trained on a significantly larger dataset of drug
SMILES representations.



ChemBERT, a transformer-based model, is specifically designed for molecular
property prediction. It leverages large-scale pretraining on extensive datasets like
PubChemPy, which includes millions of compounds. This extensive pretraining enables
ChemBERT to capture more nuanced chemical features and relationships, thereby

improving its ability to generalize across diverse molecular structures.

This choice was driven by the hypothesis that embeddings trained on a vast
number of drug molecules would better capture the underlying chemical properties,
leading to more accurate IC50 value predictions even for previously unseen drugs.
ChemBERT's robust performance on various molecular property prediction tasks

supports this approach.



Chapter 5

Analysis of Drug Properties and 1C50
Prediction Error

The baseline models performed well on splits with drug-cell line pairs seen
during training but showed significant performance decline on splits with unseen

drugs. This indicated a limitation in the models' generalizability to new drugs.

This motivated us to investigate whether drug properties impact prediction
accuracy, hypothesizing that intrinsic drug properties might crucially affect the

models' ability to predict IC50 values accurately.

In this section, we investigate the relationship between various drug properties
and the error in predicting IC50 values using machine learning models. The aim is to
understand whether properties such as molecular weight, number of atoms, solubility
and tissue type will have any significant impact on the accuracy of IC50 predictions.
Additionally, we analyse the effects of these properties on prediction errors for specific

cell lines interacting with multiple drugs.

5.1 Methods

This section outlines the methodologies employed in developing the
IC50Predictor model, including property extraction, error calculation, and correlation
analysis. These methods are integral to the process of understanding and improving the

model’s performance in predicting IC50 values for drug-cell line pairs.



5.1.1 Property Extraction

Using the SMILES representation, we calculated the following properties for

each drug:

o Molecular Weight
e Number of Atoms

o Solubility

5.1.2 Error Calculation

The percentage error for each drug-cell line pair was computed. The use of
percentage error allows for a standardized measure of prediction accuracy, enabling us
to compare errors across drugs with varying IC50 value ranges. This metric provides a
clear understanding of the model's performance relative to the true values, making it

easier to identify significant discrepancies.

The percentage error for drug-each cell line pair was computed as:

IC50,.4 0 —IC50,,,cdictod
Error = actua__——prodicted | % 100
IC504ctual

5.1.3 Correlation Analysis

We performed correlation analysis to investigate the relationship between the
percentage error and each of the drug properties. This analysis was carried out both on

the overall dataset and on a cell-line-specific basis.



5.2. Results

5.2.1 Overall Correlation Analysis

The results of the correlation analysis between drug properties and prediction
error are summarized in Table 1. Figures 1 and 2 present the graphical representation

and heat map of these correlations, respectively.

Property Correlation Coefficient
Molecular Weight -0.0043
Number of Atoms -0.0098

Solubility -0.093

Table 2: Correlation between Drug Properties and Prediction Error
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Figure 2: Scatter Plot of No. of atoms in the drug vs. Prediction Error



Error vs. Molecular Weight
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Figure 4: Scatter Plot of Molecular weight in the drug vs. Prediction Error
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Figure 5: Heat Map of Correlation between Drug Properties and Prediction Error

As shown in Table 2, the correlation coefficients for all properties are close to
zero, indicating no significant correlation between these drug properties and the

prediction error.

5.2.2 Cell-Line Specific Analysis

We also examined whether the properties of drugs have a significant impact on
prediction errors for specific cell lines. The analysis was carried out for a couple of cell
lines interacting with multiple drugs. Figures 3 and 4 show the results for one

representative cell line.



The cell lines for this experiment were selected based on the following criteria:

1. The first cell line interacts with the maximum number of varied-length

drugs(“IM-9”).

2. The second cell line interacts with the maximum number of drugs (Here “A3-

KAW™).

Error vs. Number of Atoms for IM-9

Error vs. Molecular Weight for IM-9

Error vs. LogP for IM-9
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Figure 6: Scatter Plot of Drug Properties vs. Prediction Error for Cell Line “IM-9”
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Error vs. Number of Atoms for A3-KAW

Error vs. Molecular Weight for A3-KAW

Error vs. LogP for A3-KAW
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Figure 8: Scatter Plot of Drug Properties vs. Prediction Error for Cell Line “A3-KAW”

Error

atoms

ght num_

molecular_wei

logP

|
Error

Correlation Heatmap for A3-KAW

| 1
num_atoms  molecular_weight

logP

1.00

0.75

- 0.50

-0.25

- 0.00

-—0.25

--0.50

-0.75

--1.00

Figure 9: Heat Map of Correlation between Drug Properties and Prediction Error for Cell Line

“A3-KAW”

Similar to the overall analysis, the cell-line-specific analysis revealed no

significant correlation between drug properties and prediction errors for any of the cell

lines studied.




5.2.3 Impact of Tissue Type on Prediction Accuracy

Given that the response of cancer cells to drugs can be influenced by the tissue
of origin, it was essential to investigate whether tissue type affects the model's
prediction accuracy. Violin plots were used to visualize the distribution of prediction
errors across different tissue types. Violin plots are particularly useful for this task as
they combine aspects of box plots and density plots, providing a detailed view of the

error distribution.
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Figure 10: Violin Plots Showing Prediction Error Distribution Across Different Tissue Types

The violin plots showed that the prediction errors were consistent and uniformly
distributed across different tissue types. This suggests that tissue type does not
significantly impact the model's prediction accuracy, indicating minimal bias and robust

performance across various cancer types.

thyroid




Chapter 6:
Model Development & Implementation

After analysing the impact of tissue type and other properties on prediction
accuracy, we concluded that improving the representation of drug and cell-line features
could enhance the model's performance. Therefore, we decided to update the drug
embedding technique to better capture the intricate information inherent in drug
properties. Specifically, we adopted ChemBERTa for drug embedding, which leverages
advanced natural language processing techniques tailored for chemical data. For cell-
line representation, we utilized gene embeddings comprising 2,128 features, ensuring a
comprehensive and detailed capture of the biological characteristics of the cell lines.
These changes aim to provide the model with richer and more informative input

features, ultimately improving its predictive accuracy and robustness.

To predict the IC50 values, we developed a sophisticated deep learning model
that leverages both drug and cell line representations. These embeddings were
processed through separate Convolutional Neural Networks (CNNs) before being

combined to predict the IC50 value.

6.1 Model Architecture

The IC50Predictor model is designed to predict the half-maximal inhibitory
concentration (IC50) values for drug-cell line pairs using a convolutional neural
network (CNN) based approach. The model consists of two main components: separate
CNNs for drug and cell-line feature extraction, and a fully connected network for
combining these features to predict the IC50 value. Here, we provide a detailed

explanation of the model architecture and the functionality of each layer.



6.1.1 CNN Module

The core component of the model is a custom CNN module, which processes
both drug and cell-line features. This module is designed to capture intricate patterns

within the input data through several key layers:

1. Convolutional Layers:

o First Convolutional Layer:

e Input Size: (batch_size, 1, input size)
e Output Size: (batch size,num_channels, input_size)

e Kernel Size: 3, Padding: 1

The input data is passed through the first convolutional layer, which applies a set
of filters to detect local patterns. This layer has a kernel size of 3 and maintains the

spatial dimensions of the input through padding.

o Second Convolutional Layer:

 Input Size: (batch size,num_channels, input_size)
e Output Size: (batch size,num_channels, input_size)

e Kernel Size: 3, Padding: 1

The output from the first layer is passed through a second convolutional layer
with the same kernel size and padding. This further refines the feature extraction by

capturing more complex patterns.



o Activation Function & Dropout Layer:

Input and Output Sizes: These layers do not alter the dimensions of the data.

O

ReLU Activation: After each convolutional layer, a ReLU (Rectified
Linear Unit) activation function is applied to introduce non-linearity,
enabling the model to learn and represent complex relationships in the

data.

Dropout: To prevent overfitting, a dropout layer is included after the
convolutional layers with dropout rate 0.5. This randomly sets a fraction
of input units to zero during training, promoting robust feature learning

by preventing reliance on specific neurons.

2. Fully Connected Layer:

Input Size: (batch_size,input_size X num_channels)

e Output Size: (batch_size, hidden_size)

O

O

Flattening: The output from the convolutional layers is flattened into a
single vector, transforming the multi-dimensional tensor into a 1D vector

suitable for a fully connected layer.

First Fully Connected Layer: This layer transforms the flattened vector
into a hidden representation of the data, enabling further abstraction and

feature learning.



6.1.2 1C50 Predictor

The IC50Predictor integrates the outputs from the drug and cell-line CNN
modules and further processes them to predict the IC50 value. The architecture involves

the following layers:

1. Feature Extraction:

o Drug CNN:

e Input Size: (batch size,drug input size)

e Output Size: (batch size, hidden size)

Extracts features from drug data using the previously described CNN
module.

o Cell-Line CNN:

 Input Size: (batch_size,cell line input size)

e Output Size: (batch_size, hidden size)

Extracts features from cell-line data using an identical CNN module.

2. Combination of Features:

* Input Size: (batch_size, hidden_size) for both drug and cell-line outputs

e Output Size: (batch size, hidden size x 2)

o Concatenation: The features extracted from the drug and cell-line
CNNs are concatenated to form a single combined feature vector,

capturing information from both sources.



3. Fully Connected Layers:

o First Combined Fully Connected Layer:

e Input Size: (batch size, hidden size x 2)

e Output Size: (batch size, hidden size)

The combined feature vector is passed through a fully connected layer,
which reduces the dimensionality and learns a high-level representation

of the combined features.

o Dropout: A dropout layer is applied to this representation to prevent
overfitting.

o Second Combined Fully Connected Layer:

e Input Size: (batch_size, hidden size)

e Output Size: (batch_size, 1)

o This final layer further refines the high-level representation and outputs

the predicted IC50 value as a single continuous value.

The careful design of each layer in the IC50Predictor ensures that the model
effectively captures and integrates complex patterns in drug and cell-line data, leading
to accurate predictions of IC50 values. This architecture is robust and capable of
generalizing across different datasets, making it a valuable tool for advancing

personalized cancer therapy.



6.1.3 Training and Optimization Framework

e The IC50Predictor model is trained using three distinct data splits to ensure

robustness and generalizability: random split, cell-line split, and drug-wise split.
Loss Function:

e Mean Squared Error (MSE): Measures the squared difference
between predicted and actual IC50 values during training, optimizing

model parameters for accurate predictions.
Optimizer:

o Adam Optimizer: Utilized for optimizing model parameters.
o Learning Rate: 0.00001
o Adjusts learning rate dynamically based on validation

performance.
Learning Rate Scheduler:

o ReduceLROnPlateau: Scheduler that adjusts the learning rate when
a metric has stopped improving.
o Mode: Minimizing validation loss.
o Factor: Reduces learning rate by a factor of 0.1.
o Patience: Waits for 5 epochs before reducing learning rate.

o Verbose: Prints updates on learning rate adjustments.



Training Across Different Splits:

1. Random Split:
o Randomly divides drug-cell line pairs into training and
validation sets.
o Evaluates model performance across diverse data distributions.
2. Cell-line Split:
o Separates data based on specific cell lines to assess model
adaptability.
o Validates model performance across varying biological
contexts.
3. Drug-wise Split:
o Segregates data by drugs, ensuring evaluation on entirely new
drug compounds.
o Tests model generalization capabilities to novel therapeutic

agents.
Training Progress Visualization:

o Plot: Displays epoch-wise training and validation losses for each split,

showcasing model convergence and performance improvements.



6.1.4 Evaluation metrics

After training, the IC50Predictor model was evaluated on test data using the

following performance metrics:

Pearson Correlation

RMSE R?
Coefficient

Indicates the proportion of It also known as the Measures  the  linear
the variance in the dependent coefficient of correlation between
variable (IC50) that is determination, measures predicted and actual IC50
predictable from the the proportion of the values.
independent variables variance in the dependent
(predictions). variable that is predictable

from the independent

variable

RMSE = d L - g2 R o1 2l ) Clotealation— > Wil
= > i1 (¥ — 9)? 0405

Where Cov(y, §) is the covariance between y and ¢, and o, and o; are the standard

deviations of y and g, respectively.

Table 3: Evaluation Metrics



Chapter 7
RESULTS

In this study, we present IC50Predictor, a model that integrates outputs from the
drug and cell-line CNN modules. These modules utilize gene expression features for
cell lines and drug features generated from ChemBERTa using SMILES
representations. The combined features are then passed through a fully connected layer

to predict the LN_IC50 value for drug-cell line pairs.

We trained and evaluated our model on the GDSC 2 dataset, which consists of
51,652 drug-cell line pairs, encompassing 969 cell lines and 202 drugs. To ensure the
robustness of our findings, we employed 5-fold cross-validation. This technique
involves splitting the data into five folds and using each fold as a validation set once,
ensuring that every data point is tested and the results are less likely to be skewed by a
particular train-validation split. This approach improves the model’s ability to
generalize to unseen drug and cell line data. Additionally, the model was evaluated

across three different data splits to assess its generalizability.

7.1 Random Split:

In the random split, the entire dataset is divided randomly into
training, validation, and test sets for 5-fold cross-validation. We used a 70-
15-15 split: the training set (70%) comprised 36,156 drug-cell line pairs,
while the validation and test sets (15% each) comprised 7,748 drug-cell
line pairs each. The table below compares the test performance of our

model with and without dropout.



Pearson Corelation

Model
Best Average
IC50Predictor 0.972 0.941 = 0.012
IC50Predictor with dropout 0.948 0.912 £ 0.026

Table 4: Result of Random Split

The model without dropout performed better than the one with dropout,
indicating that dropout might not be necessary for preventing overfitting in this

scenario.

7.2 Cell-line Split:

A cell line split involves dividing cancer cell lines into separate
groups for training and testing purposes. This process is crucial to ensure
that the models are robust, generalize well to unseen data, and accurately

predict drug responses. The results for this split are as follows:

Pearson Corelation

Model
Best Average
IC50Predictor 0.895 + 0.031
IC50Predictor with dropout (0.5) 0.862+0.019

Table 5: Result of Cell Line Split

The results indicate that the IC50Predictor model performs well in

predicting drug responses for cell lines that were not part of the training set.



7.3 Drug-wise Split:

A drug split refers to the division of drugs into separate groups for
training and testing purposes of predictive models. Drug split allows to
rigorously test and validate the models. It ensures that the predictive model
isn't just tailored to a specific subset of drugs but can generalize to a
broader range of drugs. This approach is crucial for developing reliable and
robust models that can accurately predict drug responses in real-world

scenarios, where new and diverse drugs are constantly being developed and

tested.
Pearson Corelation
Model
Best Average
IC50Predictor 0.407 £0.024
IC50Predictor (Ir = 0.00001) 0.421 + 0.015
IC50Predictor with dropout (0.5) 0.368 + 0.028

Table 6: Result of Drug Split

While the model's performance in the drug-wise split is lower compared
to the random and cell-line splits, it highlights areas for potential improvement,

particularly in enhancing the model's ability to generalize to new drugs.



Chapter 8
CONCLUSION & FUTURE WORK

8.1 Conclusion:

In this study, we successfully developed the IC50Predictor model, a robust and
accurate tool for predicting IC50 values for drug-cell line pairs. The model leverages
advanced drug embedding techniques, specifically utilizing ChemBERT embeddings
trained on an extensive dataset of drug SMILES representations. This approach
significantly improved the model's performance, achieving an average Pearson
correlation of 0.941 in the random split, 0.895 in cell line split and 0.421 in drug split

after a 5-fold cross validation, which is notably higher than existing baseline models.

The superior results can be attributed to the comprehensive nature of the
ChemBERT embeddings, which capture intricate chemical properties more effectively
than traditional methods. A key feature of our model is its convolutional neural network
(CNN) which includes separate CNNs for drug and cell-line feature extraction. This
design enables the model to efficiently process and integrate complex features from

both drugs and cell lines, leading to enhanced prediction accuracy.

While the model performed exceptionally well in random and cell-line splits, it
showed a relatively lower performance in drug-wise splits. This indicates a potential
area for further improvement, particularly in enhancing the model's ability to generalize
to entirely new drugs. Despite this, the overall performance of the IC50Predictor model
highlights its significant advancements over baseline models and its potential as a

valuable tool in drug discovery and cancer research.



8.2 Future Work:

Looking ahead, several avenues can be explored to further enhance the

performance and applicability the of IC50Predictor model.

1. Exploration of more advanced drug embedding techniques:

ChemBERT embeddings have shown significant improvements, there is
potential to achieve even better results by integrating additional drug
properties i.e. incorporating structural information, and other relevant
chemical and physical properties can provide more comprehensive
embeddings. The limitations of SMILES representations, such as their
inability to fully capture certain structural nuances, underscore the need

for richer and more detailed drug descriptors.

2. Expanding the dataset:

One primary focus should be on expanding the dataset, particularly by
incorporating more drug data. Increasing the size and diversity of the
dataset will not only improve the model's accuracy but also its ability to

generalize across a broader spectrum of drug-cell line interactions

3. Sophisticated network architectures:

Exploring ensemble approaches that combine multiple machine learning
techniques or incorporating attention mechanisms to better capture the
interactions between drug and cell line features. Additionally,
investigating the use of graph neural networks, which can more naturally
represent the complex structures of molecules, could provide significant

benefits.



BIBLIOGRAPHY

1. Adam, G. et al. Machine learning approaches to drug response prediction:

challenges and recent progress. NPJ Precis Oncol. 4, 19 (2020). (n.d.).

2. Ashish Vaswani, Noam Shazeer. Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. In Advances in Neural Information Processing Systems, pages 5998—

6008, 2017. (n.d.).

3. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive
modelling of anticancer drug sensitivity. Nature 483, 603—607 (2012). (n.d.).

4. Born, J., Manica, M., Oskooei, A., Cadow, J., Markert, G., and Rodriguez
Martinez, M. (2021). PaccMannRL: de novo generation of hit-like anti-

cancer molecules from transcriptomic data via reinforcement learning.

iScience 24, 102269. https.//doi.org/10.10. (n.d.).

5. Chawla, S., Rockstroh, A., Lehman, M. et al. Gene expression based inference
of cancer drug sensitivity. Nat Commun 13, 5680 (2022).
https://doi.org/10.1038/s41467-022-33291-z. (n.d.).

6. Damian Szklarczyk, Andrea Franceschini, Stefan Wyder, Kristoffer Forslund,
Davide Heller, Jaime Huerta-Cepas, Milan Simonovic, Alexander Roth,
Alberto Santos, Kalliopi P Tsafou, et al. String v10: protein—protein

interaction networks, integrated over the . (n.d.).

7. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. (n.d.).



8. Garrett B Goh, Nathan O Hodas, Charles Siegel, and Abhinav Vishnu.
Smiles2vec: An interpretable general-purpose deep neural network for
predicting chemical properties. arXiv preprint arXiv:1712.02034, 2017.
(n.d.).

9. Kim, H., Lee, J., Ahn, S. et al. A merged molecular representation learning
for molecular properties prediction with a web-based service. Sci Rep 11,

11028 (2021). https://doi.org/10.1038/s41598-021-90259-7. (n.d.).

10. Liu, P, Li, H., Li, S., and Leung, K.-S. (2019). Improving prediction of
phenotypic drug response on cancer cell lines using deep convolutional

network. BMC Bioinf. 20, 408. https://doi.org/10.1186/s12859-019-2910-6.
(n.d.).

11.Swain, M. PubChemPy: A way to interact with PubChem in Python. (2014).
(n.d.).

12. Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource
for therapeutic biomarker discovery in cancer cells. Nucl. Acids Res. 41,

D955-D961 (2013). (n.d.).



