
Robust Android Malware Detection with CTGAN

An M.Tech project report submitted in the 4th semester of

Master of Technology

in
Cryptology and Security

by

Bivash Sarkar

(Roll No. CrS2203)

Under the Supervision of

Shri Sanchit Gupta

Scientist ’F’, SAG, DRDO

Shri Debrup Chakroborty

Professor, ISI Kolkata

Cryptology and Security Department

ISI Kolkata

2nd July, 2024





ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisors, Sri Sanchit Gupta
and Sri Debrup Chakraborty for their invaluable guidance, support, and encourage-
ment throughout this project. Their expertise and insights have been instrumental
in shaping the direction of this study.

I am also grateful to Indian Statistical Institute, Kolkata and Defence Research
and Development Organization for providing the necessary resources and facilities to
conduct this research.

Bivash Sarkar



Abstract
In this paper our main objective is to make a robust malware detector system by en-
hancing it’s ability to detect malicious applications. Machine learning based model
has been used to detect or classify malware and benign samples, while the malware
attackers have strong motivation to attack such ML based algorithms. Malware
attackers usually have no access to the detailed structures and parameters of the
machine learning models used by malware detection systems, and therefore they
can only perform black-box attacks. With the proliferation of malware threats, the
development of robust detection methods is imperative. Generative Adversarial Net-
works (GANs) have recently emerged as a promising avenue for generating synthetic
data, offering potential applications in augmenting datasets for malware detection.
This paper presents a comparative analysis of contemporary GANs with Conditional
Tabular GANs (CTGAN) in the context of detecting malware and benign samples
generated through GANs. Through extensive experimentation on diverse datasets,
including both benign and malicious samples, we demonstrate that CTGAN out-
performs contemporary GAN architectures in generating synthetic data that closely
resembles real-world malware behaviors. Our evaluation metrics encompass various
aspects of detection accuracy, including precision, recall, F1-score, TPR, AUC-ROC,
confusion matrix and generator and discriminator loss. Additionally, we analyze
the robustness of the generated samples against state-of-the-art malware detection
techniques. The results indicate that CTGAN exhibits superior performance in pro-
ducing synthetic malware instances that challenge existing detection methods like
MaLGAN and LSGAN, thereby showcasing its potential for enhancing the efficacy
of malware detection systems. CTGAN enhances adversarial training with around
20% when compared with untrained detector. This study contributes to the advance-
ment of GAN-based approaches in cybersecurity and underscores the significance of
leveraging synthetic data generation techniques for improving malware detection
capabilities.



Chapter 1

Introduction

Android malware detection plays a critical role in cybersecurity due to the widespread

adoption of Android devices globally. Some of the commonly known attacks are data

breaches, financial fraud, mitigation of privacy risk etc. So it is very much necessary

to prevent such attacks by detecting the malware applications properly in our sys-

tem. Machine learning based malware detector can be intruded by the attacker using

black-box adversarial attack. Adversarial training emerges as a promising strategy

in the quest for robust malware detection models. Unlike traditional training meth-

ods that rely solely on benign and malicious samples, adversarial training integrates

adversarial examples into the training process. These examples are carefully crafted

perturbations of input data designed to deceive the model, thereby enhancing its

resilience against evasion attacks. By exposing the model to such adversarial inputs

during training, it learns to recognize and appropriately handle subtle variations in

malware instances, thus fortifying its defenses against evolving threats.

Furthermore, the integration of Ian Goodfellow’s Generative Adversarial Networks

(GANs) (1) into the training pipeline presents a novel avenue for enhancing model

robustness. GANs, comprising a generator and a discriminator network engaged

1



Chapter I. Introduction 2

in a min-max game, excel at generating synthetic data that closely resembles real-

world samples. In the context of malware detection, the contemprary GANs fall

short within the context of tabular data and so the application of GANs, partic-

ularly Conditional Tabular GANs (CTGAN), facilitates the generation of diverse

and realistic malware instances. By augmenting the training dataset with synthetic

samples produced by CTGAN, the model gains exposure to a broader spectrum of

malware variants, thereby enhancing its generalization capabilities and improving

overall performance.

The primary objective of this research is to investigate the efficacy of adversarial

training with CTGAN-generated samples in enhancing Android malware detection.

This entails two key parameters: first, assessing the fidelity of generated adversar-

ial samples compared to contemporary GANs to ensure the robustness and realism

of the synthetic data; and second, evaluating the impact of integrating CTGAN-

generated samples on the malware detection performance of the model. By rigor-

ously examining these aspects, this study aims to contribute valuable insights into

the potential of adversarial training and synthetic data augmentation in bolstering

cybersecurity defenses against Android malware threats.



Chapter 2

Literature Review

Android malware has become a pressing concern in the domain of cybersecurity,

particularly with the proliferation of mobile devices and the widespread adoption

of the Android operating system. The vast user base and open nature of Android

provide fertile ground for malicious actors to exploit vulnerabilities, posing signifi-

cant risks to users’ personal information, financial data, and overall device integrity.

This increasing threat landscape has driven researchers to devote considerable ef-

fort to developing effective malware detection techniques. The first notable work in

adversarial examples was by Szegedy et al (2) which proposes slight addition of per-

turbations on original dataset to perform adversarial attacks. This was then further

used for using adversarial attacks beyond image classification. Generally, there are

three main methods for creating adversarial examples: gradient-based, optimization-

based, and Generative Adversarial Networks (GAN)-based. The first two methods

face three significant challenges: (1) they require access to the white-box architec-

ture and continuous knowledge of model parameters, (2) their optimization process

is slow and can only optimize perturbations for one specific instance at a time, and

(3) they produce adversarial examples with low perceptual quality.

3



Chapter II. Literature Review 4

This research efforts rely heavily on training data, which can be resource-intensive

and may not always represent the full spectrum of potential malware. To counter this

limitation, researchers have turned to Generative Adversarial Networks (GANs) for

malware detection. GANs are particularly useful in training on unbalanced datasets,

which is common in cybersecurity where the number of malicious samples can be

significantly lower than benign ones(3). One prominent application of GANs in this

field is MalGAN(4), which proposes a GAN-based algorithm to generate adversarial

malware examples. These adversarial examples are designed to bypass black-box

machine learning-based detection models, highlighting potential weaknesses in ex-

isting defenses and prompting the development of more resilient detection systems.

To enhance the robustness of malware detection systems, researchers have proposed

several advancements. Yuan et al. (5) introduced GAPGAN, an advanced adversar-

ial attack framework designed to generate adversarial examples specifically targeting

binary-based malware detection systems through the use of Generative Adversarial

Networks (GANs). This framework operates by appending carefully crafted adver-

sarial perturbations to the original malware binaries, ensuring that the malicious

functionality of the binaries remains intact. By doing so, GAPGAN effectively by-

passes detection mechanisms, revealing vulnerabilities in existing malware detection

systems and highlighting the need for more robust defensive strategies. One such

advancement is Mal-LSGAN(6) which uses Least Square (LS) loss function and new

activation function combinations, Mal-LSGAN achieves a higher Attack Success

Rate (ASR) and a lower True Positive Rate (TPR). To counter shortcomings like

mode collapse and training instability, LSGAN-AT (7), which comprises two mod-

ules: the LSGAN module and the Adversarial Training (AT) module was proposed.

The LSGAN module generates more effective and smoother adversarial malware ex-

amples by utilizing new network structures and Least Square (LS) loss to optimize

boundary samples. The AT module uses these adversarial examples for adversarial



Chapter II. Literature Review 5

training, thereby creating a more robust Malware Detector (RMD) based on ma-

chine learning . A notable limitation of current GAN-based approaches, such as

MalGAN and LSGAN-AT, is their performance with tabular data. Many malware

detection techniques focus on the binary and sequential data typically associated

with application behavior and network traffic. However, malware can also present

itself in tabular format, which includes structured data sets such as permissions, API

calls, and system events. These structured data forms are crucial for understanding

the context and correlations between different malware characteristics.

Author(s) Title
Key Contributions and

Findings

Ian Goodfellow

et al.

Generative

Adversarial Nets

Introduction of GANs,

demonstrating their ability to

generate realistic images and

adversarial training process.

Radford et al.

Unsupervised

Representation

Learning with Deep

Convolutional

Generative

Adversarial Networks

Introduced DCGAN, showing

that CNNs can be used in GANs

to improve the quality of

generated images.

Arjovsky et al. Wasserstein GAN

Proposed WGAN, addressing the

training instability of GANs by

using the Wasserstein distance.



Chapter II. Literature Review 6

Author(s) Title
Key Contributions and

Findings

Miyato et al.

Spectral

Normalization for

Generative

Adversarial Networks

Introduced spectral

normalization to stabilize GAN

training and improve the quality

of generated samples.

Karras et al.

Progressive Growing

of GANs for Improved

Quality, Stability, and

Variation

Presented a method for

progressively growing GANs,

leading to higher resolution and

more stable training.

MalGAN, InfoGAN, LSGAN and WGAN generally used for generating synthetic

images, not for tabular dataset, also for a dataset with non Gaussian or multimodal

distribution they can not generate effective adversarial samples.



Chapter 3

Methodology

Our dataset here is tabular dataset containing 6000 samples of Android applications

and 160 feature columns. It is taken from Virusshare (8) and benign dataset from

playstore. The feature columns are binary- each entity of the feature vector repre-

sents an API, for an particular example if the API feature is present then the entity

is 1 otherwise 0. There is a few API whose presence occurs the Benign sample to

a Malicious sample. The training procedure begins with the collection of a diverse

dataset comprising both benign and malicious samples. This dataset is split into

training, validation, and test sets. The training phase involves feeding the input

data into the model and updating the model parameters through backpropagation

to minimize the categorical cross-entropy loss function. An Adam optimizer is uti-

lized for this purpose due to its adaptive learning rate capabilities, which facilitate

efficient convergence.

In our proposed framework we use CTGAN (conditional tabular GAN) to generate

adversarial samples. CtGAN consists conditional generator. Unlike the generator

of MalGAN, LSGAN or WGAN conditional generator generates fake samples con-

ditioned on a class lebel. CTGAN can generate more effective synthesized tabular

7



Chapter III. Methodology 8

dataset, specially the table containing discrete columns, than of MalGAN, LSGAN,

WGAN and InfoGAN.

First, we train the generator for generating adversarial samples and check the ac-

curacy of the detector on these samples. When the the generator is trained ‘good

enough’ that is they can bypass the detector most of the time, we stop training and

get those adversarial samples. Then we label them all as ‘malware’ and combine

with the original training dataset. We train our model (Malware detector) with this

combined data that is we adversarially train the malware detector system.

During retraining, the model is exposed to a mix of benign, malicious, and adversar-

ial samples in each batch. This exposure helps the model to recognize and correctly

classify adversarial examples, thereby improving its resilience against adversarial at-

tacks. The performance of the retrained model is continuously monitored using a

validation set that includes adversarial samples to ensure that the model’s ability to

detect genuine malware is not compromised.

For a certain reasons we will see that CTGAN performs better in enhancing the

malware detector and restricts the drop out of TPR than the pre existing methods

using MalGAN or LSGAN-AT. We are discussing these here,

1. It is specifically designed to handle tabular datasets, which are common in

many real-world applications, including malware detection. In contrast, other

GAN variants like MalGAN, LSGAN, WGAN, and InfoGAN are generally

tailored for generating synthetic images or continuous data. CTGAN outper-

forms other GANs in the context of adversarial training for tabular data.



Chapter III. Methodology 9

2. CTGAN is designed to model the distribution of tabular data effectively. It

handles the challenges of mixed data types, missing values, and complex fea-

ture correlations better than other GANs, which are primarily designed for

image data. It can also capture the distribution of discrete and continuous

features, preserving the relationships and dependencies between features that

are critical in malware detection datasets.

3. In this CTGAN Conditional GANs (9), are constructed by feeding categorical

attributes to both the generator and discriminator. They generate the rest of

the features based on these categorical input attributes. This helps to rebal-

ance the imbalanced categorical data, by generating samples for the minority

categories.

4. The adversarial samples generated by CTGAN are realistic and varied, provid-

ing a comprehensive dataset for adversarial training. This helps the malware

detector learn to recognize and resist a wide range of adversarial attacks, im-

proving its robustness. For CTGAN, the generator loss is adapted to incorpo-

rate the conditional distributions of the data. The loss function for CTGAN’s

generator can be expressed similarly to the standard GAN, but it also condi-

tions on specific columns in the tabular data. A majority of applications for

conditional GAN are concerned with synthesizing table by giving the label for

the adversary that should be generated. Nonetheless, in the case of tabular

data, this could be the shape of data on a multimodal distribution and can be

used to inject information as prior knowledge to the generator.



Chapter 4

Results

A good malware detector should detect the malicious samples with more accuracy.

So we concern about the performance of a detection model through it’s malware

detection rate or True Positive Rate (TPR). We can say an Adversarial attack has

been successfully executed if the adversarial samples generated by GAN can de-

creases the TPR of the detector by a significant level without knowing any internal

architecture of the ML based detector (Black-box). But after retraining our model

with the adversarial samples generated by the generator the model’s TPR has been

increased from the previous when the model is attacked by the adversarial samples

without retraining.

So the performance of a GAN is depending on two things:

Firstly, how the adversarial samples generated by this GAN can penetrate the de-

trector and secondly how good the adversarial samples generated by it can train the

model and make an enhanced robust model against the malicious samples. After

facing adversarial attacks we need to retrain our malware detector. But here we

should do adversarial training, i.e we need to train the detector with the adversrial

examples. This is called adversarial training.

11



Chapter III. Methodology 12

Table 4.1: TPR(in %) of the models before and after adversarial training by
CTGAN

Classifier TPR without
adversarial
training

TPR after
adversarial
training

LR 0.062% 5.72%
SVM 1.77% 29.79%
DT 0.0027% 0.04%
RF 0.43% 11.57%
MLP 0.003% 26.49%
DNN 2.68% 39.70%

Here we note down the TPR of the malware detector using various machine learning

and deep learning based classifier’s performance against the Mal-CTGAN generated

adversarial samples. The TPR here are calculated in percentage form. The second

column contains the TPRs of the detectors without adversarial training and the

third column contains TPRs against CTGAN generated samples after the adversar-

ial training. We use ML powered Malware detectors, which were based on six well

known ML algorithms for classification: Logistic Regression (LR), Support Vector

Machine (SVM) with RBF kernel, Multi-Layer Perceptron (MLP), Decision Tree

(DT), Random Forest (RF) and Deep Neural Network (DNN).

Here we generate 500 adversarial samples from the generator of CTGAN for all

classifiers and use these to adversarially train the model along with the original

training dataset, with labelling all these adversarial samples as ’malware’. Then we

calculate the TPR on the test dataset.

After adversarial training we see that the detector being enhanced to detect the

malicious samples. Training with the CTGAN generated adversarial samples to all

the classifiers, almost all of them can detect the malicious samples with significantly

high accuracy before the adversarial training.



Chapter III. Methodology 13

Figure 4.1: Before adver-
sarial training

Figure 4.2: After adver-
sarial training

Now we are going to compare the CTGAN generated adversarial trained model

against the pre existing models used for adversarial training. To compare the per-

formance of the CTGAN with each of the other GANs like MalGAN, LSGAN,

InfoGAN etc for enhancing the robustness of the model, we make two tables. In the

first table we will see how Mal-CTGAN generated adversarial samples can bypass

the detector more than other GAN models as the attackers.

In the second table we put the results in a matrix form where each row mentions the

adversarially trained model for different GANs and each column represents the ad-

versarial examples from the generator of each GAN. Here the performance of a GAN

relies on how the adversarial samples generated from it can train the model such that

the TPR of the adversarial trained model is increased against the adversarial sam-

ples generated by rest of the GANs. We verify for two ML models: SVM and DNN

for each of the adversarially trained detector with adversarial samples generated by

five GANs: MalGAN, InfoGAN, WGAN, LSGAN-AT and Mal-CTGAN.

In this above table we see that CTGAN can generates adversarial malware sam-

ples which are being more undetectable than the samples generated by MalGAN,

LSGAN, InfoGAN and WGAN. Now in this table 4 the first column is for mal-

ware detectors trained with adversarial samples generated by MalGAN, InfoGAN,

WGAN, LSGAN and CTGAN with two classifiers as SVM and DNN as detector.



Chapter III. Methodology 14

Table 4.2: Comparing the effectness of bypassing the detector by the adv. sam-
ples from each GANs without adversarial training

Classifier Adversarial samples generated by the GANs
MalGAN InfoGAN WGAN LSGAN Mal-CTGAN

LR 0.63 2.58 2.82 0.0 0.0
SVM 10.93 12.36 9.50 4.81 1.48
DT 0.68 2.67 0.85 0.032 0.0
RF 11.62 3.11 5.06 3.28 0.45

MLP 10.79 14.42 3.58 1.82 0.0

Table 4.3: Comparing the robustness of the models after adversarial training

Adv. trained Model Adversarial samples generated by the GANs
MalGAN InfoGAN WGAN LSGAN CTGAN

MalGAN (SVM) 21.49 27.62 4.34 16.23 0.06
InfoGAN (SVM) 5.88 7.95 2.34 2.38 0.00
WGAN (SVM) 12.32 21.90 7.86 1.23 0.18
LSGAN (SVM) 36.87 28.33 3.45 2.82 0.03

Mal-CTGAN (SVM) 42.63 26.24 39.06 17.85 5.72
MalGAN (DNN) 29.08 27.33 15.86 32.10 1.18
InfoGAN (DNN) 10.26 17.92 14.68 11.04 0.47
WGAN (DNN) 10.52 34.75 18.08 6.03 1.33
LSGAN (DNN) 43.81 42.18 17.44 22.63 10.56

Mal-CTGAN (DNN) 55.26 38.07 37.12 34.88 28.93

For example MalGAN (SVM) means adversarially trained detector based on SVM

classifier trained on MalGAN generated adversarial samples. We evaluates the per-

formance of these adversarially trained models on adversarial examples from GANs:

MalGAN, InfoGAN, WGAN, LSGAN and CTGAN. Subsequent columns show de-

tection accuracy for adversarial samples generated by various GAN attackers vs the

DNN classifier as Discriminator. Like the same before we generate 500 adversarial

samples an compare these models with their corresponding true positive rate.

We see that the CTGAN-trained model that is model trained by adversarial sam-

ples generated by CTGAN gives much better TPR than the other adversarial trained



Chapter III. Methodology 15

models.

Now we are going to verify with some data analytical methods that how Mal-CTGAN

can generate more similar looking synthetic tabualar data or adversarial samples

compare to LSGAN model.

Firstly, we compare with ROC-AUC metric generated for two models LSGAN-AT

and CTGAN trained detector (Fig. 7). Here is the ROC curve comparison between

two models retrained by adversarial samples generated by CTGAN and LSGAN. The

ROC curves illustrate the trade-off between the True Positive Rate (TPR) and False

Positive Rate (FPR) for the two models. The Area Under the Curve (AUC) values

are provided in the legend, showing CTGAN with an AUC of 0.87 and LSGAN with

an AUC of 0.83. This suggests that CTGAN slightly outperforms LSGAN for the

adversarial training.

Figure 4.3: ROC-AUC for CTGAN and LSGAN

Now we discuss on generator loss of CTGAN.



Chapter III. Methodology 16

Figure 4.4: Configuring generator loss and discriminator loss

The generator loss starts relatively high and decreases gradually (Fig. 10). This

shows that the generator is becoming better at producing realistic data that can

fool the discriminator. A consistently decreasing generator loss suggests that the

generator is learning and improving over time. The above graph suggests that the

training process is proceeding correctly, with both models learning and improving.

The leveling off of both losses indicates a stable training process, which is a positive

sign of effective GAN training.

We are going to check the Performance of Adversarially trained models on the com-

bined adversarial samples.

Earlier in table [3.3] we compare the adversarial trained models with CTGAN and

other pre-discussed GAN and found that the model trained by CTGAN generated

adversarial samples performs better than it’s counterparts. Here we want to make

sure about our proposed method for adversarial training with respect to the other

benchmark methods on the combining of generated adversarial examples by Mal-

GAN, LSGAN and CTGAN in the setting of DNN based classifier vs the corre-

sponding GAN attackers.



Chapter III. Methodology 17

First we generates adversarial examples from the MalGAN, LSAGAN and CTGAN

and denote them as M, L and C respectively.

Table 4.4

Model Combined synthetic data
M+ L L+ C M+ C

Untrained model (SVM) 0.84 0.0 0.11
Untrained model (RF) 0.37 0.003 0.062

Untrained model (DNN) 0.52 0.081 0.087
MalGAN (SVM) 24.29 18.74 24.77

LSGAN-AT (SVM) 31.86 28.61 27.08
CTGAN (SVM) 50.36 48.55 52.54
MalGAN (RF) 28.03 18.21 22.94

LSGAN-AT (RF) 45.82 51.17 29.08
CTGAN (RF) 62.48 56.26 58.37

MalGAN (DNN) 42.15 40.75 32.58
LSGAN-AT (DNN) 30.08 36.22 28.57

CTGAN (DNN) 61.39 49.56 54.87

For example M+L denotes combined adversarial data from MalGAN and LSGAN

both. We measure the accuracy in percentage of each model for classifiers SVM,

RF and DNN. Though we combine the generated samples in all possible ways, our

CTGAN trained (Adversarial trained) malware significantly performs well compare

to other GAN based model, especially LSGAN-AT.

Discussions

Interpreting the results obtained from our study sheds light on their implications

for Android malware detection in real-world scenarios. The superior performance

demonstrated by the model trained with adversarial training using CTGAN-generated

samples underscores the effectiveness of this approach in bolstering the model’s ro-

bustness against evolving malware threats. These findings suggest that incorporating



Chapter III. Methodology 18

adversarial training strategies can significantly enhance the resilience and effective-

ness of machine learning-based malware detection systems in real-world Android en-

vironments (10). By leveraging adversarial training, such systems can better adapt

to the dynamic nature of malware and mitigate the risks posed by sophisticated ad-

versarial attacks. Consequently, our results advocate for the adoption of adversarial

training techniques as a key strategy for enhancing the security and reliability of

Android malware detection systems in practical settings.

The significant improvement in model performance observed with adversarial train-

ing using CTGAN-generated samples, particularly in the context of tabular datasets

containing Android application samples, can be attributed to several key factors.

Firstly, CTGAN’s compatibility with tabular data formats allows it to directly gen-

erate synthetic samples that closely mirror the intricate distribution of malware

and benign instances within the dataset. This tailored approach ensures that the

synthetic data generated by CTGAN aligns precisely with the characteristics and

features present in the dataset, thereby enhancing the model’s ability to generalize

and detect subtle malware patterns effectively. Additionally, CTGAN’s adversarial

training strategy exposes the model to challenging adversarial examples, fostering

resilience against evasion tactics employed by sophisticated malware variants, while

also mitigating the impact of class imbalance inherent in the dataset. In contrast,

other GAN variants such as MalGAN, LSGAN, infoGAN, and WGAN may strug-

gle to accommodate the specific features and characteristics of tabular data, limit-

ing their ability to generate realistic synthetic samples and effectively augment the

training dataset. Thus, CTGAN’s seamless integration with tabular data formats,

coupled with its robust adversarial training strategy, positions it as a superior choice

for malware detection tasks, offering enhanced flexibility, performance, and resilience

compared to other GAN variants.



Chapter 5

Conclusion

The study highlights the effectiveness of adversarial training with CTGAN-generated

samples in bolstering Android malware detection. Through comprehensive exper-

imentation, it was demonstrated that CTGAN, coupled with adversarial training,

significantly improves model performance by enhancing its resilience against so-

phisticated malware variants. Notably, CTGAN’s ability to generate high-fidelity

synthetic samples, closely resembling real-world data, ensures that the model is

well-equipped to detect subtle malware patterns. The integration of adversarial

training further fortifies the model’s robustness, enabling it to withstand evasion

tactics commonly employed by malicious software. This approach holds significant

promise for strengthening cybersecurity defenses against evolving malware threats,

offering a proactive strategy to mitigate risks in real-world Android environments.

By leveraging CTGAN-generated samples and adversarial training techniques, orga-

nizations can enhance their ability to detect and combat emerging malware threats

effectively, safeguarding against potential security breaches and protecting user data

and privacy

19



References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”

Commun. ACM, vol. 63, no. 11, p. 139–144, oct 2020. [Online]. Available:

https://doi.org/10.1145/3422622

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and

R. Fergus, “Intriguing properties of neural networks,” 2014.

[3] A. Dunmore, J. Jang-Jaccard, F. Sabrina, and J. Kwak, “A comprehensive

survey of generative adversarial networks (gans) in cybersecurity intrusion de-

tection,” IEEE Access, 2023.

[4] W. Hu and Y. Tan, “Generating adversarial malware examples for black-box

attacks based on gan,” in International Conference on Data Mining and Big

Data. Springer, 2022, pp. 409–423.

[5] J. Yuan, S. Zhou, L. Lin, F. Wang, and J. Cui, “Black-box adversarial attacks

against deep learning based malware binaries detection with gan,” pp. 2536–

2542, 2020.

[6] J. Wang, X. Chang, J. Mišić, V. B. Mišić, Y. Wang, and J. Zhang, “Mal-lsgan:

An effective adversarial malware example generation model,” in 2021 IEEE

Global Communications Conference (GLOBECOM). IEEE, 2021, pp. 1–6.

21

https://doi.org/10.1145/3422622


References 22

[7] J. Wang, X. Chang, Y. Wang, R. J. Rodríguez, and J. Zhang, “Lsgan-at: en-

hancing malware detector robustness against adversarial examples,” Cybersecu-

rity, vol. 4, pp. 1–15, 2021.

[8] E. D. Source, “Virusshare dataset,” 2021.

[9] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv

preprint arXiv:1411.1784, 2014.

[10] R. Yadav and R. S. Bhadoria, “Performance analysis for android runtime envi-

ronment,” in 2015 Fifth International Conference on Communication Systems

and Network Technologies. IEEE, 2015, pp. 1076–1079.


	Abstract
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Results
	5 Conclusion
	Bibliography



