
M. TECH. THESIS
On

DESIGNING ALGORITHM FOR

LIGHTWEIGHT STREAM CIPHER

Author

Sunny Samuel

M.TECH in CRYPTOLOGY AND SECURITY

INDIAN STATISTICAL INSTITUTE, KOLKATA

July 2024

DESIGNING ALGORITHM FOR

LIGHTWEIGHT STREAM CIPHER

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY

in

CRYPTOLOGY AND SECURITY

Submitted by:

SUNNY SAMUEL

Guided by:

Dr. Dibyendu Roy (Primary Guide)

Prof. Subhamoy Maitra (Secondary Guide)

INDIAN STATISTICAL INSTITUTE, KOLKATA

July 2024

CANDIDATE’S DECLARATION

I hereby declare that the project entitled Designing Algorithm for Lightweight Stream

Cipher submitted in partial fulfillment for the award of the Master of Technology degree

in Cryptology and Security completed under the supervision of Dr. Dibyendu Roy (Pri-

mary Guide), Asst Prof, IIIT Vadodara and Prof. Subhamoy Maitra (Secondary

Guide), HoD ASU, ISI Kolkata is an authentic work.

Further, I declare that I have not submitted this work for the award of any other degree

elsewhere.

02/07/2024

Sunny Samuel(Crs2221)

Indian Statistical Institute

Kolkata - 700108, India.

CERTIFICATE by Guide(s)

It is certified that the above statement made by the student is correct to the best of my knowledge.

02/07/2024 02/07/2024

Dibyendu Roy Subhamoy Maitra

Assistant Professor Professor & Head

Indian Institute of Information Technology, Vadodara Applied Statistics Unit

Indian Statistical Institute, Kolkata

ACKNOWLEDGMENTS

This thesis would not have been possible without the support and guidance of several re-

markable individuals who generously devoted their time and energy to my academic journey.

Firstly, I would like to express my heartfelt gratitude to my wife for her unwavering support,

kindness, and patience. My parents and sister have been my constant sources of inspiration,

and I am deeply thankful for their encouragement.

I am profoundly grateful to my advisors, Dr. Dibyendu Roy (Primary Guide) and Prof.

Subhamoy Maitra (Secondary Guide), whose guidance, continuous support, and en-

couragement were invaluable throughout this project. They have taught me the principles

of good research and inspired me with their insights and innovative ideas. Their mentorship

has been instrumental in the completion of this work, and I owe them a great debt of grat-

itude. I also extend my thanks to the Indian Navy, Capt Ritesh Wahi for giving me

the opportunity to pursue a Master of Technology in Cryptology and Security at ISI Kolkata.

My sincere thanks also go to Mr. Sreejith Choudhury, Mr. R Radheshwar, Mr.

Pritam Pal, Mr. Jyotirmoy Basak, Mr. Suman Datta, and Mr. Anup Kumar

Kundu for their wise counsel and support, which significantly contributed to various aspects

of my thesis.

Finally, I assume full responsibility for any errors or shortcomings that may be present in

this thesis.

02/07/2024

Sunny Samuel(Crs2221)

Indian Statistical Institute

Kolkata - 700108, India.

Abstract

The role of embeddable cryptographic processors in revolutionizing defense communi-

cations for the Indian Navy bears immense significance. These processors serve as catalysts

for a diverse range of novel applications critical to naval operations, encompassing tailored

smartphones and robust tablet computers engineered for frontline tactical deployment. More-

over, they facilitate the establishment of secure tactical Wi-Fi networks, unmanned vehicle

control systems, and real-time targeting capabilities, thereby bolstering operational e�cacy

and security.

Moreover, this technological evolution expedites the adoption of modernized cryptog-

raphy, promising to furnish secure wireless computing solutions even in the most arduous

maritime environments. In alignment with the Indian Navy’s modernization endeavors, a

concerted attempt is underway to harness commercial o↵-the-shelf (COTS) cryptographic

algorithms and processing hardware. This strategic approach not only fortifies resilience

against technological obsolescence but also bolsters support for network-centric operations,

streamlines data dissemination and sharing, and advances interoperability with allied naval

forces.

In response to these imperatives, the primary focus of the thesis is to develop a novel

lightweight stream cipher algorithm expressly tailored for utilization within the Indian Navy,

specifically for facilitating data communication among computers interconnected via inter-

nal LAN. Drawing inspiration from the FASTA, PASTA Lightweight Cryptography (LWC)

algorithms and the esteemed NIST CEASER competition awardee, the ASCON family.

Keywords: Lightweight Stream Cipher, FASTA, PASTA, ASCON Algorithm

Contents

1 Introduction 5

1.1 Introduction . 5

1.2 Thesis Outline . 6

2 Preliminaries 9

2.1 Introduction to Cryptology . 9

2.2 Main Objectives of Cryptology . 10

2.3 Applications of Cryptology . 11

2.4 Symmetric and Asymmetric Cryptology . 12

2.4.1 Symmetric Cryptography . 12

2.4.2 Asymmetric Cryptography . 13

2.5 Need of Symmetric Cryptography . 13

2.6 Types of Ciphers . 14

2.6.1 Block Cipher . 14

2.6.2 Stream Cipher . 15

2.7 Block Cipher Algorithms . 16

2.7.1 Data Encryption Standard (DES) . 16

2.7.2 Triple Data Encryption Algorithm (3DES) 17

2.7.3 Advanced Encryption Standard . 18

2.7.4 RC5 (Rivest Cipher) . 18

2.8 Stream Cipher Algorithms . 20

2.8.1 RC4 (Rivest Cipher 4) . 20

2.8.2 Salsa20 and ChaCha . 21

1

2.9 Comparison of Cipher Algorithms . 22

3 Research Background 24

3.1 Introduction to Lightweight Cryptology . 24

3.2 Understanding LWC . 25

3.3 Challenges in LWC . 26

3.4 LWC on Internet of Things (IoT) . 27

3.5 Known LWC Algorithms . 28

3.5.1 Lightweight Block Ciphers . 28

3.5.2 Lightweight Stream Ciphers . 29

4 Proposed Lightweight Stream Cipher Algorithm 31

4.1 Overview . 31

4.2 Detailed Structure . 32

4.2.1 Parameter Description . 32

4.2.2 Intialization Phase . 32

4.2.3 Linear Di↵usion Phase . 33

4.2.4 Substitution Phase . 34

4.3 Encryption . 35

4.4 Decryption . 35

5 Cryptanalysis of Algorithm 37

5.1 Di↵erential Cryptanalysis - Resistance to Di↵erential Fault Attack 37

5.1.1 DFA on Our Stream Cipher . 38

5.2 Linear Cryptanalysis - Resistance to Algebraic Attack 41

5.3 Our Contribution . 41

6 Conclusion and Future Work 45

A C Code for implementation of the Lightweight Stream Cipher 51

B Code for Di↵erential Fault Attack 61

2

List of Figures

2.1 Symmetric Encryption . 12

2.2 Asymmetric Encryption . 13

2.3 Block Cipher . 15

2.4 Stream Cipher . 16

2.5 Data Encryption Standard (DES) . 17

2.6 Triple Data Encryption Standard (3DES) . 17

2.7 Advanced Encryption Standard (DES) . 18

2.8 RC5 ALgorithm) . 19

2.9 RC4 . 20

2.10 Salsa Algorithm . 21

2.11 ChaCha20 Algorithm . 22

3.1 Internet of Things . 28

4.1 Detailed structure of LWC Encryption . 32

4.2 320 bits Internal State . 33

4.3 Encryption Algorithm Flow . 35

4.4 Dencryption Algorithm Flow . 36

3

List of Tables

4.1 AES S Box . 34

4

Chapter 1

Introduction

1.1 Introduction

Low-power devices are pervasive in various facets of modern life, including critical appli-

cations within the Indian Navy. These devices, ranging from communication equipment to

surveillance systems, play a vital role in naval operations, often containing sensitive opera-

tional data. Ensuring adequate security measures for these devices is imperative, given the

challenging low-power environments in which they operate. Conventional encryption meth-

ods may fall short in meeting the security needs of such devices due to constraints in both

hardware and software capabilities.

For instance, tasks requiring real-time data processing or secure communication over lim-

ited bandwidths pose significant challenges for low-power devices in the Navy, which may

lack the computational resources of larger naval assets. As a result, compromises must of-

ten be made, potentially compromising the overall security posture of the naval network.

Lightweight cryptography emerges as a solution to this dilemma, aiming to provide robust

security while minimizing resource consumption.

From a naval perspective, lightweight devices may encounter constraints such as limited mem-

ory, processing power, and energy availability. These limitations necessitate the development

of cryptographic solutions tailored specifically to the Navy’s operational environment. By

5

leveraging lightweight cryptographic algorithms, the Indian Navy can enhance the security of

its communication systems, data transmissions, and onboard computing platforms without

overburdening its low-power devices.

Recognizing the critical role of lightweight cryptography in naval operations, the Indian

Navy has a vested interest in standardizing cryptographic protocols and algorithms suitable

for low-power environments. This aligns with the Navy’s overarching goal of modernizing

its communication and information systems to meet the evolving challenges of maritime

warfare. Moreover, initiatives such as NIST’s framework [17] for benchmarking lightweight

cryptographic algorithms o↵er valuable guidance in selecting and implementing secure cryp-

tographic solutions tailored to the Navy’s unique requirements.

Hence, lightweight cryptography holds immense significance for the Indian Navy, o↵ering a

pathway to enhance the security and resilience of its low-power devices in an increasingly

complex maritime environment. By embracing lightweight cryptographic solutions, the Navy

can safeguard its critical communications infrastructure and maintain operational superior-

ity in the face of emerging threats.

In this thesis, we endeavor to craft an innovative Lightweight stream cipher, drawing inspi-

ration from the esteemed ASCON, FASTA, and PASTA LWC algorithms. Our objective

encompasses not only the meticulous design of this cipher but also its meticulous imple-

mentation in the C programming language. Furthermore, we shall conduct a comprehensive

security analysis of the stream cipher, delving into its resilience against potential vulnera-

bilities and threats.

1.2 Thesis Outline

In Chapter 2, this thesis lays the groundwork with a comprehensive overview of fundamental

cryptographic concepts crucial for understanding subsequent discussions. It delves into en-

cryption, decryption, and key management and introduces the distinction between symmetric

6

and asymmetric cryptographic algorithms. Moreover, Chapter 2 introduces lightweight cryp-

tography (LWC), highlighting its significance in modern applications where e�ciency and

security are paramount.

Chapter 3 builds upon this foundation by conducting a detailed analysis of Lightweight

Cryptography, identifying critical gaps in current research paradigms. This chapter meticu-

lously reviews existing literature, discussing the specific challenges and requirements unique

to lightweight cryptographic algorithms.

Chapter 4 presents the core contribution of this thesis—a meticulously crafted Lightweight

Stream Cipher designed specifically for internal LAN communications within the Indian

Navy. It elaborates on the cipher’s innovative design principles, including a unique algebraic

permutation technique for di↵usion and a robust 16x16 substitution box to ensure confusion

properties. Detailed construction methodologies are outlined, supplemented by illustrative

C code.

In Chapter 5, we cover the cryptanalysis of our proposed algorithm, focusing on its resistance

to various attacks. We begin with an explanation of Di↵erential Fault attacks and detail

the measures implemented to ensure the algorithm’s robustness against such vulnerabilities

using sage math. We then describe the di↵usion layer, which uses XOR operations and right

circular rotations with random bit shifts to enhance di↵usion and complicate the internal

state, making it di�cult for attackers to predict. Additionally, we highlight the integration

of the AES S-Box, modified with a bitwise a�ne transformation, to provide further secu-

rity against cryptanalytic attacks. Next, we discuss algebraic attacks, which involve solving

multivariate polynomial equations, and demonstrate that our algorithm is resistant to these

attacks due to its high algebraic degree. It then brings out our contributions in designing

this novel lightweight stream cipher. Overall, this chapter emphasizes the comprehensive se-

curity analysis conducted to validate the resilience of our lightweight stream cipher against

both algebraic and Di↵erential Fault attacks.

7

Finally, the concluding section synthesizes the thesis findings, o↵ering a succinct summary

of the scholarly journey undertaken. It underscores the significance of advancing lightweight

cryptography and outlines future research directions to further strengthen cryptographic

protocols for military and beyond.”

8

Chapter 2

Preliminaries

2.1 Introduction to Cryptology

Cryptography serves as a foundational cornerstone for ensuring the security of network and

communication systems, enabling the attainment of data confidentiality and authentication.

As a result, this field finds extensive applications across various domains, including the Inter-

net, email communication, etc. Despite the existence of numerous cryptographic standards,

their direct applicability to diverse applications is impeded by the significant variation in

specific requirements unique to each application.

This thesis delves into the realm of lightweight cryptographic algorithms, a specialized cat-

egory of cryptographic algorithms designed to cater to devices constrained by resource lim-

itations while still maintaining a requisite level of security. Prior to delving into compre-

hensive insights about lightweight cryptography in Chapter 3, it is imperative to provide a

comprehensive elucidation of cryptography itself, serving as the cornerstone of the thesis’s

conceptual framework. We shall understand the basics of this field, clarifying its fundamen-

tal concepts, diverse implementations, widespread applications, and the evolving necessity

for its adoption over time.

Moreover, this chapter will undertake an in-depth exploration of types of encryption al-

gorithms: symmetric and asymmetric key encryption. Lastly, a detailed exposition of the

9

thesis’s objectives and scope will be presented, elucidating the overarching purpose and focal

points of this dissertation.

2.2 Main Objectives of Cryptology

Cryptography can be defined in various ways, but generally, it is defined as the science

of transmitting messages, information, and communications securely over insecure channels

accessible to third parties, also known as adversaries [4]. This discipline o↵ers a means

of safeguarding information and communication so that only the planned recipient can get

and interpret original information. This objective is realized by formulating regulations and

protocols grounded in mathematical principles, concepts, and computations known as cryp-

tographic algorithms.

Cryptography, in fact, originates from a broader domain known as cryptology. Cryptology

encompasses the study and application of techniques and methodologies for securely com-

municating and storing data in a concealed and unintelligible manner. Within cryptology,

two distinct fields emerge: cryptography, as described earlier, and cryptanalysis. Cryptanal-

ysis is tasked with studying and analyzing cipher texts and codes to decipher them and get

meaningful information.

In contemporary cryptography, the focus revolves around achieving four primary objectives

outlined below:

1. Confidentiality: This objective guarantees that information and data are accessible and

comprehensible only to authorized recipients, remaining unreadable to unauthorized parties

[24]. Confidentiality is upheld by encrypting the message (plaintext) into ciphertext for

transmission, with only the intended recipient holding the secret key to convert the cipher-

text back into its initial plaintext form.

2. Data Integrity: Data integrity guarantees that information sent remains unaltered dur-

ing storage or transmission between the source and destination, with any modification being

10

easily detectable. Techniques such as MD5 are utilized to create a smaller form of it and is

sent with the plaintext. The receiver uses the same technique and gets the smaller form of

the message and compares if there have been any changes in the received data as compared

to the original data. If both are the same, then integrity is maintained, or else someone has

altered the data.

3. Non-Repudiation: Non-repudiation guarantees that once a sender sends data, he can-

not later deny that he had not sent it. [25] This is often accomplished through the use of

digital signatures and Message Authentication Codes (MACs) containing a cryptographic

key. These cryptographic primitives not only ensure data integrity but also bolster informa-

tion security more robustly than simple hash functions.

4. Authentication: Authentication can be used to verify the parties involved in the ex-

change of data without requiring any exact information thereof. This assures that the sender

is indeed who they claim to be. Digital certificates and appropriate digital signatures are

commonly employed to achieve authentication.

2.3 Applications of Cryptology

Cryptography finds widespread utilization across various applications in today’s digital land-

scape, being employed by individuals on a daily basis. In addition to its primary function

of facilitating secure communication between systems, encryption plays a pivotal role in se-

curing interactions between web browsers and servers, as well as between email clients and

servers [10]. These services, commonly used by people worldwide, rely extensively on cryp-

tographic algorithms.

With the rapid advancement of networking technologies in recent years, an increasing volume

of sensitive and important information is sent through networks. Consequently, malicious

entities actively seek to intercept and pilfer credentials and data. Cryptography serves as a

vital deterrent against such nefarious actions, safeguarding against threats like identity theft.

11

This is particularly crucial in scenarios involving financial transactions personal information,

etc.

The demand for robust cryptographic algorithms is exceptionally high, and their design

poses significant challenges. This is exacerbated by the continual increase in computational

power of computers, coupled with the relentless pursuit of new vulnerabilities and security

breaches by malicious actors. Therefore, the development of resilient cryptographic algo-

rithms remains an ongoing endeavor, essential to achieve integrity and confidentiality.

2.4 Symmetric and Asymmetric Cryptology

It can be classified based on the keys utilized for encryption and decryption: symmetric

(private) key cryptography and asymmetric (public) key cryptography.

2.4.1 Symmetric Cryptography

In this type of cryptography, only one secret key will be used for both encrypting and decrypt-

ing, simplifying cryptographic operation [5]. Symmetric encryption o↵ers high-speed per-

formance compared to its asymmetric counterpart, primarily due to the shorter key lengths

required. However, the challenge lies in securely sharing the key before initiating communi-

cation.

Figure 2.1: Symmetric Encryption

12

2.4.2 Asymmetric Cryptography

This encryption approach utilizes two distinct keys: a public key and a private key. This

is done to increase the inherent security. Both the keys are designed in such a way that

some interconnection is found mathematically, yet deriving one from the other is extremely

challenging [5]. The sender and the receiver possess two keys: a public key that’s openly

accessible and visible to anyone within the network, necessitating no additional security

measures, and a private key that remains confidential and known solely to its owner.

Figure 2.2: Asymmetric Encryption

2.5 Need of Symmetric Cryptography

In Lightweight cryptography, symmetric algorithms have demonstrated greater e�ciency for

several reasons, which will be elaborated upon later in this section. As previously men-

tioned, in this form of cryptography, there is only one secret key that will be used for both

encryption and decryption processes, distinguishing it from asymmetric cryptography, where

two keys are utilized. Here, Block and Stream Ciphers will be examined in detail. Their

13

respective functionalities and structures, as well as advantages and disadvantages, will be

elucidated. Additionally, notable examples of these ciphers will be highlighted, along with

pertinent details for each.

Primarily, asymmetric ciphers necessitate the use of two keys, contrasting with the single-key

approach employed by symmetric ciphers. This inherent complexity and resource-intensive

nature of asymmetric ciphers pose significant implementation challenges, particularly for

resource-constrained IoT devices, where e�cient operation is paramount [18]. However, it

is essential to acknowledge that the utilization of a single key in symmetric cryptography

introduces a key exchange dilemma between communicating parties. Unlike in public key

encryption algorithms, where the private key remains secure and is never transmitted over

the network, this issue arises with symmetric cryptography.

Nevertheless, in the context of Lightweight cryptography, symmetric algorithms emerge as

the primary cryptographic method for limited-resource devices. It can be characterized

by the ease of implementation, minimal key size requirements compared to asymmetric

counterparts, reduced resource utilization resulting in low overhead, and a considerable level

of security contingent upon the confidentiality of the key.

2.6 Types of Ciphers

Symmetric cryptography encompasses two primary categories: Block and Stream ciphers.

Broadly speaking, both of these ciphers serve as distinct methods for transforming plaintext

(original message) into ciphertext (encrypted message).

2.6.1 Block Cipher

In contrast to Stream Ciphers, Block Ciphers operate by processing the plaintext of one

fixed-size [2]. For this, the plaintext is divided into blocks of equal size, and each block is

encrypted individually. For example, if a block cipher is 256-bit, then it would encrypt each

256-bit block of message separately. If plaintext is smaller than the block size, then padding

14

techniques are employed to fill up the remaining space.

Figure 2.3: Block Cipher

2.6.2 Stream Cipher

Stream Ciphers encrypt the message either bit by bit or byte by byte [2]. It produces a

keystream, which is then XORed with the plaintext to generate the ciphertext. Randomness

of the keystream generator provides security to the stream cipher, however, there is a need

to ensure that the secret key is utilized only once to encrypt the data. The fundamental

objective of Stream Ciphers is to emulate the functionality of the One-Time Pad (OTP).

The OTP employs a completely random key generator, where the size of both the key

and message are equal. However, this approach is impractical for real-world scenarios, where

messages can be gigabytes in size, making key distribution and management infeasible. Con-

sequently, key repetition becomes unavoidable, and perfect secrecy cannot be attained. Nev-

ertheless, Stream Ciphers can still achieve a satisfactory level of security, albeit not perfect

15

Figure 2.4: Stream Cipher

secrecy, by ensuring proper key management practices and avoiding key reuse.

2.7 Block Cipher Algorithms

Famous Block Cipher Algorithms are enumerated as follows.

2.7.1 Data Encryption Standard (DES)

Originating in the 1970s, DES was initially revered as a secure and standard encryption

method for safeguarding data [1]. However, contemporary discourse surrounding DES pri-

marily revolves around its historical significance, as it has become antiquated and vulnerable

to various cryptographic attacks, particularly due to its insu�cient key length.

16

Figure 2.5: Data Encryption Standard (DES)

2.7.2 Triple Data Encryption Algorithm (3DES)

As its name suggests, in the Triple Data Encryption Algorithm (3DES), the DES cipher

algorithm will be employed thrice for every block. It aims to enhance security by increasing

the e↵ective key length.

Figure 2.6: Triple Data Encryption Standard (3DES)

17

2.7.3 Advanced Encryption Standard

Advanced Encryption Standard (AES) emerged as the successor to DES, o↵ering enhanced

security and e�ciency.[22] It functions as a symmetric block cipher, using a single key for

both encryption and decryption. Unlike asymmetric encryption, which employs two keys,

AES streamlines the process with just one secret key. Originally developed in the United

States, AES has achieved international acclaim, emerging as one of the most extensively

used and secure encryption algorithms. This underscores its e↵ectiveness and versatility in

protecting sensitive information worldwide.

Figure 2.7: Advanced Encryption Standard (DES)

2.7.4 RC5 (Rivest Cipher)

RC5 is a symmetric-key block cipher designed by Ronald Rivest in 1994. [19] Here are some

key features of RC5:

18

1. Variable Block Size: RC5 supports variable block sizes, allowing for encryption of data

blocks of di↵erent lengths. The block size can be adjusted to 32, 64, or 128 bits.

2. Variable Key Size: RC5 supports variable key sizes, ranging from 0 to 2,040 bits, in

increments of 8 bits. The recommended key size is between 0 and 256 bits.

3. Feistel Network Structure: RC5 employs a Feistel network structure, dividing the input

block into two halves and applying a series of rounds to each half. The two halves are then

combined to produce the ciphertext.

4. Security: RC5 has been widely studied and analyzed by cryptographers since its publi-

cation. While it has not been found to have any significant weaknesses, its security varies

based on the choice of parameters and the quality of the key schedule.

Figure 2.8: RC5 ALgorithm)

19

2.8 Stream Cipher Algorithms

2.8.1 RC4 (Rivest Cipher 4)

RC4 is a Cipher which is known for its simplicity and rapidity. It supports key lengths ranging

from 40 to 2048 bits [13]. A pseudorandom bit generator produces a byte sequence known as

the keystream. Each byte of the plaintext is then XORed with the corresponding byte of the

keystream to generate the ciphertext. Predicting the keystream without knowledge of the key

is deemed infeasible. However, RC4 is plagued by known vulnerabilities, particularly when

the initial output keystream is retained or when non-random or related keys are employed.

Figure 2.9: RC4

20

2.8.2 Salsa20 and ChaCha

Salsa20 and ChaCha, crafted by Daniel J. Bernstein, share striking similarities. Salsa20

debuted in 2005, with ChaCha following three years later in 2008 [8]. Both ciphers work on

ARX (add-rotate-xor) operations, resulting in e�cient performance and minimal hardware

and software requirements. Key sizes for both ciphers are set at either 128 or 256 bits.

Figure 2.10: Salsa Algorithm

21

Figure 2.11: ChaCha20 Algorithm

2.9 Comparison of Cipher Algorithms

Determining the superior method for Lightweight cryptography presents a challenge, as each

approach possesses distinct advantages and drawbacks, rendering a definitive answer elusive.

Stream Ciphers, inherently swift, outpace Block Ciphers due to their ability to process data

bit by bit, contrasting with the block-by-block processing required by the latter. Conse-

quently, Block Ciphers necessitate larger memory allocations to handle sizable data chunks,

often necessitating continued operations from preceding blocks. In contrast, Stream Ciphers,

processing only a byte at most at a time, boast modest memory requirements, rendering them

cost-e↵ective for implementation, thus finding broader applicability in Lightweight crypto-

graphic algorithms.

However, Stream Ciphers entail intricate development and design challenges and are suscep-

tible to vulnerabilities contingent on their usage. The pseudorandom keystream generator

22

must adhere to stringent criteria resembling the One-Time Pad, demanding unpredictability

and maximal randomness. Moreover, Stream Ciphers lack integrity protection and authenti-

cation, unlike certain Block Ciphers which, depending on their mode of operation, o↵er both

confidentiality and integrity assurance. Furthermore, Block Ciphers, encrypting entire blocks

at once and often utilizing feedback modes, are susceptible to introducing transmission noise

that could distort data, rendering subsequent transmission unsuitable for the algorithm. In

contrast, Stream Ciphers circumvent this issue by encrypting bits or bytes independently,

with potential solutions available for connectivity issues.

In summary, Stream Ciphers excel in scenarios where data volume is indeterminate or con-

tinuous network streams prevail, such as live video streaming, while Block Ciphers shine in

situations where data transmission volumes are predetermined, such as file transfers.

23

Chapter 3

Research Background

3.1 Introduction to Lightweight Cryptology

Cryptography serves as the cornerstone of modern information security, providing the means

to protect sensitive data from unauthorized access and manipulation. Traditionally, cryp-

tographic algorithms have been developed and optimized for high-performance computing

devices such as servers, desktops, and smartphones [9]. However, the proliferation of resource-

constrained devices in recent years, including sensors, RFID tags, and embedded systems,

has necessitated the emergence of a specialized field known as Lightweight cryptography.

Lightweight cryptography addresses the unique challenges posed by devices with limited

computational resources, such as low-power processors, constrained memory, and energy ef-

ficiency requirements.

The significance of Lightweight cryptography stems from the fact that conventional crypto-

graphic algorithms designed for high-performance devices are often unsuitable for deployment

on resource-constrained platforms. These algorithms typically require extensive computa-

tional resources and memory, leading to ine�cient performance and excessive energy con-

sumption on lightweight devices.

In contrast, Lightweight cryptographic algorithms are specifically tailored to meet the strin-

gent requirements of resource-constrained devices. They prioritize e�ciency, minimizing

24

computational overhead and memory footprint.

Furthermore, the adoption of LWC is particularly crucial in upcoming future tech in the

context of emerging technologies such as the Internet of Things (IoT)[9], where billions of

interconnected devices collect, transmit, and process data in real time. Securing communi-

cation and data exchange among these devices is paramount to prevent unauthorized access,

data breaches, and privacy violations.

In this context, [16] Lightweight cryptographic algorithms play a pivotal role in enabling se-

cure communication, authentication, and data integrity in IoT ecosystems. They provide the

necessary security mechanisms to safeguard sensitive information while meeting the stringent

resource constraints of IoT devices.

Overall, LWC represents a critical area of research and development in modern cryptography,

addressing the growing demand for e�cient and secure cryptographic solutions for resource-

constrained devices in an increasingly connected world.

3.2 Understanding LWC

Conventional cryptography, often referred to simply as cryptography, is tailored for devices

like smartphones, tablets, laptops, and desktops. These devices typically boast substan-

tial computational power, extensive memory capacity, and negligible constraints on disk

space and other resources. Conversely, Lightweight cryptographic algorithms cater to de-

vices such as embedded systems, RFID devices, and sensor networks, characterized by strin-

gent limitations in memory, energy consumption, processing speed—critical in real-time

applications—implementation costs, and more. Further constraining the capabilities and

adaptability of potential algorithms. Consequently, these constraints significantly elevate

the complexity and challenge of designing cryptographic algorithms tailored for such devices

compared to conventional cryptography.

25

3.3 Challenges in LWC

In this section, we will explore the challenges encountered in the design of Lightweight cryp-

tographic algorithms. These challenges involve trade-o↵s between performance, resources

(often referred to as cost), and security levels required to be achieved.

Performance considerations can be broken down into several key metrics: power and energy

consumption, latency, and throughput [21]. Firstly, the amount of power needed to oper-

ate the circuit. Lesser power requirement is better than it is for limited power sources like

batteries or solar energy, where recharging or replacement may be impractical. Throughput,

indicating the number of plaintexts processed per second, is another crucial metric. While

high throughput is not always a primary design goal due to constraints, achieving an accept-

able average throughput is necessary.

Latency refers to a measure of time needed for a certain design to complete a defined compu-

tational task, such as the time needed to generate ciphertext from plaintext. Lower latency

is advantageous, particularly in real-time applications where speed is critical.

Resource allocation, categorized into hardware and software specifications, poses another

challenge. Hardware resources are influenced by factors like gate equivalents, which specify

the physical area required for the circuit. Software resources encompass ROM and RAM

consumption, as well as code size. Both ROM and RAM usage should be minimized to

optimize performance.

Security considerations are paramount and are closely intertwined with performance and

resource allocation. A minimum security strength, typically a key length of at least 112 bits

according to NIST recommendations, is essential to thwart attacks like brute force. However,

using longer keys can increase memory requirements and potentially impact latency.

Furthermore, robustness against Side-Channel Attacks (SCAs) is crucial, particularly in

26

constrained devices common in Lightweight cryptography. SCAs exploit information about

the algorithm’s design and implementation, such as power consumption or decryption time,

to reveal sensitive information. Preventative measures against SCAs involve randomizing

inputs and standardizing encryption and decryption operation times to obfuscate attacker

e↵orts.

In conclusion, designing Lightweight cryptographic algorithms is a complex endeavor fraught

with challenges, given the delicate balance required among various performance metrics,

resource constraints, and security imperatives.

3.4 LWC on Internet of Things (IoT)

[9] This technology integrates a multitude of internet-connected devices, facilitating data

exchange and communication regardless of geographical distance. Primarily comprised of

sensors, IoT devices collect and transmit data, enabling various applications to enhance ef-

ficiency and convenience in people’s lives.

Examples of IoT implementations abound, ranging from smart homes that automate heating

and lighting based on sensor data to healthcare systems, automotive applications, automated

factories, and smart cities. As IoT technology becomes increasingly pervasive, ensuring the

security of these interconnected devices and the data they handle becomes paramount.

Sensitive information transmitted by IoT devices must remain confidential and unaltered,

particularly in critical sectors like healthcare and automotive industries. However, conven-

tional cryptographic methods are often unsuitable for IoT devices due to their resource

constraints. Hence, Lightweight cryptographic algorithms are utilized to provide robust se-

curity in such constrained environments.

Despite the inherent challenges in achieving high-level security within these constraints, [14]

the sensitivity and importance of the data necessitate the development of strong Lightweight

27

cryptographic algorithms.

Figure 3.1: Internet of Things

3.5 Known LWC Algorithms

Numerous Lightweight cryptographic algorithms have been developed with the aim of strik-

ing a balance amidst the challenges and trade-o↵s discussed earlier. In this regard, a selection

of the most prominent algorithms will be introduced to provide insight into the advancements

made in this domain. This presentation will encompass both Block and Stream ciphers, of-

fering a comprehensive overview of the progress achieved thus far.

3.5.1 Lightweight Block Ciphers

Several noteworthy Lightweight cryptographic algorithms have emerged, each addressing

specific challenges while striving for optimal performance. Below are introductions to some

of the most prominent algorithms, showcasing the progress made in this field:

28

Present - Developed jointly by Orange Labs (France), Ruhr University Bochum (Germany),

and the Technical University of Denmark in 2007 [3], Present employs 64-bit blocks and sup-

ports keys of 80 and 128 bits. While the 80-bit key length may not be considered secure by

contemporary standards, the algorithm is designed to meet moderate security requirements

for specific applications. Present is admired for its simplicity and compact size. Moreover,

it fulfills the design objectives outlined in the eSTREAM project, facilitating widespread

adoption.

Clefia - Introduced by SONY in 2007, Clefia is a proprietary Lightweight block cipher

o↵ering a choice of 128, 192, or 256-bit keys, operating on 128-bit blocks. Despite its propri-

etary nature, Clefia’s specifications [23] are publicly available, encouraging evaluation and

feedback from the global cryptographic community. Clefia maintains a high level of security

suitable for both hardware and software implementations, with a focus on gate e�ciency

and shared functions between data processing and key scheduling components.

Klein - Developed in 2011, Klein operates on 64-bit blocks with key lengths of 64, 80, or 96

bits. [11] The choice of key length and block size is crucial in balancing security and perfor-

mance trade-o↵s, with Klein’s flexibility catering to various encryption and authentication

scenarios.

While Present, Clefia, and Klein are internationally standardized ciphers, numerous other

Lightweight block ciphers have been developed, including LED, Midori, Mantis, HIGHT,

and GOS, among others.

3.5.2 Lightweight Stream Ciphers

Enocoro - developed by Hitachi, Ltd. in 2007 and updated to Enocoro-128v2 in 2010,

o↵ers a family of pseudorandom number generators. This algorithm, submitted to CRYP-

TREC, supports a 128-bit key and features an initialization function for generating keys.

[26] Despite its low implementation cost, Enocoro is resilient against cryptanalytic attacks.

29

Trivium - [7] This flexible stream cipher generates up to 264 bits of the key stream from

an 80-bit secret key and IV, making it a probabilistic model akin to Enocoro. While its

key length may not o↵er ideal security, Trivium’s resilience to cryptanalytic attacks ensures

robust performance in various implementations.

Grain - Initially designed for the eSTREAM competition in 2004, Grain boasts a com-

pact design suitable for hardware implementations. [12] With versions supporting 80-bit

and 128-bit keys, Grain o↵ers improved security while maintaining low gate area and power

consumption. Its ability to enhance performance with additional hardware resources sets it

apart from other stream ciphers.

30

Chapter 4

Proposed Lightweight Stream Cipher

Algorithm

4.1 Overview

The proposed algorithm is designed for computers connected through the internal LAN of the

Indian Navy, utilizing a 128-bit key over a block of the same size. The algorithm executes 4

rounds to generate the cipher. It is meticulously designed with innovative features, including

a unique algebraic permutation technique to achieve di↵usion and a 16x16 substitution box

to establish the confusion property.

The algorithm contains the following main functions in each round which are:

1. Permutation

2. Substitution using 16X16 AES S-box

3. Add Key

31

4.2 Detailed Structure

Figure 4.1: Detailed structure of LWC Encryption

The functions are elaborated in the following paragraphs:

4.2.1 Parameter Description

The parameters of the design are as follows: -

Secret Keys: 128 bits, Number used Once (to prevent replay attacks and ensure uniqueness

of encryption): 64 bits, IV: 192 bits, Plain Text block size: 128 bits, and rounds: 4.

4.2.2 Intialization Phase

In the figure below, the Internal State is divided into 5 rows, each consisting of 64 bits

(columns). In the Initialization Phase, the Internal State is structured as IV || K. Con-

sequently, the first three rows y0, y1, y2 contain the IV (192 bits). The last two rows y3, y4

contain the secret key (128 bits). This stage takes the IV and K by the user and concatenates

them to form a 320-bit internal state.

32

Figure 4.2: 320 bits Internal State

4.2.3 Linear Di↵usion Phase

In this step, each row undergoes modification using XOR operations and right circular ro-

tations (>>>), which involve rotating bits by random numbers to the right. These random

numbers are generated by an XOF function that receives a Nonce and produces 10 integers,

denoted as X1 to X10. For each round, a new set of 10 integers is generated, where the Nonce

is incremented by one, functioning like a counter.

For the operation on row y0, y0 is XOR’d with (y1 right circular rotated by the random

number X1) XOR y2 (right circular rotated by the random number X2). This process

repeats for the remaining rows, ensuring each row is adjusted to distribute the impact of a

single bit. The result of this phase will yield 320 bits, which will then proceed to the next

phase.

Y 0 ! ⌃0(Y 0) = Y 0� (Y 1 o X1)� (Y 2 o X2)

Y 1 ! ⌃0(Y 1) = Y 1� (Y 2 o X3)� (Y 3 o X4)

Y 2 ! ⌃0(Y 2) = Y 2� (Y 3 o X5)� (Y 4 o X6)

Y 3 ! ⌃0(Y 3) = Y 3� (Y 4 o X7)� (Y 0 o X8)

Y 4 ! ⌃0(Y 4) = Y 4� (Y 0 o X9)� (Y 1 o X10)

33

4.2.4 Substitution Phase

In this phase, we perform S-box substitution for undertaking transformation, which is non-

linear, and it will be applied to the linearly di↵used internal state. This involves using a

predefined S-box, which serves as a lookup table to replace input bits with corresponding

output bits. The substitution process introduces non-linearity and provides confusion, mak-

ing it di�cult for attackers to find patterns or relationships between the input and the output.

This AES S-box substitution is implemented as a lookup table and will be executed 40 times

to generate a 320-bit output. By repeatedly applying the S-box substitution, we enhance

the complexity and security of the cryptographic process, ensuring that the final output is

thoroughly transformed and resistant to cryptanalysis.

right (low-order) nibble
left 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ↵ 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 3a 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 91 44 3c 88 07 c7 31 b1 12

c a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

d 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

e 87 84 52 90 88 33 64 7f 24 b5 1e a8 74 09 3f ce

f f9 20 c9 8e 5b 6f 19 b3 ea 39 42 27 f1 f6 e7 30

Table 4.1: AES S Box

34

4.3 Encryption

The user will define the initialization vector (IV), key (K), and nonce (N), and then the IV

and Key will be concatenated as IV ||K to construct a 320-bit internal state. This 320-bit

state will undergo a single round of Linear Di↵usion phase. The output from this stage will

then be passed through a 16x16 AES S-Box and will be iterated 40 times, yielding a 320-bit

output.

Subsequently, a total of four such rounds will be executed. Following the fourth round, 128

significant bits of the resulting 320-bit output will be XORed with a 128-bit key. The result

of this XOR operation will then be XORed with the plaintext to produce a 128-bit ciphertext.

This process will be repeated for the remaining plaintext blocks, with the stipulation that a

unique IV and Nonce must be provided for each 128-bit block of plaintext.

Figure 4.3: Encryption Algorithm Flow

4.4 Decryption

The user will define the initialization vector (IV), key (K), and nonce (N), and then the IV

and Key will be concatenated as IV ||K to construct a 320-bit internal state. This 320-bit

35

state will undergo a single round of Linear Di↵usion phase. The output from this stage will

then be passed through a 16x16 AES S-Box and will be iterated 40 times, yielding a 320-bit

output.

Subsequently, a total of four such rounds will be executed. Following the fourth round, 128

significant bits of the resulting 320-bit output will be XORed with a 128-bit key. The result

of this XOR operation will then be XORed with the cipher text to produce a 128-bit plain

text. This process will be repeated for the remaining cipher text blocks, with the stipulation

that a unique IV and Nonce must be provided for each 128-bit block of cipher text.

Figure 4.4: Dencryption Algorithm Flow

36

Chapter 5

Cryptanalysis of Algorithm

An algebraic attack on an algorithm is performed to deduce the secret key by solving non-

linear equations involving message, ciphertext, and key bit. [15].

In this chapter, we detail the methods for generating the system of polynomial equations

and explain that our algorithm is resistant to the Di↵erential Fault attack and the algebraic

attack. We demonstrate that with the current computing power available, it is not feasible

to execute an algebraic attack on our designed algorithm.

5.1 Di↵erential Cryptanalysis - Resistance to Di↵eren-

tial Fault Attack

Di↵erential Fault Attack (DFA) exploits the vulnerability of cipher by injecting faults when

the keys are being generated, and then the analysis of the di↵erence is done in order to

recover the key. DFA can exploit various weaknesses in the cipher’s design and predict the

behavior of the fault propagation. DFA relies on several critical assumptions to compromise

the security of stream ciphers. Firstly, attackers assume they can repeat the attack on

the cipher multiple times with the same secret key and public parameters, allowing them to

collect both normal and faulty ciphertexts for analysis. Secondly, they need the capability to

inject faults precisely at a specific time during the keystream generation, which necessitates

37

access to required tools capable of injecting the fault in a particular bit(s) of the cipher

without causing damage. Once faults are injected, the attacker proceeds by identifying the

fault position (if possible) and analyzing the initial and change. The attacker will then solve

this system of equations in order to deduce the internal state and subsequently obtain the

secret key.

5.1.1 DFA on Our Stream Cipher

To perform DFA on our proposed stream cipher, initially we will be injecting a single bit of

fault in the key when it is being generated. We illustrate the attack in Sagemath.

1 X = key + iv + nonce

2 eX = T[0:v]

3 fkey [0] = fkey [0] + 1

4 eXf0 = T[0:v]

5 eXf0 [0] = eXf0 [0] + 1

6 Xf = fkey + iv + nonce

7 eXf = eXf0

8

In the above code snippet, X stores the 320-bit state concatenating the 128-bit key, a 64-bit

initialization vector (IV), and the 128-bit nonce and similarly, Xf with the faulty key. eX

and eXf store the state and faulty as the unknown variables, respectively. fkey stores the

faulty key, and eXf0 stores the variables for the faulty key.

1 sys = []

2

3 for i in range(rounds):

4 x0 , x1 , x2 , ..., x19 = random ()

5 X = llayer(X, x0 , x1 , ..., x19)

6 eX = llayer(eX , x0 , x1 , ..., x19)

7 Xf = llayer(Xf , x0 , x1 , ..., x19)

8 eXf = llayer(eXf , x0 , x1 , ..., x19)

38

9

10 X = Sfunction(X)

11 eX = Sfunction(eX)

12 Xf = Sfunction(Xf)

13 eXf = Sfunction(eXf)

14

15 temp = T[l:l+320]

16 l = l + 320

17 tempf = T[l:l+320]

18 l = l + 320

19 for j in range (320):

20 sys.append(eX[j] + temp[j])

21 sys.append(eXf[j] + tempf[j])

22 eX = temp

23 eXf = tempf

24

sys[] is the list which is storing all the equations. The for loop acts as the round function

generating the equations using normal and faulty keystreams. The random function produces

twenty random numbers, which can be used in the linear layer. The llayer() function takes

the state and random numbers as input and returns the state after linear operations. This

layer propagates the fault to five positions due to the
P

(Yi) function in the linear layer.

The Sfunction() takes 8-bit input and produces 8-bit output, this mapping is based on the

8⇥ 8 S-box. If one of the 8-bit in the input is fault a↵ected then 8-bit output will be fault

a↵ected. This happens because each output bit is dependent on every input bit. Due to this,

the fault propagates, and each output bit is fault-a↵ected. We have a 7-degree output from

this layer. So, After each round, we replace the state with new variables(temp and tempf)

to generate the equations e�ciently.

1 for i in range(ksize):

2 e = k0 + k0

39

3 e = eX[i] + X[i] + T[i] + key[i]

4 sys.append(e)

5 e = k0 + k0

6 e = eXf[i] + Xf[i] + eXf0[i] + fkey[i]

7 sys.append(e)

8

Now, we consider the first 128 bits in the state, perform the key XOR, and store the equations

in sys[].

1 print(len(sys))

2 print("SAT solver running")

3 Start_Time = time.time()

4 sol = solve(sys , n=10, target_variables =[T[0: ksize]])

5 print(sol)

6 print(len(sol))

7 Execution_Time = time.time() - Start_Time

8 print(Execution_Time)

9

Thus, sys[] has all the equations. We pass the system (sys[]) to the SAT solver (i.e., solve())

and try to obtain the secret by solving for the key variables that are set as the target vari-

ables. If there are multiple solutions we go for more number of keystreams.

After performing the above experiment, we couldn’t find any solution. Even after optimizing

the system of equations by introducing new variables, we have equations involving a large

number of monomials, and at each round, they are almost 7 degrees. Due to this, the SAT

solver is not able to produce any solution to the given system.

40

5.2 Linear Cryptanalysis - Resistance to Algebraic At-

tack

Our proposed stream cipher is based on a linear layer and a nonlinear layer. In the compu-

tation of nonlinear layer we are using AES-Subbyte S-box. This S-box is a mapping from

{0, 1}8 ! {0, 1}. It can be noted that the component functions of this S-box are of degree

7. After each linear layer, we perform the nonlinear layer. If we consider the secret key as

unknown and try to estimate the degree of the Kesytream bit equations, then we find that

the degree of each state bit is increased by a multiple of 7. Thus, it is quite obvious that

the degree of each keystream bit equation in terms of the unknown secret key will be 128.

We construct N number of keystream bit equations, and each will be of degree 128. Our

selection of N is done in such a way that the final system becomes over-defined. We finally

linearize the entire system and solve the system using the Gauss elimination method. The

number of variables required to linearize the system is M =
P128

i=2

�
128
i

�
⇡ 2128. The time

complexity to solve the system is ⇡ N2.8 > 2128. Thus, we strongly believe that our proposed

stream cipher is secure against Algebraic attacks.

5.3 Our Contribution

In this thesis, we have embarked on an innovative journey by developing a sophisticated

Lightweight Stream Cipher. Inspired by ASCON, FASTA, and PASTA Lightweight Cryp-

tography (LWC) algorithms known for their ingenuity, we meticulously crafted our cipher

design, drawing on cryptographic principles.

Our exploration goes beyond theory as we translate our concepts into reality. Using the C

programming language, we brought our cipher to life, ensuring every line of code reflects our

vision of cryptographic excellence.

Recognizing the critical importance of security in today’s digital landscape, we subjected

our creation to rigorous scrutiny. Through comprehensive security analysis, we thoroughly

41

evaluated our stream cipher’s resilience against various vulnerabilities and threats, including

algebraic attacks—where adversaries attempt to break cryptographic algorithms by solving

equations derived from their algebraic structure—and di↵erential fault attacks—exploiting

vulnerabilities introduced by faults in cryptographic computations. Our cipher’s robust de-

sign mitigates these threats, ensuring secure operation in the face of potential adversarial

techniques.

E�ciency through Innovative Design: AES S-Box and Di↵usion Layer

In the realm of cryptographic design, achieving a balance between security and e�ciency

is an enduring challenge, particularly in resource-constrained environments like naval op-

erations. This section explores the strategic design decisions behind a lightweight stream

cipher customized for the Indian Navy, with a special focus on integrating the AES S-Box

and introducing a novel di↵usion layer.

.

AES S-Box Integration

AES is known for its strong security and e�ciency, making it a natural choice for cryp-

tographic primitives even in lightweight applications [6]. Central to the AES encryption

process is its S-Box, a nonlinear substitution layer crucial for achieving di↵usion and re-

sistance against various cryptanalytic attacks. In our lightweight stream cipher design, we

have used the AES S-Box. The S-Box transformation is designed to provide a high degree

of nonlinearity, thereby enhancing resistance against di↵erential and linear cryptanalysis.

[20] By carefully selecting the coe�cients and operations within the S-Box, we achieve a

balance between cryptographic security and computational e�ciency, crucial for real-time

data processing within LAN environments of naval communication systems.

Di↵usion Layer with Random Right Rotational Shifting

42

The di↵usion layer plays a pivotal role in spreading the influence of each plaintext or ci-

phertext bit throughout the entire block of 320 bits, thereby increasing the cryptographic

strength of the cipher. In our design, we employ a novel approach using random right

rotational shifting of bits across three distinct rows. This strategy aims to enhance both

confusion and di↵usion properties, critical for thwarting statistical attacks and maintaining

robustness against di↵erential and linear cryptanalysis. Each row in the di↵usion layer is

assigned a unique rotation parameter, randomly selected during initialization. This ran-

domization introduces variability in the bit-level transformations across successive rounds,

thereby fortifying the cipher against known plaintext attacks and promoting resilience in the

face of sophisticated cryptanalytic techniques. The choice of three di↵erent rows for rota-

tional shifting ensures that the di↵usion process is comprehensive and e↵ectively mitigates

any potential biases that might arise from deterministic shifting patterns.

Practical Implications and Naval Application

The integration of these innovative design elements—AES S-Box with tailored optimizations

and a di↵usion layer employing random right rotational shifting—has profound implications

for naval communication systems. By leveraging the e�ciency and security benefits of the

AES S-Box, our lightweight stream cipher ensures secure data transmission and processing

within the Indian Navy’s internal LAN infrastructure.

Moreover, the adoption of a randomized approach to rotational shifting in the di↵usion layer

enhances the cipher’s resilience to cryptanalytic attacks while maintaining computational ef-

ficiency. This design choice aligns with the operational requirements of naval environments,

where reliability, speed, and security are paramount. The cipher’s ability to operate e↵ec-

tively within these constraints underscores its suitability for safeguarding sensitive communi-

cations, supporting mission-critical operations, and enhancing overall cybersecurity posture.

Hence, the incorporation of the AES S-Box and the innovative di↵usion layer in our lightweight

stream cipher represents a significant advancement in cryptographic design for naval applica-

43

tions. By focusing on e�ciency without compromising security, we have developed a robust

encryption algorithm capable of meeting the stringent requirements of modern naval commu-

nication systems. Future research will continue to explore enhancements and optimizations

to further strengthen the cipher’s performance and adaptability in evolving cybersecurity

landscapes.

This design approach not only addresses current challenges but also positions the Indian

Navy at the forefront of secure communication technologies, ensuring operational readiness

and resilience against emerging cyber threats.

In essence, our thesis stands as a testament to the relentless pursuit of innovation and

excellence in the field of Lightweight Cryptography. Through our endeavors, We aim not

only to push the boundaries of cryptographic research but also to empower individuals and

organizations with the tools they need to safeguard their digital assets in an increasingly

complex and interconnected world.

44

Chapter 6

Conclusion and Future Work

In this concluding chapter, we summarize our most important conclusions into three distinct

parts.

Firstly, the design of this algorithm draws inspiration from ASCON, integrating random-

ization within the di↵usion layer. This approach enhances security by making it extremely

challenging for attackers to predict internal states. By introducing variability, the algorithm

complicates potential attack vectors, ensuring a more robust cryptographic structure. This

innovative use of randomization sets the algorithm apart, contributing to its novelty and

e↵ectiveness in safeguarding data.

Secondly, we conducted linear and di↵erential cryptanalysis, demonstrating that our algo-

rithm is resistant to these attacks. This highlights the robustness of our design against

vulnerabilities. Additionally, we suggest future research directions, such as exploring corre-

lation and di↵erence propagation properties. By promoting transparency in design principles

rather than obscurity, we aim to develop robust cryptographic solutions that address evolv-

ing cybersecurity challenges.

Thirdly, we highlight the application of our lightweight stream cipher in the context of

the Indian Navy. Designed to operate e�ciently on resource-constrained devices while en-

suring secure communication and data integrity, our cipher integrates features from AES

45

S-box complexity and PASTA algorithm principles, supported by the underlying structure

of ASCON. This tailored approach addresses the specific security needs of the Indian Navy’s

internal LAN communications, exemplifying the practical relevance and e↵ectiveness of our

cryptographic design.

Throughout this thesis, we have strived to transcend traditional cryptographic paradigms by

proposing novel design strategies grounded in practical applicability and resilience against

modern cryptographic attacks.

Our future work will involve conducting additional cryptographic attacks to further ensure

the algorithm’s security. We plan to submit the algorithm to the Indian Navy/WESEE

and DRDO/SAG for review, feedback, and potential implementation. The focus will be on

optimizing the algorithm for internal LAN environments and Motorola, ensuring robustness

and e�ciency in real-world applications.

46

Bibliography

[1] Barhoush, M., Abed-alguni, B., Hammad, R., Al-Fawa’reh, M., Hassan, R.: Des22: Des

based algorithm with improved security. Jordanian Journal of Computers and Informa-

tion Technology 8, 1 (03 2022), https://10.5455/jjcit.71-1632868199

[2] Biryukov, A.: Block ciphers and stream ciphers: The state of the art. IACR Cryp-

tol. ePrint Arch. 2004, 94 (2004), https://api.semanticscholar.org/CorpusID:

2393465

[3] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B.,

Seurin, Y., Vikkelsoe, C.: Present: An ultra-lightweight block cipher. In: Paillier, P.,

Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2007.

pp. 450–466. Springer Berlin Heidelberg, Berlin, Heidelberg (2007), https://doi.org/

10.1007/978-3-540-74735-2_31

[4] Brown, A.: The basics of cryptography. Towards Data Science (Jan 2019), https://

towardsdatascience.com/the-basics-of-cryptography-80c7906ba2f7, accessed:

12/12/2019

[5] Chandra, S., Paira, S., Alam, S.S., Sanyal, G.: A comparative survey of symmet-

ric and asymmetric key cryptography. 2014 International Conference on Electronics,

Communication and Computational Engineering, ICECCE 2014 11, 83–93 (2014),

https://doi.0.5455/jjcit.71-1632868199

[6] Das, S., Zaman, J.U., Ghosh, R.: Generation of aes s-boxes with various mod-

ulus and additive constant polynomials and testing their randomization. Procedia

Technology 10, 957–962 (2013), https://www.sciencedirect.com/science/article/

47

https://10.5455/jjcit.71-1632868199
https://api.semanticscholar.org/CorpusID:2393465
https://api.semanticscholar.org/CorpusID:2393465
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://towardsdatascience.com/the-basics-of-cryptography-80c7906ba2f7
https://towardsdatascience.com/the-basics-of-cryptography-80c7906ba2f7
https://doi.0.5455/jjcit.71-1632868199
https://www.sciencedirect.com/science/article/pii/S2212017313006051
https://www.sciencedirect.com/science/article/pii/S2212017313006051

pii/S2212017313006051, first International Conference on Computational Intelligence:

Modeling Techniques and Applications (CIMTA) 2013

[7] De Cannière, C.: Trivium: A stream cipher construction inspired by block cipher design

principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) In-

formation Security. pp. 171–186. Springer Berlin Heidelberg, Berlin, Heidelberg (2006),

https://doi:10.1007/11836810_13

[8] Dey, S., Sarkar, S.: A theoretical investigation on the distinguishers of salsa and chacha.

Discrete Applied Mathematics 302, 147–162 (10 2021)

[9] Dutta, I.K., Ghosh, B., Bayoumi, M.: Lightweight cryptography for internet of insecure

things: A survey. In: 2019 IEEE 9th Annual Computing and Communication Workshop

and Conference (CCWC). pp. 0475–0481 (2019)

[10] El Assad, S., Lozi, R., Puech, W.: Cryptography and Its Applications in Information

Security. Safwan El Assad (04 2022)

[11] Gong, Z., Nikova, S., Law, Y.W.: Klein: A new family of lightweight block ciphers.

In: Juels, A., Paar, C. (eds.) RFID. Security and Privacy. pp. 1–18. Springer Berlin

Heidelberg, Berlin, Heidelberg (2012)

[12] Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-128.

In: 2006 IEEE International Symposium on Information Theory. pp. 1614–1618 (2006)

[13] Jindal, P., Singh, B.: Rc4 encryption-a literature survey. Procedia Computer Sci-

ence 46, 697–705 (2015), https://www.sciencedirect.com/science/article/pii/

S1877050915001933, proceedings of the International Conference on Information and

Communication Technologies, ICICT 2014, 3-5 December 2014 at Bolgatty Palace &

Island Resort, Kochi, India

[14] Khalifa, M., Algarni, F., Ayoub Khan, M., Ullah, A., Aloufi, K.: A lightweight cryptog-

raphy (lwc) framework to secure memory heap in internet of things. Alexandria Engi-

neering Journal 60(1), 1489–1497 (2021), https://www.sciencedirect.com/science/

article/pii/S1110016820305858

48

https://www.sciencedirect.com/science/article/pii/S2212017313006051
https://www.sciencedirect.com/science/article/pii/S2212017313006051
https://www.sciencedirect.com/science/article/pii/S2212017313006051
https://www.sciencedirect.com/science/article/pii/S1877050915001933
https://www.sciencedirect.com/science/article/pii/S1877050915001933
https://www.sciencedirect.com/science/article/pii/S1110016820305858
https://www.sciencedirect.com/science/article/pii/S1110016820305858

[15] Masoodi, F., Alam, S., Bokhari, M.U.: An analysis of linear feedback shift registers in

stream ciphers (May 2012), [Online]. Available: https://ijcaonline.org/archives/

volume46/number17/7013-9714/. DOI: 10.5120/7013-9714.

[16] McKay, K., Bassham, L., Turan, M.S., Mouha, N.: Report on lightweight cryptography

(2017-03-28 00:03:00 2017), https://tsapps.nist.gov/publication/get_pdf.cfm?

pub_id=922743

[17] Mohajerani, K., Haeussler, R., Nagpal, R., Farahmand, F., Abdulgadir, A., Kaps, J.P.,

Gaj, K.: Fpga benchmarking of round 2 candidates in the nist lightweight cryptogra-

phy standardization process: Methodology, metrics, tools, and results (2020), [Online].

Available: https://eprint.iacr.org/2020/1207

[18] Rajesh, S., Paul, V., Menon, V.G., Khosravi, M.R.: A secure and e�cient lightweight

symmetric encryption scheme for transfer of text files between embedded iot devices.

Symmetry 11(2) (2019), https://www.mdpi.com/2073-8994/11/2/293

[19] Rivest, R.L.: The rc5 encryption algorithm. In: Preneel, B. (ed.) Fast Software Encryp-

tion. pp. 86–96. Springer Berlin Heidelberg, Berlin, Heidelberg (1995)

[20] Roslan, M.F.B., Seman, K., Halim, A.H.A., Sayuti, M.N.A.S.M.: Substitution box

design based from symmetric group composition. Journal of Physics: Conference Se-

ries 1366(1), 012001 (nov 2019), https://dx.doi.org/10.1088/1742-6596/1366/1/

012001

[21] Sadkhan, S.B., Salman, A.O.: A survey on lightweight-cryptography status and future

challenges. In: 2018 International Conference on Advance of Sustainable Engineering

and its Application (ICASEA). pp. 105–108 (2018)

[22] Santhanalakshmi M, Lakshana K, S.G.M.: Enhanced aes-256 cipher round algo-

rithm for iot applications. The Scientific Temper 14(01), 184–190 (Mar 2023), https:

//scientifictemper.com/index.php/tst/article/view/371

49

https://ijcaonline.org/archives/volume46/number17/7013-9714/
https://ijcaonline.org/archives/volume46/number17/7013-9714/
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922743
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922743
https://eprint.iacr.org/2020/1207
https://www.mdpi.com/2073-8994/11/2/293
https://dx.doi.org/10.1088/1742-6596/1366/1/012001
https://dx.doi.org/10.1088/1742-6596/1366/1/012001
https://scientifictemper.com/index.php/tst/article/view/371
https://scientifictemper.com/index.php/tst/article/view/371

[23] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher

clefia (extended abstract). In: Biryukov, A. (ed.) Fast Software Encryption. pp. 181–195.

Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

[24] Siegel, J.: Cryptography. umls.edu (University of Missouri – St.Louis) (2019),

http://www.umsl.edu/~siegelj/information_theory/projects/des.netau.net/

Cryptography%20and%20goals.html, accessed: 12/12/2019

[25] Team, F.: What is non-repudiation? Finjan blog (Feb 2017), https://blog.finjan.

com/what-is-non-repudiation/, accessed: 12/12/2019

[26] Watanabe, D., Owada, T., Okamoto, K., Igarashi, Y., Kaneko, T.: Update on eno-

coro stream cipher. In: 2010 International Symposium On Information Theory & Its

Applications. pp. 778–783 (2010)

50

http://www.umsl.edu/~siegelj/information_theory/projects/des.netau.net/Cryptography%20and%20goals.html
http://www.umsl.edu/~siegelj/information_theory/projects/des.netau.net/Cryptography%20and%20goals.html
https://blog.finjan.com/what-is-non-repudiation/
https://blog.finjan.com/what-is-non-repudiation/

Appendix A

C Code for implementation of the

Lightweight Stream Cipher

1 #include <stdio.h>

2 #include <stdint.h>

3 #include <string.h>

4 #include <stdlib.h>

5 #include <time.h>

6 #include <unistd.h>

7 #include <sys/types.h>

8 #include <math.h>

9 #include <inttypes.h>

10 #include "methods.h" // Methods.h contains all utility methods

11

12 #define IV_FILE "InitialVector.txt"

13 #define TEXT_FILE "Text.txt"

14 #define ENCRYPTED_FILE "Encrypted.txt"

15 #define DECRYPTED_FILE "Decrypted.txt"

16

17 typedef unsigned char uc;

51

18

19 int main() {

20 uc *key , *iv , *nonce , *state , *text , *cipher , *decr;

21

22 // Allocate memory for key , iv , and nonce

23 allocateByteMemory (&key , KEY_SIZE);

24 allocateByteMemory (&iv , IV_SIZE);

25 allocateByteMemory (&nonce , NONCE_SIZE);

26

27 // Prompt the user and read key , iv , and nonce directly

28 printf("Enter %d-bit Key in hexadecimal : ", KEY_SIZE);

29 scanf("%s", key);

30

31 // printf("Enter %d-bit IV in hexadecimal: ", IV_SIZE);

32 // scanf("%s", iv);

33

34 printf("Enter %d-bit Nonce in hexadecimal: ", NONCE_SIZE);

35 scanf("%s", nonce);

36

37 // Allocate memory for the state and input text

38 allocateByteMemory (&state , STATE_SIZE);

39

40 // Prompt user for input text (128 bits)

41 // printf("Enter 128-bit Input Text : ");

42 // scanf("%s", text);

43

44 // Open and read iv from file

45 FILE *ivFile = fopen(IV_FILE , "r");

46 readFile(iv , IV_SIZE , ivFile);

47 fclose(ivFile);

52

48

49 // Open and read text from file

50 FILE *textFile = fopen(TEXT_FILE , "r");

51 text = (uc*) malloc(KEY_SIZE); // Assuming input is 128 bits

(16 bytes)

52 fread(text , sizeof(uc), KEY_SIZE , textFile);

53 fclose(textFile);

54

55 // Create starting state

56 createStartingState(state , key , iv);

57

58 // Perform internal operations

59 internalOperation(state , nonce);

60

61 // Encrypt the text using addKey method

62 cipher = addKey(text , state);

63

64 FILE *encrFile = fopen(ENCRYPTED_FILE , "w");

65 fprintf(encrFile , "%s", cipher);

66 fclose(encrFile);

67

68 // Display or use the resulting cipher as needed

69 printf("Encrypted Text:\n");

70 for (int i = 0; i < KEY_SIZE / BITS_IN_BYTE; ++i) {

71 printf("%02x ", cipher[i]);

72 }

73 printf("\n");

74

75 // Decrypt the text using addKey method

76 decr = addKey(cipher , state);

53

77

78 FILE *decrFile = fopen(DECRYPTED_FILE , "w");

79 fprintf(decrFile , "%s", decr);

80 fclose(decrFile);

81

82 // Displaying Decrypted Text

83 printf("Decrypted Text:\n");

84 printf("%s", decr);

85 printf("\n");

86

87 // Free allocated memory

88 free(key);

89 free(iv);

90 free(nonce);

91 free(state);

92 free(text);

93 free(cipher);

94

95 return 0;

96 }

54

Methods.h

1 #include <stdio.h>

2 #include <stdint.h>

3 #include <string.h>

4 #include <stdlib.h>

5 #include <time.h>

6 #include <unistd.h>

7 #include <sys/types.h>

8 #include <math.h>

9 #include <inttypes.h>

10 #include <openssl/evp.h>

11

12 typedef unsigned char uc;

13

14 #define STATE_SIZE (KEY_SIZE + IV_SIZE)

15 #define IV_SIZE 192

16 #define KEY_SIZE 128

17 #define NONCE_SIZE 64

18 #define LD1_NUM_SUBSTATES 5

19 #define LD1_SUBSTATES_SIZE 64

20 #define LD1_SUBSTATES_CONST1 2

21 #define LD1_SUBSTATES_CONST2 3

22 #define BITS_IN_BYTE 8

23 #define INTERNAL_OPERATION_LOOP 4

24 #define DIFFUSION_CONSTANT_SIZE 6

25 #define NUM_DIFFUSION_CONSTANT 10

26

27 // 16*16 S-box

55

28 static const uc sbox [256] = {

29 0x63 , 0x7c , 0x77 , 0x7b , 0xf2 , 0x6b , 0x6f , 0xc5 , 0x30 , 0x01 ,

0x67 , 0x2b , 0xfe , 0xd7 , 0xab , 0x76 ,

30 0xca , 0x82 , 0xc9 , 0x7d , 0xfa , 0x59 , 0x47 , 0xf0 , 0xad , 0xd4 ,

0xa2 , 0xaf , 0x9c , 0xa4 , 0x72 , 0xc0 ,

31 0xb7 , 0xfd , 0x93 , 0x26 , 0x36 , 0x3f , 0xf7 , 0xcc , 0x34 , 0xa5 ,

0xe5 , 0xf1 , 0x71 , 0xd8 , 0x31 , 0x15 ,

32 0x04 , 0xc7 , 0x23 , 0xc3 , 0x18 , 0x96 , 0x05 , 0x9a , 0x07 , 0x12 ,

0x80 , 0xe2 , 0xeb , 0x27 , 0xb2 , 0x75 ,

33 0x09 , 0x83 , 0x2c , 0x1a , 0x1b , 0x6e , 0x5a , 0xa0 , 0x52 , 0x3b ,

0xd6 , 0xb3 , 0x29 , 0xe3 , 0x2f , 0x84 ,

34 0x53 , 0xd1 , 0x00 , 0xed , 0x20 , 0xfc , 0xb1 , 0x5b , 0x6a , 0xcb ,

0xbe , 0x39 , 0x4a , 0x4c , 0x58 , 0xcf ,

35 0xd0 , 0xef , 0xaa , 0xfb , 0x43 , 0x4d , 0x33 , 0x85 , 0x45 , 0xf9 ,

0x02 , 0x7f , 0x50 , 0x3c , 0x9f , 0xa8 ,

36 0x51 , 0xa3 , 0x40 , 0x8f , 0x92 , 0x9d , 0x38 , 0xf5 , 0xbc , 0xb6 ,

0xda , 0x21 , 0x10 , 0xff , 0xf3 , 0xd2 ,

37 0xcd , 0x0c , 0x13 , 0xec , 0x5f , 0x97 , 0x44 , 0x17 , 0xc4 , 0xa7 ,

0x7e , 0x3d , 0x64 , 0x5d , 0x19 , 0x73 ,

38 0x60 , 0x81 , 0x4f , 0xdc , 0x22 , 0x2a , 0x90 , 0x88 , 0x46 , 0xee ,

0xb8 , 0x14 , 0xde , 0x5e , 0x0b , 0xdb ,

39 0xe0 , 0x32 , 0x3a , 0x0a , 0x49 , 0x06 , 0x24 , 0x5c , 0xc2 , 0xd3 ,

0xac , 0x62 , 0x91 , 0x95 , 0xe4 , 0x79 ,

40 0xe7 , 0xc8 , 0x37 , 0x6d , 0x8d , 0xd5 , 0x4e , 0xa9 , 0x6c , 0x56 ,

0xf4 , 0xea , 0x65 , 0x7a , 0xae , 0x08 ,

41 0xba , 0x78 , 0x25 , 0x2e , 0x1c , 0xa6 , 0xb4 , 0xc6 , 0xe8 , 0xdd ,

0x74 , 0x1f , 0x4b , 0xbd , 0x8b , 0x8a ,

42 0x70 , 0x3e , 0xb5 , 0x66 , 0x48 , 0x03 , 0xf6 , 0x0e , 0x61 , 0x35 ,

0x57 , 0xb9 , 0x86 , 0xc1 , 0x1d , 0x9e ,

43 0xe1 , 0xf8 , 0x98 , 0x11 , 0x69 , 0xd9 , 0x8e , 0x94 , 0x9b , 0x1e ,

56

0x87 , 0xe9 , 0xce , 0x55 , 0x28 , 0xdf ,

44 0x8c , 0xa1 , 0x89 , 0x0d , 0xbf , 0xe6 , 0x42 , 0x68 , 0x41 , 0x99 ,

0x2d , 0x0f , 0xb0 , 0x54 , 0xbb , 0x16

45 };

46

47 int DIFFUSION_CONSTANT[NUM_DIFFUSION_CONSTANT];

48

49 /*

50 Method to generate the Output from Extendable Output Function (

XOF) - Using Shake128 algorithm

51 */

52 void generateXOFOutput(uc *nonce , uc *output) {

53 EVP_MD_CTX *mdctx;

54 const EVP_MD *md;

55 OpenSSL_add_all_algorithms ();

56 // Using SHAKE128 XOF algorithm

57 md = EVP_shake128 ();

58

59 // Create and initialize context

60 if((mdctx = EVP_MD_CTX_new ()) == NULL) {

61 printf("Error creating context\n");

62 return;

63 }

64 // Initialize digest operation

65 if(1 != EVP_DigestInit_ex(mdctx , md , NULL)) {

66 printf("Error initializing digest\n");

67 EVP_MD_CTX_free(mdctx);

68 return;

69 }

70 // Provide the nonce as input data

57

71 if(1 != EVP_DigestUpdate(mdctx , nonce , NONCE_SIZE)) {

72 printf("Error updating digest\n");

73 EVP_MD_CTX_free(mdctx);

74 return;

75 }

76 // Finalize the digest and obtain the output

77 if(1 != EVP_DigestFinalXOF(mdctx , output , 1)) {

78 printf("Error finalizing digest\n");

79 EVP_MD_CTX_free(mdctx);

80 return;

81 }

82 // Clean up

83 EVP_MD_CTX_free(mdctx);

84 EVP_cleanup ();

85 }

86

87

88

89 /*

90 Method to generate the Diffusion Constants from Nonce - using

XOF output

91 */

92 void generateDiffusionConstant(uc *nonce) {

93 unsigned char xof_output [1]; // Output 1 byte at a time (8

bits)

94 int bit_index = 0;

95

96 for (int i = 0; i < NUM_DIFFUSION_CONSTANT; i++) {

97 DIFFUSION_CONSTANT[i] = 0;

98 for (int j = 0; j < DIFFUSION_CONSTANT_SIZE; j++) {

58

99 // Generate output from XOF based on the nonce

100 generateXOFOutput(nonce , xof_output);

101 // Use the first bit of the XOF output to set the

corresponding bit in the diffusion constant

102 DIFFUSION_CONSTANT[i] |= ((xof_output [0] & 1) <<

bit_index);

103 bit_index ++;

104 }

105 }

106 }

107

108 int main() {

109 unsigned char nonce[NONCE_SIZE];

110 srand(time(NULL)); // Seed the random number generator with

current time

111 // Generate random nonce

112 for (int i = 0; i < NONCE_SIZE; i++) {

113 nonce[i] = rand() % 256;

114 }

115

116 generateDiffusionConstant(nonce);

117

118 // Print the diffusion constants

119 printf("Diffusion Constants :\n");

120 for (int i = 0; i < NUM_DIFFUSION_CONSTANT; i++) {

121 printf("Constant %d: %d\n", i + 1, DIFFUSION_CONSTANT[i

]);

122 }

123

124 return 0;

59

125 }

Listing A.1: Sample C Program

60

Appendix B

Code for Di↵erential Fault Attack

1 import time

2 from sage.sat.boolean_polynomials import solve

3 from sage.crypto.sbox import SBox

4

5 ksize = 128

6 ivsize = 64

7 nsize = 128

8 v = ksize + ivsize + nsize

9 rounds = 4

10 nv = 2 * rounds * v + v

11 V = BooleanPolynomialRing(nv , [’k%d’ % (i) for i in range(ksize

)] + [’iv%d’ % (i) for i in range(ivsize)] + [’n%d’ % (i)

for i in range(nsize)] + [’p%d’ % (i) for i in range (2 *

rounds * v)])

12 V.inject_variables(verbose =0)

13 T = list(V.gens()) # list of all variables

14 key = [k0 + k0] * ksize

15 fkey = [k0 + k0] * ksize

16 iv = [iv0 + iv0] * ivsize

61

17 nonce = [n0 + n0] * nsize

18

19 def random ():

20 x = [ZZ.random_element (1, 64) for _ in range (20)]

21 return tuple(x)

22

23 # linear layer function

24 def llayer(state , *x):

25 y = [[k0 + k0] * 64 for _ in range (5)]

26 sy = [[k0 + k0] * 64 for _ in range (5)]

27 for i in range (64):

28 y[0][i] = state[i]

29 y[1][i] = state[i + 64]

30 y[2][i] = state[i + 128]

31 y[3][i] = state[i + 192]

32 y[4][i] = state[i + 256]

33

34 t = [None] * 5

35 for j in range (5):

36 t[j] = y[j][64 - x[j]:] + y[j][:64 - x[j]]

37 for i in range (64):

38 sy[0][i] = sum(t[j][i] for j in range (5))

39

40 for j in range (5):

41 t[j] = y[j][64 - x[j + 4]:] + y[j][:64 - x[j + 4]] if j

!= 1 else y[j]

42 for i in range (64):

43 sy[1][i] = sum(t[j][i] for j in range (5))

44

45 for j in range (5):

62

46 t[j] = y[j][64 - x[j + 8]:] + y[j][:64 - x[j + 8]] if j

!= 2 else y[j]

47 for i in range (64):

48 sy[2][i] = sum(t[j][i] for j in range (5))

49

50 for j in range (5):

51 t[j] = y[j][64 - x[j + 12]:] + y[j][:64 - x[j + 12]] if

j != 3 else y[j]

52 for i in range (64):

53 sy[3][i] = sum(t[j][i] for j in range (5))

54

55 for j in range (5):

56 t[j] = y[j][64 - x[j + 16]:] + y[j][:64 - x[j + 16]] if

j != 4 else y[j]

57 for i in range (64):

58 sy[4][i] = sum(t[j][i] for j in range (5))

59

60 return sy[0] + sy[1] + sy[2] + sy[3] + sy[4]

61

62 S = SBox ([0x63 , 0x7c , 0x77 , 0x7b , 0xf2 , 0x6b , 0x6f , 0xc5 , 0x30 ,

0x01 , 0x67 , 0x2b , 0xfe , 0xd7 , 0xab , 0x76 ,

63 0xca , 0x82 , 0xc9 , 0x7d , 0xfa , 0x59 , 0x47 , 0xf0 , 0xad ,

0xd4 , 0xa2 , 0xaf , 0x9c , 0xa4 , 0x72 , 0xc0 ,

64 0xb7 , 0xfd , 0x93 , 0x26 , 0x36 , 0x3f , 0xf7 , 0xcc , 0x34 ,

0xa5 , 0xe5 , 0xf1 , 0x71 , 0xd8 , 0x31 , 0x15 ,

65 0x04 , 0xc7 , 0x23 , 0xc3 , 0x18 , 0x96 , 0x05 , 0x9a , 0x07 ,

0x12 , 0x80 , 0xe2 , 0xeb , 0x27 , 0xb2 , 0x75 ,

66 0x09 , 0x83 , 0x2c , 0x1a , 0x1b , 0x6e , 0x5a , 0xa0 , 0x52 ,

0x3b , 0xd6 , 0xb3 , 0x29 , 0xe3 , 0x2f , 0x84 ,

67 0x53 , 0xd1 , 0x00 , 0xed , 0x20 , 0xfc , 0xb1 , 0x5b , 0x6a ,

63

0xcb , 0xbe , 0x39 , 0x4a , 0x4c , 0x58 , 0xcf ,

68 0xd0 , 0xef , 0xaa , 0xfb , 0x43 , 0x4d , 0x33 , 0x85 , 0x45 ,

0xf9 , 0x02 , 0x7f , 0x50 , 0x3c , 0x9f , 0xa8 ,

69 0x51 , 0xa3 , 0x40 , 0x8f , 0x92 , 0x9d , 0x38 , 0xf5 , 0xbc ,

0xb6 , 0xda , 0x21 , 0x10 , 0xff , 0xf3 , 0xd2 ,

70 0xcd , 0x0c , 0x13 , 0xec , 0x5f , 0x97 , 0x44 , 0x17 , 0xc4 ,

0xa7 , 0x7e , 0x3d , 0x64 , 0x5d , 0x19 , 0x73 ,

71 0x60 , 0x81 , 0x4f , 0xdc , 0x22 , 0x2a , 0x90 , 0x88 , 0x46 ,

0xee , 0xb8 , 0x14 , 0xde , 0x5e , 0x0b , 0xdb ,

72 0xe0 , 0x32 , 0x3a , 0x0a , 0x49 , 0x06 , 0x24 , 0x5c , 0xc2 ,

0xd3 , 0xac , 0x62 , 0x91 , 0x95 , 0xe4 , 0x79 ,

73 0xe7 , 0xc8 , 0x37 , 0x6d , 0x8d , 0xd5 , 0x4e , 0xa9 , 0x6c ,

0x56 , 0xf4 , 0xea , 0x65 , 0x7a , 0xae , 0x08 ,

74 0xba , 0x78 , 0x25 , 0x2e , 0x1c , 0xa6 , 0xb4 , 0xc6 , 0xe8 ,

0xdd , 0x74 , 0x1f , 0x4b , 0xbd , 0x8b , 0x8a ,

75 0x70 , 0x3e , 0xb5 , 0x66 , 0x48 , 0x03 , 0xf6 , 0x0e , 0x61 ,

0x35 , 0x57 , 0xb9 , 0x86 , 0xc1 , 0x1d , 0x9e ,

76 0xe1 , 0xf8 , 0x98 , 0x11 , 0x69 , 0xd9 , 0x8e , 0x94 , 0x9b ,

0x1e , 0x87 , 0xe9 , 0xce , 0x55 , 0x28 , 0xdf ,

77 0x8c , 0xa1 , 0x89 , 0x0d , 0xbf , 0xe6 , 0x42 , 0x68 , 0x41 ,

0x99 , 0x2d , 0x0f , 0xb0 , 0x54 , 0xbb , 0x16])

78

79 def slayer(state):

80 state = V(S(state [0:8]) + S(state [8:16]) + S(state [16:24])

+ S(state [24:32]) + S(state [32:40]) + S(state [40:48]) + S(

state [48:56]) + S(state [56:64]) + state [64:])

81 return state

82

83 state = nonce + iv + key

84 start = time.time()

64

85 for i in range(rounds):

86 state = slayer(llayer(state , *random ()))

87

88 print(f’Time taken: {time.time() - start} seconds ’)

65

9%
SIMILARITY INDEX

7%
INTERNET SOURCES

6%
PUBLICATIONS

5%
STUDENT PAPERS

1 3%

2 1%

3 1%

4 <1%

5 <1%

6 <1%

7 <1%

8 <1%

SunnySamuel_CrsS221_FinalReport
ORIGINALITY REPORT

PRIMARY SOURCES

hdl.handle.net
Internet Source

library.isical.ac.in:8080
Internet Source

academic.iiti.ac.in
Internet Source

Kazuo Sakiyama, Yu Sasaki, Yang Li. "Security
of Block Ciphers", Wiley, 2015
Publication

www.sannet.net
Internet Source

wikimili.com
Internet Source

Submitted to University of Pretoria
Student Paper

Joan Daemen, Vincent Rijmen. "The Design of
Rijndael", Springer Science and Business
Media LLC, 2020
Publication

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

16 <1%

17 <1%

Yefa Hu, Omer W. Taha, Kezhen Yang. "Fault
Detection in Active Magnetic Bearings Using
Digital Twin Technology", Applied Sciences,
2024
Publication

Submitted to Nottingham Trent University
Student Paper

dias.library.tuc.gr
Internet Source

Submitted to Babes-Bolyai University
Student Paper

dspace.mit.edu
Internet Source

slideplayer.com
Internet Source

Submitted to Southern Illinois University
Student Paper

www.cypherpunk.at
Internet Source

B.W. Boehm, R. Ross. "Theory-W software
project management principles and
examples", IEEE Transactions on Software
Engineering, 1989
Publication

18 <1%

19 <1%

20 <1%

21 <1%

22 <1%

23 <1%

24 <1%

25 <1%

26 <1%

27

Christof Paar, Jan Pelzl, Tim Güneysu.
"Understanding Cryptography", Springer
Science and Business Media LLC, 2024
Publication

ir.uitm.edu.my
Internet Source

d-scholarship.pitt.edu
Internet Source

Pulkit Singh, Bibhudendra Acharya, Rahul
Kumar Chaurasiya. "Lightweight
cryptographic algorithms for resource-
constrained IoT devices and sensor
networks", Elsevier BV, 2021
Publication

export.arxiv.org
Internet Source

webpages.eng.wayne.edu
Internet Source

www.mdpi.com
Internet Source

"Cryptography", Wiley, 2024
Publication

edipermadi.files.wordpress.com
Internet Source

simple.wikipedia.org
Internet Source

<1%

28 <1%

Exclude quotes Off

Exclude bibliography Off

Exclude matches Off

Understanding Cryptography, 2010.
Publication

	Introduction
	Introduction
	Thesis Outline

	Preliminaries
	Introduction to Cryptology
	Main Objectives of Cryptology
	Applications of Cryptology
	Symmetric and Asymmetric Cryptology
	Symmetric Cryptography
	Asymmetric Cryptography

	Need of Symmetric Cryptography
	Types of Ciphers
	Block Cipher
	Stream Cipher

	Block Cipher Algorithms
	Data Encryption Standard (DES)
	Triple Data Encryption Algorithm (3DES)
	Advanced Encryption Standard
	RC5 (Rivest Cipher)

	Stream Cipher Algorithms
	RC4 (Rivest Cipher 4)
	Salsa20 and ChaCha

	Comparison of Cipher Algorithms

	Research Background
	Introduction to Lightweight Cryptology
	Understanding LWC
	Challenges in LWC
	LWC on Internet of Things (IoT)
	Known LWC Algorithms
	Lightweight Block Ciphers
	Lightweight Stream Ciphers

	Proposed Lightweight Stream Cipher Algorithm
	Overview
	Detailed Structure
	Parameter Description
	Intialization Phase
	Linear Diffusion Phase
	Substitution Phase

	Encryption
	Decryption

	Cryptanalysis of Algorithm
	Differential Cryptanalysis - Resistance to Differential Fault Attack
	DFA on Our Stream Cipher

	Linear Cryptanalysis - Resistance to Algebraic Attack
	Our Contribution

	Conclusion and Future Work
	C Code for implementation of the Lightweight Stream Cipher
	Code for Differential Fault Attack

