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Abstract

In the bounded quantum storage model (BQSM), it is possible to realize
oblivious transfer (OT) non-interactively. However, existing schemes are
non-interactive only when the erasure rate is low. Quantum communica-
tion, even over short distances, is subject to relatively high erasure rates.
The standard approach to handle erasures is to retain only the successfully
received pulses and then implement OT, which needs an additional message
from the receiver to the sender. Consequently, the OT scheme becomes
interactive.

Our research aims to investigate the possibility of achieving non-interactive
OT in the BQSM, even under conditions of high erasure rates. To this end,
we propose exploring the use of coding techniques, such as fountain codes,
with a particular focus on Raptor codes. These codes have the potential to
mitigate the need for an additional message from the receiver to the sender,
thereby maintaining non-interactivity in the presence of high loss rates.
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1 Introduction

Oblivious Transfer (OT) is a key element in many cryptographic protocols,
playing a crucial role for secure multi-party computation and private in-
formation retrieval. OT lets a sender transfer one of many possible pieces
of information to a receiver so that the sender doesn’t know which piece
was transferred, and the receiver gets only the desired piece without learn-
ing about the others. This special feature makes OT essential for ensuring
security and privacy in complex cryptographic tasks.

The study of oblivious transfer (OT) has been very active since its first
proposal in 1981 by Rabin [1] in the classical setting. Intriguingly enough, a
similar concept(conjugate coding) was proposed by Wiesner using Quantum
communication [40] but rejected for publication due to the lack of acceptance
in the research community. This technique is the main building block of
many important quantum cryptographic protocols. In quantum conjugate
coding we encode classical information in two conjugate (non-orthogonal)
bases. This allows us to have the distinctive property that measuring on
one basis destroys the encoded information on the corresponding conjugate
basis.

The first proposal of a quantum oblivious transfer protocol was by Ben-
nett–Brassard–Crépeau–Skubiszewska, known as BBCS Protocol. The im-
portance of OT comes from its wide number of applications.
In the paper [15], Damgaard et al. showed for the first time what happens if
we consider protocols where quantum communication is used and we place
a bound on the adversary’s quantum memory size.
The quantum bounded storage model (QBSM) provides a framework where
the adversary’s quantum memory is limited, thus o↵ering a di↵erent set of
security guarantees compared to classical models.
The non-interacive QOT implies One time Program, which is impossible in
Quantum model as well as in classical model [18]. But in Bounded Quantum
storage model it is possible to implement.

1.1 Motivation

Designing e�cient and robust QOT protocols in the QBSM presents signif-
icant challenges, particularly in the presence of high erasure rates.
In practical, it is “almost impossible” to send qubits without bit loss.
When we send data through satellite, most of the data are lost and the re-
ceiver gets only a fraction of data.
The standard way we can deal with is the receiver will interact with sender
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by sending feedback of the positions of the qubits that he recieved. But as
a result, this OT becomes “interactive”.
Is it possible to achieve a non-interactive OT when bit loss is high?
The answer is : Yes

1.2 Our Contribution

In this thesis, we explore the application of raptor codes to develop a non-
interactive QOT protocol that can e↵ectively handle high bit loss. Raptor
codes, known for their robust error correction capabilities and low encod-
ing/decoding complexity. By integrating raptor codes into our QOT scheme,
we aim to achieve a protocol that can handle high amount of data loss and
make the protocol non-interactive.
In the protocol we have assumed that the receiver gets atmost 4k qubits out
of n qubits and can recover only one message.

During the short period of four months our contributions include:

• Design and Analysis : We present the design of a novel QOT pro-
tocol using raptor codes, specifically designed to handle high erasure
rates in quantum communication systems.

• Theoretical Proofs : We provide rigorous theoretical proof of the
security and e�ciency of our protocol, demonstrating its robustness
against adversarial attacks and its ability to maintain security under
some condition.

Through this work, we aim to improve quantum cryptography, leading
to more secure and reliable quantum communication systems. Our contribu-
tions make QOT protocols more resilient and e�cient, and they also create
new opportunities for future research in quantum cryptography.

1.3 Thesis Outline

In this work we have particularly used [12] [14] [15]. The detailed thesis
outline is given below :

• Chapter 2: This chapter introduces fundamental concepts and termi-
nology essential for understanding the thesis. It covers the basics of
quantum information, including qubits and superposition, the opera-
tions that can be performed on qubits through quantum gates, and the
mathematical representation of quantum states via density operators
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and the concept of privacy amplification to enhance the security of
quantum protocols. Lastly, We introduce the Min-Entropy-Splitting
Lemma and discuss techniques for entanglement sampling.

• Chapter 3: This chapter details the concept of Oblivious Transfer
(OT), a fundamental primitive in cryptography. It outlines quantum
protocols for random 1-2 OT, providing two di↵erent approaches for
implementing this protocol.
An overview of Raptor codes, a class of error-correcting codes known
for their e�ciency and robustness.

• Chapter 4: The core contribution of the thesis is presented here. We
introduce a new non-interactive Quantum Oblivious Transfer protocol
designed for the Bounded Quantum Storage Model (BQSM), specif-
ically optimized for environments with high erasure rates. The pro-
posed protocol’s design and security proof are discussed, highlighting
its advantages and potential applications in secure quantum commu-
nication.
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2 Preliminaries

2.1 Notation and terminology

2.1.1 Quantum Bit

In classical computing, the basic unit of information is called a ”bit”. In
quantum computing, the analogous unit is a ”quantum bit”, or ”qubit”. A
qubit, upon measurement, collapses to a definite state of a basis. Two bases
commonly used are the Z-basis and the X-basis.

The Z-basis is defined as:

|0i =
✓
1
0

◆
, |1i =

✓
0
1

◆

The X-basis is defined as:

|+i = 1p
2
(|0i+ |1i) , |�i = 1p

2
(|0i � |1i)

A basis is an orthonormal set of vectors.

2.1.2 Superposition

Superposition is a fundamental phenomenon in quantum mechanics where
a qubit can exist simultaneously in both |0i and |1i states. A qubit in
superposition is described by:

|�i = ↵|0i+ �|1i

where ↵ and � are complex numbers such that |↵|2 + |�|2 = 1. Upon
measurement, |�i collapses to |0i with probability |↵|2 and to |1i with prob-
ability |�|2. The state |�i is also a superposition in the Z-basis, with equal
probabilities of collapsing to |0i and |1i.

2.1.3 Entanglement

Entanglement is a key property of quantum systems where qubits cannot
be described independently of each other. The most well-known entangled
states are the Bell states:

|�+i = 1p
2
(|00i+ |11i), |��i = 1p

2
(|00i � |11i)
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| +i = 1p
2
(|01i+ |10i), | �i = 1p

2
(|01i � |10i)

Measurement of one qubit in an entangled pair instantaneously deter-
mines the state of the other, a phenomenon Einstein referred to as ”spooky
action at a distance”.

2.1.4 Quantum Gates and Operations

Quantum gates are unitary transformations that act on qubits. The four
fundamental single-qubit gates, known as Pauli matrices, are:

I =

✓
1 0
0 1

◆
, X =

✓
0 1
1 0

◆

Y =

✓
0 �i

i 0

◆
, Z =

✓
1 0
0 �1

◆

The Hadamard gate (H) is another crucial gate that transforms a qubit
between the Z-basis and the X-basis:

H =
1p
2

✓
1 1
1 �1

◆

Applying the H gate to |0i results in |+i, and applying it to |+i results
in |0i.

Initial State I X Y Z H
|0i |0i |0i |1i �|1i |+i
|1i |1i �|1i |0i |0i |�i
|+i |+i |�i |+i |�i |0i
|�i |�i |+i �|�i �|+i |1i

Table 1: Examples of five common quantum gates

2.1.5 Density operators

The behavior of a mixed quantum state in a register E is fully described by
its density matrix ⇢E . If a quantum state depends on a classical random
variable X, it is described by the density matrix ⇢

x

E
when X = x. For an

observer without access to X, the behavior is described by:
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⇢E =
X

x

PX(x)⇢xE (1)

The joint state of the classicalX and the quantum register E is described
by:

⇢XE =
X

x

PX(x) |xi hx|⌦ ⇢
x

E (2)

where {|xi}x2X is the standard (orthonormal) basis of HX . These joint
states, combining classical and quantum parts, are called cq-states. This
notation extends to states depending on multiple classical random variables,
resulting in ccq-states, cccq-states, etc. For a cq-state ⇢XE , if there exists
a random variable Y such that ⇢XY E satisfies a certain condition, we mean
that:

⇢XE = trY (⇢XY E) (3)

for some ccq-state ⇢XY E satisfying the required condition. The quantum
part is independent of X if and only if:

⇢XE = ⇢X ⌦ ⇢E (4)

where ⇢x
E
= ⇢E for all x, implying no information aboutX can be learned

by observing only ⇢E .

2.1.6 Classical and Quantum Entropy

We consider the notion of the classical Rényi entropy H↵(X) of order ↵

of a random variable X, as well as its generalization to the Rényi entropy
H↵(⇢) of a quantum state ⇢. It holds that H↵(⇢X) = H↵(X) and H↵(⇢X) 
H�(⇢X) if ↵ � �.

The cases that are relevant for us are the classical min-entropy

H1(X) = � log
⇣
max
x

PX(x)
⌘

as well as the quantum versions of the max- and collision-entropy

H0(⇢) = log(rank(⇢))

and

H2(⇢) = � log

 
X

i

�
2
i

!
,

where {�i}i are the eigenvalues of ⇢.
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2.1.7 Smooth Rényi Entropy

We briefly recall the notion of (conditional) smooth min-entropy. For more
details. Let X be a random variable over the alphabet X with distribution
PX . The standard notion of min-entropy is given by

H1(X) = � log
⇣
max
x

PX(x)
⌘

and that of max-entropy by

H0(X) = log (|{x 2 X : PX(x) > 0}|) .

More generally, for any event E (defined by ⇢E|X(x) for all x 2 X),
H1(XE) may be defined similarly by simply replacing ⇢X with ⇢XE . Note
that the “distribution” ⇢XE is not normalized; however, H1(XE) is still
well-defined.

For an arbitrary ✏ � 0, the smooth version H
✏
1(X) is defined as follows.

H
✏
1(X) is the maximum of the standard min-entropy H1(XE), where the

maximum is taken over all events E with Pr(E) � 1�✏. Informally, this can
be understood to mean that if H✏

1(X) = r, then the standard min-entropy
of X equals r as well, except with probability ✏. As ✏ can be interpreted as
an error probability, we typically require ✏ to be negligible in the security
parameter n.

For random variables X and Y , the conditional smooth min-entropy
H

✏
1(X|Y ) is defined as

H
✏

1(X|Y ) = max
E

min
y

H1(XE|Y = y),

where the quantification over E is over all events E (defined by PE|XY ) with
Pr(E) � 1� ✏.

We will make use of the following chain rule for smooth min-entropy:

Lemma 1. For all ✏, ✏0 > 0,

H
✏+✏

0
1 (X|Y ) � H

✏

1(XY )�H0(Y )� log

✓
1

✏0

◆
.

This lemma provides a useful tool for analyzing the relationships between
di↵erent entropy measures in the presence of conditioning and smoothing
parameters.
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2.1.8 Bounded Quantum storage

An adversarial player’s state may consist of an arbitrary number of qubits,
and they may perform arbitrary quantum computations. However, at a
certain point in time, we impose a memory bound and his quantum memory
is reduced to a certain size. This means that a measurement is applied to the
system with the restriction that the resulting quantum state can be stored
in at most q qubits. The classical outcome of the measurement can be of
arbitrary size and may be classically stored for later use. After this point,
the player is again unbounded in terms of quantum memory.

2.1.9 Privacy amplification

An important tool we use is universal hashing. A class Fn of hashing func-
tions from {0, 1}n to {0, 1}l is called two-universal if for any pair x, y 2
{0, 1}n with x 6= y, and F uniformly chosen from Fn,

Pr[F (x) = F (y)]  1

2l
.

Several two-universal classes of hashing functions are such that evalu-
ating and picking a function uniformly and at random in Fn can be done
e�ciently.

Theorem 1. Let ✏ � 0. Let ⇢XUE be a cq-state, where X is distributed
over {0, 1}n, U is the uniform finite domain U and register E contains q

qubits. Let F be the random variable corresponding to the random choice
(with uniform distribution and independent from X) of a member of a two-
universal class of hashing functions Fn form {0, 1}n to {0, 1}l . Then

�(⇢F (X)FUE ,
1

2l
1⌦ ⇢FUE) 

1

2
· 2�

1
2 (H

✏
1(X|U)�q�1) + 2✏ (5)
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2.2 Uncertainty Relations

Uncertainty relations play a fundamental role in quantum information and
in particular in quantum cryptography. Many of the modern security proofs
for quantum key distribution and quantum oblivious transfer are based on
an uncertainty relation.

They are also at the heart of security proofs in the bounded quantum
storage model. An uncertainty relation is a statement about a guaranteed
uncertainty in the outcome of a measurement in a randomly chosen basis.

We now state and prove the new entropic uncertainty relation in its most
general form. A special case will then be introduced (Corollary 1) and used
in the security analysis of all protocols we consider in the following.

Definition 1. Let B be a finite set of orthonormal bases in the d-dimensional
Hilbert space Hd. We call h � 0 an average entropic uncertainty bound for
B if every state in Hd satisfies

1

|B|
X

#2B
H(P#) � h,

where P# is the distribution obtained by measuring the state in basis #.

Note that by the convexity of the Shannon entropy H, a lower bound
for all pure states in Hd su�ces to imply the bound for all (possibly mixed)
states.

Theorem 2. Let B be a set of orthonormal bases in Hd with an average
entropic uncertainty bound h, and let ⇢ 2 P(H⌦n

d
) be an arbitrary quantum

state. Let ⇥ = (⇥1, . . . ,⇥n) be uniformly distributed over B
n and let X =

(X1, . . . , Xn) be the outcome when measuring ⇢ in basis ⇥, distributed over
{0, . . . , d� 1}n. Then for any 0 < � <

1
2 ,

H
✏

1(X|⇥) � (h� 2�)n

with ✏ = exp
⇣
� �

2
n

32(log(|B|·d/�))2

⌘
.

For special case B = {+,⇥} is the set of BB84 bases, B has entropic
uncertainty bound h = 1

2 . Then the theorem 2 gives the following corollary.

Corollary 1. Let ⇢ 2 P(H⌦n

2 ) be an arbitrary quantum state. Let ⇥ =
(⇥1, . . . ,⇥n) be uniformly distributed over B

n and let X = (X1, . . . , Xn) be
the outcome when measuring ⇢ in basis ⇥. Then for any 0 < � <

1
2 ,

H
✏

1(X|⇥) � (
1

2
� 2�)n

13



with ✏ = exp
⇣
� �

2
n

32(log(|B|·d/�))2

⌘

2.2.1 Min-Entropy-splitting Lemma

Lemma 2. Let ✏ � 0, and let X0, X1 be random variables (over possibly dif-
ferent alphabets) with H

✏
1(X0X1) � ↵. Then, there exists a binary random

variable C over {0, 1} such that H✏
1(X1�CC) � ↵/2.

The corollary below follows rather straightforwardly by noting that (for
normalized as well as non-normalized distributions) H1(X0X1 | Z) � ↵

holds if H1(X0X1 | Z = z) � ↵ for all z, applying the Min-Entropy-
Splitting Lemma, and then using the Chain Rule, Lemma 1.

Corollary 2. Let ✏ � 0, and let X0, X1 and Z be random variables such
that H

✏
1(X0X1 | Z) � ↵. Then, there exists a binary random variable C

over {0, 1} such that

H
✏+✏

0
1 (X1�C | ZC) � ↵/2� 1� log

�
1/✏0

�

for any ✏
0
> 0.

2.2.2 Entanglement Sampling

Here we consider a system A
n of n qubits. Then we measure each one of

these qubits in either the standard basis (labeled 0 with vector |0i, |1i) or the
Hadamard basis (labeled 1 with vectors |+i = |0i+|1ip

2
, |�i = |0i�|1ip

2
). More

precisely, choose a random vector ⇥n 2 {0, 1}n and measure qubit i in the
basis specified by the i-th component of ⇥n = ⇥1, . . . ,⇥n. Call the outcome
Xi. An uncertainty relation is a statement about the amount of uncertainty
in the random variable X

n = X1, . . . , Xn given the knowledge of the basis
choice ⇥n. The uncertainty is often measured in terms of the Shannon
entropy. However, for the applications we consider here, the measure of
uncertainty needs to be stronger, i.e., we should use a higher order entropy
like Hmin or H2. Such an uncertainty relation has been established in [14]:

H
✏

min(X
n|⇥n) ⇡ n

2
. (6)

The way this uncertainty relation was used in the context of the bounded
storage model was to apply a chain rule to (6) to obtain H

✏

min(X
n|E⇥n) ⇡

n

2 � log |E|. There are two reasons for this inequality to be unsatisfactory:
it depends on the dimension of E rather than on the correlations between

14



A
n and E, and it becomes trivial when H2(An|E) < �n

2 as this implies
log |E| > n

2 .
It is simple to see that if the system A

n is maximally entangled with
some system E, then the outcome X

n of this measurement can be perfectly
predicted by having access to E. In other words, if the conditional entropy
H2(An|E) = �n, then X

n can be correctly guessed with probability 1. The
following theorem provides a converse: if H2(An|E) > �(1 � ✏)n for ✏ > 0,
thenX

n cannot be guessed with probability better than 2�n�(✏) with �(✏) > 0
whenever ✏ > 0.

Theorem 3. Let ⇢AnE 2 S(An
E) where A

n is an n-qubit space and define

h2 =
H2(An|E)⇢

n
. Then we have

H2(X
n|E⇥n)⇢ > n�(h2)� 1

where ⇢XnE⇥n = 1
2n

P
xn2{0,1}n,✓n2{0,1}n |xnihxn|hxn|H✓n⇢AnEH✓n |xni|✓nih✓n|

is the state obtained when system A
n is measured in the basis defined in the

register ⇥n and the function � is defined by

�(h2) =

(
h2 if h2 >

1
2

g
�1(h2) if h2 <

1
2

with g(↵) = h(↵) + ↵� 1.

The following corollary expresses the uncertainty relation described in
Theorem 3 in terms of min-entropies, which will be more convenient for
cryptographic applications.

Corollary 3. Using the same notation as in Theorem 3, we have

Hmin(X
n|E⇥n)⇢ >

1

2
(n�(h2)� 1) (7)

>
1

2
(n�(hmin)� 1)

where hmin = Hmin(An|E)⇢
n

.
Moreover, for any ✏ 2 (0, 1], we have

H
✏

min(X
n|E⇥n)⇢ > n�(h2)� 1� log

2

✏2
. (8)
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Figure 1: Plot of the function �(h2) from Theorem 3 giving a lower bound
on the uncertainty of the outcome of BB84 measurement as a function of
the entropy rate h2 of the state being measured.

.
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3 Oblivious transfer and Raptor codes

3.1 Oblivious transfer

In 1-2 Oblivious Transfer (OT), the sender Alice sends two `-bit strings S0

and S1 to the receiver Bob in such a way that Bob can choose which string
to receive, but does not learn anything about the other. On the other hand,
Alice does not get to know which string Bob has chosen. The common way to
build 1-2 OT is by constructing a protocol for (Sender-)Randomized 1-2 OT,
which then can easily be converted into an ordinary 1-2 OT. Randomized 1-2
OT essentially coincides with ordinary 1-2 OT, except that the two strings
S0 and S1 are not input by the sender but generated uniformly at random
during the protocol and output to the sender.

For the formal definition of the security requirements of a quantum pro-
tocol for Randomized 1-2 OT, let us fix the following notation: Let C denote
the binary random variable describing receiver R’s choice bit, let S0, S1 de-
note the `-bit long random variables describing sender S’s output strings,
and let Y denote the `-bit long random variable describing R’s output string
(supposed to be SC). Furthermore, for a fixed candidate protocol for Ran-
domized 1-2 OT, and for a fixed input distribution for C, the overall quan-
tum state in the case of a dishonest sender S̃ is given by the ccq-state
⇢
CY SS̃

. Analogously, in the case of a dishonest receiver R̃, we have the
ccq-state ⇢

S0S1R̃
.

Definition 2. (Rand 1-2 OT). An "-secure Rand 1-2 OT is a quantum
protocol between S and R, with R having input C 2 {0, 1} while S has no
input, such that for any distribution of C, if S and R follow the protocol,
then S gets output S0, S1 2 {0, 1}` and R gets Y = SC except with probability
", and the following two properties hold:

• "-Receiver-security: If R is honest, then for any S̃, there exist ran-
dom variables S0

0, S
0
1 such that Pr(Y = S

0
C) � 1�" and �(⇢

CS
0
0S

0
1S̃
, ⇢C⌦

⇢
S
0
0S

0
1S̃
)  ".

• "-Sender-security: If S is honest, then for any R̃, there exists a
binary random variable C 0 such that �(⇢

S1�C0SC0C0R̃,
1
|2l|1⌦⇢

SC0C0R̃) 
".

If any of the above holds for " = 0, then the corresponding property is
said to hold perfectly. If one of the properties only holds with respect to a
restricted class S of S̃’s respectively R of R̃’s, then this property is said to
hold and the protocol is said to be secure against S respectively R.
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3.1.1 Quantum Protocol for Rand 1-2 OT`

Rand 1-2 QOT`:

1. Let c be R’s choice bit.

2. S picks x 2R {0, 1}n and ✓ 2R {+,⇥}n, and sends |x1i✓1 , ..., |xni✓n to
R.

3. R measures all qubits in basis [+,⇥]c. Let x0 2 {0, 1}n be the result.

4. S picks two hash functions f0, f1 2R F, announces ✓ and f0, f1 to R,
and outputs s0 := f0(x|I0) and s1 := f1(x|I1) where Ib := {i : ✓i =
[+,⇥]b}.

5. R outputs sc = fc(x0|Ic).

In this model dishonest receivers in Rand 1-2 QOT` under the assump-
tion that the maximum size of their quantum storage is bounded. Such
adversaries are only required to have bounded quantum storage when Step
3 in Rand 1-2 QOT` is reached; before and after that, the adversary can
store and carry out arbitrary quantum computations involving any number
of qubits. Let Rq denote the set of all possible quantum dishonest receivers
R̃ in Rand 1-2 QOT` which have quantum memory of size at most q when
Step 3 is reached. We stress once more that apart from the restriction on the
size of the quantum memory avail able to the adversary, no other assumption
is made. In particular, the adversary is not assumed to be computationally
bounded and the size of his classical memory is not restricted.

3.1.2 Receiver Security

It is clear by the non-interactivity of Rand 1-2 QOT` that a dishonest sender
cannot learn anything about the receiver’s choice bit.

proposition 1. Rand 1-2 QOT ` is perfectly receiver-secure.

This proposition is proven in[14]
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3.1.3 Quantum protocol for Rand 1-2 OT`

EPR Rand 1-2 QOT `:

1. S prepares n EPR pairs each in state |⌦i = 1p
2
(|00i+ |11i), and sends

one half of each pair to R and keeps the other halves.

2. R measures all qubits in basis [+,⇥]c. Let x0 2 {0, 1}n be the result.

3. S picks random ✓ 2R {+,⇥}n, and she measures the i-th qubit in
basis ✓i. Let x 2 {0, 1}n be the outcome. S picks two hash functions
f0, f1 2R F, announces ✓ and f0, f1 to R, and outputs s0 := f0(x|I0)
and s1 := f1(x|I1) where Ib := {i : ✓i = [+,⇥]b}.

4. R outputs sc = fc(x0|Ic).

First, we consider a purified version of Rand 1-2 QOT`, EPR Rand 1-
2 QOT`, where for each qubit |⇠i✓i the sender S is instructed to send to

the receiver, S instead prepares an EPR pair |�i =
q

1
2(|00i + |11i), and

sends one part to the receiver while keeping the other. Only when Step 3 is
reached and R̃’s quantum memory is bound to �n qubits, S measures her
qubits in basis ✓ 2R {+,⇥}n. It is easy to see that for any R̃, EPR Rand 1-2
QOT` is equivalent to the original Rand 1-2 QOT`, and it su�ces to prove
sender-security for the former. Indeed, S’s choices of ✓ and f0, f1, together
with the measurements all commute with R’s actions. Therefore, they can
be performed right after Step 1 with no change for R’s view. Modifying
EPR Rand 1-2 QOT` that way results in Rand 1-2 QOT`.

3.2 Modeling Dishonest Receivers

In our protocol, we consider dishonest receivers within the context of QOT
and EPR-QOT, assuming their quantum storage capacity is limited. These
adversaries must have bounded quantum storage only upon reaching step
4 of the (EPR-)QOT protocol. Prior to this, the adversary can store and
execute quantum computations with any number of qubits. Besides the
restriction on the quantum memory size, we make no other assumptions
about the adversary. Specifically, the adversary is not assumed to be com-
putationally bounded, nor is there any limitation on its classical memory
capacity.
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Definition 3. We denote by R� the set of all possible dishonest quantum
receivers {R̃n}n>0 in QOT or EPR-QOT, where each R̃n has a quantum
memory of size at most �n when step 4 is reached.

Generally, the adversary R̃ is permitted to perform any quantum compu-
tation that compresses the n qubits received from S into a quantum register
M of size at most �n upon reaching step 4. More precisely, this compres-
sion is carried out by a unitary transformation C acting on the received
quantum state and an ancillary system of arbitrary size. The compression
involves a measurement, assumed to be in the computational basis without
loss of generality. Before initiating step 4, the adversary applies the unitary
transformation C as follows:

2�n/2
X

x2{0,1}n
|xi ⌦ C|xi|0i ! 2�n/2

X

x2{0,1}n
|xi ⌦

X

y

↵x,y|�x,yiM |yiY ,

where for each x,

X

y

|↵x,y|2 = 1.

A measurement in the computational basis is then applied to register Y ,
yielding the classical outcome y. The result is a quantum state in register
M of size �n qubits. For simplicity, we ignore the value of y in the notation.
Thus, the normalized state of the system, in its most general form when
step 4 of EPR-QOT is reached, is:

| i =
X

x2{0,1}n
↵x|xi ⌦ |�xiM ,

where

X

x

|↵x|2 = 1.

We will prove security for any such state | i, hence it is safe to omit the
dependency on y in our notation.

Theorem 4. Rand 1-2 QOT` is ✏-sender-secure against Rq for a negligible
(in n) ✏ if n/4� 2`� q 2 ⌦(n).
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3.3 Raptor codes

An algorithm is given for constructing from a given Raptor Code of param-
eters (k, C,⌦(x)) a systematic version of the code. First, a set of k positions
is computed, which will be the positions of the systematic output symbols.
This is done by considering the generator matrix G of the pre-code and
the generator matrix S of the first k(1 + ✏) symbols of the LT code. Using
Gaussian elimination, k rows of SG which form a full rank square submatrix
R are identified. These rows correspond to the positions of the systematic
output symbols.

Encoding of the first k(1 + ✏) symbols is done by first left-multiplying
the vector of input symbols with GR

�1 to obtain the vector u, and then
left-multiplying the result with S. Subsequent output symbols are obtained
by application of the LT code to the vector u.

Decoding is done by applying the decoding algorithm of the original
Raptor Code to obtain a vector of symbols y. The original input symbols
are then given by Ry.
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4 Non interactive QOT in BQSM with high era-

sure rate

In recent advancements of Quantum Oblivious Transfer (QOT) protocols,
mostly the focus has been on scenarios with low erasure rates, typically ad-
dressing bit loss at a manageable level. However, real-world quantum com-
munication systems often face high erasure rates, leading to substantial bit
loss that can severely impact the reliability and security of QOT protocols.
Our work aims to address this gap by developing a robust QOT protocol
that remains secure and e�cient even under high erasure conditions.

Assumption : We specifically target a scenario where the receiver, R,
obtains at least 2(1+ �)k bits but not more than 4k bits. This constraint is
crucial; if R were to receive more than 4k bits, R could potentially recover
both messages, undermining the security of the protocol.

In our Protocol the formal definition is same as before, i.e., Definition
2.

4.1 Our Proposed Protocol

4.1.1 Quantum protocol for random 1-out-of-2 OT`

Rand 1-2 QOT`:

1. Let c be R’s choice bit.

2. S picks x 2R {0, 1}n and ✓ 2R {+,⇥}n, and sends |x1i✓1 , ..., |xni✓n to
R.

3. Due to high erasure rate let R getsm qubits, where 2(1+�)k  m < 4k.
R measures all qubits in basis [+,⇥]c. Let x0 2 {0, 1}m be the result.

4. Let S picks z0, z1 2R {0, 1}k. S computes w0 = rapt(z0) � x0 and
w1 = rapt(z1)�x1 where for rapt(zC) S takes first n bits for c 2 {0, 1}.
S picks two hash functions f0, f1 2R F, announces ✓, f0, f1, w0, w1 to
R, and outputs s0 := f0(x0) and s1 := f1(x1) where x0 ans x1 are the
sequence of bits encoded by + and ⇥

5. R recovers zc from wc. Then computes xc = rapt(zc)�wc and outputs
sc = fc(xc).
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In the simple protocol for random 1-2 QOT`, at first receiver R chooses a
bit c from 0 or 1. The sender S first randomly chooses a n bit string x

from {0, 1}n and encodes this string with randomly chosen basis sequence
from ✓ 2R {+,⇥}n. Let x0 and x1 be sequence of bits encoded by + and
⇥ respectively. The sender S sends random BB84 states to the receiver
R, who gets a fraction of n bits due to high erasure rate and measures all
received qubits according to his choice bit c (for c = 0 he chooses + and
for c = 1 he chooses ⇥). S then picks randomly two k bit strings z0, z1

from {0, 1}k and applies raptor code on z0 and z1. Then takes first n bits
of rapt(z0) and first n bits of rapt(z1). Then computes w0 = rapt(z0)� x0

and w1 = rapt(z1)� x1. S then picks two functions f0, f1 randomly from a
fixed two-universal class of hash functions F from {0, 1}n to {0, 1}`, where
` is to be determined later, and applies them to the bits encoded in the +
respectively the bits encoded in the ⇥-basis to obtain the output strings s0
and s1. Note that we may apply a function f 2 F to a n

0�bit string with
n
0
< n by padding it with zeros (which does not decrease its entropy). S

announces the encoding bases, w0, w1 and the hash functions to the receiver
who then can compute sc. Intuitively, a dishonest receiver who cannot store
all the qubits until the right bases are announced, will measure some qubits
in the wrong basis and thus cannot learn both strings simultaneously.

4.1.2 Proof scetch for Rand 1-2 QOT`

Theorem 5. Rand 1-2 QOT` is ✏-secure against Rq for a negligible (in n)
✏ if

n�(h2)

2
� 2l � q 2 ⌦(n)

Proof. For better clarity, we present a brief overview of the proof here, with
the detailed proof, addressing all the ✏ terms, provided in the following
section.
Proof (Overview): Let X represent the random variable for the sender’s
choice of x, with the distribution of X conditioned on the classical informa-
tion R̃ obtained by measuring all but �m qubits. Using a standard purifica-
tion argument, as in the previous chapter, we show that X can be obtained
by measuring a quantum state in a randomly chosen basis ✓ 2R {+,⇥}n,
represented by the random variable ⇥: for each qubit |xii✓i that the sender
S needs to send to R, S prepares an EPR pair |�i = 1p

2
(|00i+ |11i), sends

one part to R while keeping the other, and measures her qubits in Step 3.
The uncertainty relation, as stated in Corollary 3, indicates that the

smooth min-entropy of X given W0W1⇥ is approximately n�(h2) � 1. Let
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X0 and X1 be the substrings of X composed of the bits encoded in the
+ or ⇥ basis, respectively. The Min-Entropy-Splitting Lemma, specifically
Corollary 2, implies the existence of a binary variable C

0 such that X1�C0

has approximately n�(h2)�1
2 bits of smooth min-entropy given ⇥W0W1 and

C
0.
Given the random and independent selection of hash functions F0, F1

and applying the Chain Rule, Lemma 1, X1�C0 retains about n�(h2)�1
2 �

1� ` bits of smooth min-entropy when conditioned on ⇥, C 0, W0, W1 FC0 ,
FC0(XC0),. The Privacy Amplification Theorem 1 then ensures that S1�C0 =
F1�C0(X1�C0) is nearly random, given ⇥, C 0, FC0 , W0, W1, SC0 , F1�C0 , and

R̃’s quantum state of size q, provided n�(h2)�1
2 � 1 � 2` � q is positive and

scales linearly with n.

4.1.3 Protocol for EPR-based Rand 1-2 QOT`

EPR Rand 1-2 QOT`:

1. S prepares n EPR pairs each in state |⌦i = 1p
2
(|00i+ |11i), and sends

one half of each pair to R and keeps the other halves.

2. Due to high erasure rate let R getsm qubits, where 2(1+�)k  m < 4k.
R measures all qubits in basis [+,⇥]c. Let x0 2 {0, 1}m be the result.

3. S picks random ✓ 2R {+,⇥}n, and she measures the i-th qubit in basis
✓i. Let x 2 {0, 1}n be the outcome. Let x0 be the result for + and x1

be the result for ⇥.
Let S picks z0, z1 2R {0, 1}k. S computes w0 = rapt(z0) � x0 and
w1 = rapt(z1)�x1 where for rapt(zC) S takes first n bits for C 2 {0, 1}.
S picks two hash functions f0, f1 2R F, announces ✓, f0, f1, w0, w1 to
R, and outputs s0 := f0(x0) and s1 := f1(x1)

4. R recovers zc from wc. Then computes xc = rapt(zc)�wc and outputs
sc = fc(xc).

Consider the common quantum state in EPR Rand 1-2 QOT l after R̃ has
measured all but �m of his qubits. Let X be the random variable that de-
scribes the outcome of the sender measuring her part of the state in random
basis ⇥, and let E be the random state that describes R̃’s part of the state.
Also, let F0 and F1 be the random variables that describe the random and

24



independent choices of f0, f1 2 F . Let Xb be Xb = X|{i:⇥i=[+,⇥]b} (padded

with zeros so it makes sense to apply Fb).Finally Let S picks z0, z1 2R {0, 1}k.
S computes w0 = rapt(z0) � x0 and w1 = rapt(z1) � x1 where for rapt(zc)
S takes first n bits for C 2 {0, 1}. Let Z0, Z1 be random variables for z0, z1
respectively. So W0,W1 are random variables for w0, w1 respectively.
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4.2 Security proof

Choose ✏, ✏
0, and  all positive, but small enough such that

�m  1

2
(n�(hmin)� log

2

✏2
+ 4 log ✏0)� n� 2`� 1. (9)

Step 1 : From the uncertainty relation (Corollary 3) [H✏

min(X
n|E⇥n)⇢ >

n�(h2)� 1� log 2
✏2
], we know that

H
✏

1(X0X1|⇥W0W1) � (n�(hmin)� 1)� log
2

✏2
(10)

for ✏ exponentially small in n. Here system E is acting as information
W0,W1.

Step 2 : Therefore, by Corollary 2 (Min-entropy Splitting Lemma)
[H✏+✏

0
1 (X1�C | ZC) � ↵/2� 1� log(1/✏0) for any ✏

0
> 0] applying on equa-

tion (10), there exists a binary random variable C
0 such that for ✏0 = 2��

0
n,

it holds that

H
✏+✏

0
1 (X1�C0 |⇥W0W1C

0) �
(n�(hmin)� 1)� log 2

✏2

2
� 1� log

1

✏0
. (11)

Step 3 : We denote by the random variables F0, F1 the sender’s choices
of hash functions. It is clear that we can condition on the independent FC0

and using equation (11) we can write

H
✏+2✏0
1 (X1�C0FC0(XC0)|⇥FC0W0W1C

0) �
(n�(hmin)� 1)� log 2

✏2

2
�1�log

1

✏0

and use the chain rule (Lemma 1)[H✏+✏
0

1 (X|Y ) � H
✏
1(XY ) � H0(Y ) �

log
�
1
✏0
�
.] to obtain

H
✏+2✏0
1 (X1�C0 |⇥FC0(XC0)FC0W0W1C

0) � H
✏+2✏0
1 (X1�C0FC0(XC0)|⇥FC0W0W1C

0)

�H0(FC0(XC0)|FC0W0W1C
0)�log

1

✏0

�
(n�(hmin)� 1)� log 2

✏2

2
�1�log

1

✏0
�`�log

1

✏0

=
(n�(hmin)� 1)� log 2

✏2

2
�1�`�2 log

1

✏0
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=
(n�(hmin)� 1)� log 2

✏2

2
�1�`+2 log ✏0

=
(n�(hmin)� 1)� log 2

✏2
+ 4 log ✏0

2
�1�`

=
(n�(hmin)� 1)� log 2

✏2
+ 4 log ✏0

2
�1�2`+`

So, we get

H
✏+2✏0
1 (X1�C0 |⇥FC0(XC0)FC0W0W1C

0) �
(n�(hmin)� 1)� log 2

✏2
+ 4 log ✏0

2

�1� 2`+ ` (12)

Now, using the equation (9) in the above inequality we get,

H
✏+2✏0
1 (X1�C0 |⇥FC0(XC0)FC0W0W1C

0) � �m+ `+ n

by the choice of ✏, ✏0, and .

Step 4 : We can now apply privacy amplification in form of Theorem 3
[�(⇢F (X)FUE ,

1
2l
1⌦ ⇢FUE)  1

2 · 2�
1
2 (H

✏
1(X|U)�q�1) + 2✏] to obtain

�(⇢FC0 (XC0 )F1�C0 (X1�C0 )FC0F1�C0✓W0W1
, 1⌦ ⇢FC0 (XC0 )FC0F1�C0⇥C0W0W1

)

 1

2
2
� 1

2

⇣
H

✏+2✏0
1 (X1�C0 |⇥FC0 (XC0 )FC0W0W1C

0)��m�l

⌘

+2(✏+2✏0)

 1

2
2�

1
2 (�m+`+n��m�l)+2(✏+2✏0) [using(12)]

So, we obtain,

�(⇢FC0 (XC0 )F1�C0 (X1�C0 )FC0F1�C0✓W0W1
, 1⌦⇢FC0 (XC0 )FC0F1�C0⇥C0W0W1

)  1

2
2�

1
2n+2✏+4✏0,

which is negligible.
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5 Conclusion

In this thesis, we have analyzed a non-interactive quantum oblivious transfer
(QOT) protocol that e↵ectively handles high bit loss when sending bits
through satellites by leveraging the robust error correction capabilities of
raptor codes and using min-entropy sampling properly.

Finally, we have achieved a non-interactive QOT protocol when the re-
ceiver gets only a fraction (assuming atmost 4k bits out of n bits) of qubits,
does not send any feedback to the sender and keeping the whole process
non-interactive. So our protocol addresses the critical challenges posed by
data loss in quantum communication systems through satellite, providing
a secure and non-interactive solution within the bounded quantum storage
model (BQSM).

28



6 Future Work

In this thesis, we assumed that if the receiver gets not more than 4k bits,
then the proposed protocol for 1-2 QOT` will hold properly. This assumption
has served as a foundational aspect of our protocol. However, an interesting
direction for future research is to explore the scenario where the adversary
obtains more than 4k bits.

One next possible approach to address this challenge is to develop a new
protocol using an extra basis i.e., circular basis so that this protocol remains
secure and non-interactive even when the adversary has access to more than
4k bits.
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