
Enhancing Text to SQL Generation with Dynamic Vector
Search

Indian Statistical Institute, Kolkata
M.Tech. Final Semester,2022-2024

Soumyadweep Mondal

Supervisor : Jayanta Kumar Mukherjee, Technical Architect,
ARC Document Solutions

Internal Supervisor : Dipti Prasad Mukherjee, Professor, ISI
Kolkata

DECLARATION
I, Soumyadweep Mondal (Roll No: CrS2217), hereby declare that, this report entitled

“Enhancing Text to SQL Generation with Dynamic Vector Search” submitted to Indian
Statistical Institute, Kolkata towards the fulfilment of the requirements for the degree of Master
of Technology in CSRU, is an original work carried out by me under the supervision of Jyanta
Kumar Mukherjee and Dipti Prasad Mukherjee and has not formed the basis for the award
of any degree or diploma, in this or any other institution or university. I have sincerely tried to
uphold academic ethics and honesty. Whenever a piece of external information or statement or
result is used, then that has been duly acknowledged and cited.

Soumyadweep Mondal

CrS2217
Cryptology & Security

July 12, 2024

1

Certificate

This is to certify that the work contained in this project report entitled ”Enhancing Text to SQL Generation
with Dynamic Vector Search” submitted by Soumyadweep Mondal (Roll No. CrS2217) to the Indian
Statistical Institute, Kolkata towards the fulfilment of the requirements for the degree of Master of Technology
in CSRU has been carried out by him under my supervision and that it has not been submitted elsewhere for the
award of any degree.

Dipti Prasad Mukherjee

Professor,ECSU
Indian Statistical Institute, Kolkata

Jayanta Kumar Mukherjee

Technical Architect
ARC Document Solutions India Pvt. Ltd.

2

ACKNOWLEDGEMENT

I thank everyone who has assisted me in seeing this project through to its completion. I would
like first to express my deepest gratitude and deepest regards to my Guides, ARC Document
Solutions India Pvt. Ltd. and ISI Kolkata, and sincerely wish to acknowledge their vision,
guidance, valuable feedback and constant support throughout this project.
I am indebted to my team members for their steadfast encouragement and time. Lastly, I am
grateful to the Indian Statistical Institute, Kolkata, for providing the necessary resources and
facilities to complete this project to the best of my ability.

Soumyadweep Mondal

ARC Document Solutions India
Pvt. Ltd.

Cryptology & Security
July 12, 2024

3

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 5
1.3 Research Objectives . 6

2 Literature Overview 7
2.1 Context Windows . 7
2.2 Prompt . 8
2.3 Prompt Principles and Guides . 8

2.3.1 Zero-Shot Experiments . 12
2.3.2 Limitations of Zero-Shot Learning . 13
2.3.3 Few-Shot Prompt . 13
2.3.4 Few Shot Improvement . 14
2.3.5 Limitations of Few Shot . 15

3 Method 17
3.1 Results . 20

4 Conclusion & Future Works 22
4.1 Conclusion . 22
4.2 Future Works . 22

4

Abstract

Generating accurate SQL from natural language questions (text-to-SQL) is a long-

standing challenge due to the complexities involved in understanding user queries, com-

prehending database schemas, and generating SQL statements. Traditional text-to-SQL

systems have utilized human-engineered solutions and deep neural networks. More re-

cently, pre-trained language models (PLMs) have been employed for text-to-SQL tasks,

showing promising results. However, as modern databases and user queries become in-

creasingly complex, the limited comprehension capabilities of PLMs can lead to incor-

rect SQL generation. This necessitates sophisticated and tailored optimization methods,

which restrict the applicability of PLM-based systems.

In contrast, large language models (LLMs) have demonstrated significant advance-

ments in natural language understanding as their scale increases. This thesis explores

the integration of LLMs into text-to-SQL systems, highlighting unique opportunities,

challenges, and solutions. We propose a novel approach that leverages examples similar

to user queries, allowing the model to better understand and generate accurate SQL.

This work provides a comprehensive review of LLM-based text-to-SQL systems,

outlining current challenges and the evolutionary process of the field. We introduce

datasets and metrics designed for evaluating text-to-SQL systems. Finally, we discuss

remaining challenges and propose future directions for research in this domain.

Chapter 1

Introduction

1.1 Background

Text-to-SQL [8],[10] is a long-established task in the research of natural language process-

ing, aiming to translate natural language questions into SQL queries that can be executed on

databases. For instance, as illustrated in Figure 1.1 below, a large language model (LLM)-

based text-to-SQL system can take a user question like ”What movies are directed by Satyajit

Ray?” and the corresponding database schema as input, then generate an SQL query to retrieve

the relevant content. In response of the above question the LLM will generate this SQL query

”SELECT Title FROM DIRECTORS NAME table WHERE Director = ’Satyajit Ray’”, then

based on the retrieved data by executing this SQL query, the user will be given the answer, as

shown in the figure below.

1

Figure 1.1: Diagram of creating SQL query from natural language question using LLM, re-
trieving data from database using this SQL query, then answering the user with the retrieved
data.

Here is the pseudocode and details of how the process happens. Consider the following two

tables:

Title ID Year
Pather Panchali PP55 1955
Charulata C64 1964
Aparajito SR56 1956
Meghe Dhaka Tara MDT60 1960
Hirak Rajar Deshe HRD80 1980

Table 1.1: Movies Table

2

DIRECTORS NAME ID Age
Satyajit Ray PP55 65
Satyajit Ray C64 65
Satyajit Ray SR56 65
Ritwik Ghatak MDT60 65
Satyajit Ray HRD80 50

Table 1.2: Directors Name Table

Code: Fetch the database schema

def get_sqlite_schema(db_path):

conn = sqlite3.connect(db_path)

cursor = conn.cursor()

cursor.execute("SELECT name FROM sqlite_master WHERE type=’

↪→ table’;")

tables = cursor.fetchall()

schema = {}

for table in tables:

table_name = table[0]

cursor.execute(f"PRAGMA table_info({table_name});")

schema[table_name] = cursor.fetchall()

conn.close()

return schema

This will give us the following schema information:

Table: directors

(0, ’DIRECTORS_NAME’, ’VARCHAR(50)’, 0, None, 0)

3

(1, ’ID’, ’VARCHAR(50)’, 0, None, 0)

(2, ’Age’, ’INTEGER’, 0, None, 0)

Table: movies

(0, ’Title’, ’VARCHAR(50)’, 0, None, 0)

(1, ’ID’, ’VARCHAR(50)’, 0, None, 0)

(2, ’year’, ’INTEGER’, 0, None, 0)

The following is the pseudocode of the entire process from getting user query to giving the

answer to the user.

Code: Fetch the database schema

question = input("Which movies are directed by Satyajit Ray?"

↪→)

schema = get_sqlite_schema(db_path)

prompt = f"""You are a SQL expert. Given an input question :

↪→ {question}, create a syntactically correct SQL query to

↪→ run and return ONLY the generated Query and nothing else

↪→ . Unless otherwise specified, do not return more than {

↪→ top_k} rows.

Here is the relevant table info:{schema}"""

sqlquery = LLM.run(prompt)

The LLM returns the SQL ”””SELECT Title FROM movies

WHERE ID IN (SELECT ID

FROM directors

WHERE DIRECTORS NAME = ’Satyajit Ray’)”””. Then we execute this SQL query to

get the following result:

(’Pather Panchali’,), (’Charulata’,), (’Aparajito’,), (’Hirak Rajar Deshe’,)

4

But if the user asks the question ”Which movies are directed by satyajit ray?” then the generated

SQL query is ”””SELECT Title FROM movies WHERE ID IN (SELECT ID FROM

directors WHERE DIRECTORS NAME = ’satyajit ray’);”””

When this query is executed it retrieves no data from the database because in the subquery the

matching condition is ”WHERE DIRECTORS NAME = ’satyajit ray’”, but in the Table 1.2, in

DIRECTORS NAME column the directors name is written as ”Satyajit Ray”

That means user have to rightly spell, and they have to mention upper case or lower case

words accurately. Which is too much demand from the user, when we know that user may not

have accurate information about the database entries. To address the this issue, we will take

help of a vector database. We will create possible user query and SQL query pair that covers

overall information about all unique database entries in each column. Then whenever a user

query comes, we retrieve most similar 10 pairs based on the dense vector similarity measure

between the user query and the queries in the vector database. These 10 similar pairs along

with the user query is then sent to the LLM. Based on this information the LLM then generates

the SQL query. More details regarding this is given in section 3.

1.2 Problem Statement

To generate a SQL query the LLM is given the user query and the schema of the database.

By the discussion in section 1.1, we have the following issues:

(1) Giving away the whole schema of the database means giving a lot of information to the

language model. Can we do the same by giving less information?

(2) The SQL query depends on user query. If the user asks ”What movies are directed by

Satyajit Ray?”, then the LLM generates SELECT Title FROM movies WHERE ID IN (

SELECT ID FROM directors WHERE DIRECTORS NAME = ’Satyajit Ray’), but when

user asks ”What movies are directed by satyajit ray?”, then the generated SQL is SELECT

5

Title FROM movies WHERE ID IN (SELECT ID FROM directors WHERE DIRECTORS

NAME = ’satyajit ray’). Here in lies another problem, because in the DIRECTORS Name

column, the name may be saved as ”Satyajit Ray”. In that case when the user asks the

”What movies are directed by satyajit ray?”, the generated SQL query is wrong.

1.3 Research Objectives

We will try to address the following issues:

• To develop methods for generating SQL queries without providing the database schema,

thereby minimizing the exposure of sensitive data.

• To address the challenge of generating accurate WHERE clause conditions in SQL queries(e.g.

WHERE Director = ”Satyajit Ray” / WHERE Director = ”satyajit ray”), which often re-

quire exact string matching, even when the complete schema is available. This research

aims to propose solutions to improve the precision and reliability of these conditions.

6

Chapter 2

Literature Overview

2.1 Context Windows

The extent of text that an LLM can ”see” at any given moment is referred to as its context win-

dow. In LLMs, text is divided into units called tokens, which can range from single characters

to whole words. The size of a model’s context window [5] determines the number of tokens

it can process at once. Consequently, a larger context window allows the model to consider

more tokens, enhancing its understanding of the text and enabling it to generate responses that

are more coherent and contextually appropriate. So, basically context window is the number

of tokens the LLM can handle at one go. That means the total number of tokens in prompt

+ total number of tokens in generated answer = Length of context window. So, we need

to be very careful about prompt designing. If the prompt is too long then the generated answer

will be short, hence may be the answer is not good enough. Since, for big database the schema

size will be very big. So, sending the schema will cost a lot of tokens, hence the leverage to put

our specific instruction in the prompt will be comprised and if the prompt length is more than

context window, then LLM will be unable to process it, hence will give error.

7

2.2 Prompt

A prompt [1] is a piece of text provided to an AI model to guide its response or output. It sets

the context and indicates what type of information or action is required from the model.

Prompts are used to initiate the model’s text generation process. They help the model un-

derstand the task at hand, whether it is answering a question, completing a sentence, translating

text, or generating creative content. To understand the effect of prompts [4] on LLM’s output

see the picture below.

Figure 2.1: An illustration showing general prompt on the left and a specific and precise prompt
on the right, generated by GPT-4o

2.3 Prompt Principles and Guides

Bsharat et.al. [6] tabulate 26 ordered prompt principles, which can further be categorized into

five distinct categories, as shown in the table below.

• Prompt Structure and Clarity: Integrate the intended audience in the prompt.

• Specificity and Information: Implement example-driven prompting (Use few-shot prompt-

ing)

• User Interaction and Engagement: Allow the model to ask precise details and require-

ments until it has enough information to provide the needed response.

8

• Content and Language Style: Instruct the tone and style of response.

• Complex Tasks and Coding Prompts: Break down complex tasks into a sequence of

simpler steps as prompts.

9

Category Principles
Prompt Structure
and Clarity

Integrate the intended audience in the prompt.
Employ affirmative directives such as ‘do’ while steering clear of nega-
tive language like ‘don’t’.
Use Leading words like writing “think step by step.”
Use output primers, which involve concluding your prompt with the
beginning of the desired output.
Use Delimiters.
When formatting your prompt, start with ‘###Instruction###’, followed
by either ‘###Example###’ or ‘###Question###’ if relevant. Subse-
quently, present your content. Use one or more line breaks to separate
instructions, examples, questions, context, and input data.

Specificity and
Information

Implement example-driven prompting (Use few-shot prompting).

When you need clarity or a deeper understanding of a topic, idea,
or any piece of information, utilize the following prompts:
o Explain [insert specific topic] in simple terms.
o Explain to me like I’m 11 years old.
o Explain to me as if I’m a beginner in [field].
o “Write the [essay/text/paragraph] using simple English like you’re
explaining something to a 5-year-old.”

Add to your prompt the following phrase “Ensure that your answer is
unbiased and avoids relying on stereotypes.”
To write any text intended to be similar to a provided sample, include
specific instructions:
o “Use the same language based on the provided paragraph [/title/tex-
t/essay/answer].”
When you want to initiate or continue a text using specific words,
phrases, or sentences, utilize the provided
prompt structure: o I’m providing you with the beginning [song lyrics/s-
tory/paragraph/essay...]: [Insert lyrics/words/sentence]. Finish it based
on the words provided. Keep the flow consistent.
Clearly state the model’s requirements that the model must follow in
order to produce content, in form of the keywords, regulations, hint, or
instructions.
To inquire about a specific topic or idea and test your understanding g,
you can use the following phrase :
o “Teach me the [Any theorem/topic/rule name] and include a test at the
end, and let me know if my answers are correct after I respond, without
providing the answers beforehand.”
To write an essay/text/paragraph/article or any type of text that should
be detailed:
o “Write a detailed [essay/text/paragraph] for me on [topic] in detail by
adding all the information necessary.

Table 2.1: Prompt Principle Categories [6]

10

Category Principles
User Interaction
and Engagement

Allow the model to elicit precise details and requirements from you by
asking you questions until he has enough information to provide the
needed output
o “From now on, I would like you to ask me questions to ...”

To write an essay /text /paragraph /article or any type of text that should
be detailed: “Write a detailed [essay/text/- paragraph] for me on [topic]
in detail by adding all the necessary information.”

Content and Lan-
guage Style

To correct/change specific text without changing its style: “Try to revise
every paragraph sent by users. You should only improve the user’s
grammar and vocabulary and make sure it sounds natural. You should
maintain the original writing style, ensuring that a formal paragraph
remains formal.”

Incorporate the following phrases: “Your task is” and “You MUST.”
Incorporate the following phrases: “You will be penalized.”
Assign a role to the language model.
Use the phrase “Answer a question given in natural language form” in
your prompts.
No need to be polite with LLM so there is no need to add phrases like
“please”, “if you don’t mind”, “thank you”, “I would like to”, etc., and
get straight to the point.

Repeat a specific word or phrase multiple times within a prompt.
Add “I’m going to tip $xxx for a better solution!”

Complex Tasks
and Coding
Prompts

Break down complex tasks into a sequence of simpler prompts in an
interactive conversation.
When you have a complex coding prompt that may be in different files:

o “From now and on whenever you generate code that spans more than
one file, generate a [programming language] script that can be run to
automatically create the specified files or make changes to existing files
to insert the generated code. [your question].”

Combine Chain-of-thought (Cot) with few-shot prompts.

Table 2.2: Prompt Principle Categories [6]

11

2.3.1 Zero-Shot Experiments

In the realm of text-to-SQL parsing, in-context learning has demonstrated promising results.

Current in-context learning approaches, such as those by Tai et all [7], frequently utilize tech-

niques like chain-of-thought (COT) prompting [6],[2] to tackle complex text-to-SQL tasks. Our

experiments employing single-step COT with GPT-3.5 reveal that, while COT can somewhat

broaden the problem-solving capabilities of large language models (LLMs), the effectiveness

of these single-step prompts remains constrained. Specifically, instructions embedded within

lengthy prompts are often overlooked due to the LLM’s attention being spread thinly across the

extensive text. Furthermore, enhancing prompt text typically leads to a seesaw effect, compli-

cating the improvement of overall performance, as enhancements are not consistently effective

across different types of problems.

Here is an high level overview of how a Chain of Thought prompt [2],[6],[7] looks like:

• Understand the Goal

(1) The goal is to retrieve specific information ([desired columns]) from the [table name]

table

(2)We need to apply a condition ([condition]).

• Identify the Relevant Table and Columns

(1) Table: [table name].

(2) Columns: [desired columns].

• Construct the Base Query

(1)Start with selecting the necessary columns:SELECT [desired columns] FROM [table

name]

• Add the Condition

(1)We need to filter rows based on the condition ([condition])

12

(2)Use the appropriate SQL syntax to specify the condition.

• Complete the SQL Query

(1) Combine all parts to form the final query: SELECT [desired columns] FROM [table

name] WHERE [condition];

2.3.2 Limitations of Zero-Shot Learning

One significant drawback of zero-shot learning in SQL query generation is its limited efficacy

with complex queries. The core issue lies in field matching accuracy. For instance, consider

the query: ”What movies are directed by Satyajit Ray?”. The correct SQL query could either

be: ”SELECT Title FROM DIRECTORS TABLE WHERE Director = ’Satyajit Ray’” or ”SE-

LECT Title FROM DIRECTORS TABLE WHERE Director = ’satyajit ray’”.

The model lacks knowledge about the specific entries within the database columns, making it

highly dependent on the user’s input query. For example, if the user inputs, ”What movies are

directed by Satyajit Ray?”, the generated query will be:

”SELECT Title FROM DIRECTORS TABLE WHERE Director = ’Satyajit Ray’”.

Conversely, if the user inputs, ”What movies are directed by satyajit ray?”, the generated query

will be:

”SELECT Title FROM DIRECTORS TABLE WHERE Director = ’satyajit ray’”.

This dependence on exact user input highlights a significant limitation: the user must possess

knowledge of the precise database entries. This requirement undermines the user-friendliness

and practicality of zero-shot learning for SQL query generation, especially for users unfamiliar

with the specific data formatting within the database.

2.3.3 Few-Shot Prompt

Few-shot prompting [1] involves providing a model with a prompt (in-context learning) along

with a few task-related examples to guide the model towards better performance. This tech-

13

nique allows the model to learn quickly and generalize across various tasks.

A major advantage of few-shot prompting is its efficiency in using limited annotated data,

as opposed to requiring large datasets for training. This method supports rapid prototyping and

deployment of NLP systems, making it highly suitable for industry applications. Additionally,

it enables the model to continually learn and adapt with minimal supervision, further enhancing

its capabilities.

2.3.4 Few Shot Improvement

In the context of text-to-SQL tasks, few-shot prompting improved over zero-shot prompting

due to several key factors:

1. Contextual Understanding:

• Zero-shot prompting requires the model to generate SQL queries without any specific

examples related to the task. The model relies solely on its pre-trained knowledge and

the provided prompt, which can be challenging for complex or ambiguous queries.

• Few-shot prompting, on the other hand, provides the model with a few examples of input-

output pairs. These examples help the model understand the specific format and structure

expected for the task, enhancing its ability to generate accurate SQL queries.

2. Pattern Recognition:

• With few-shot examples, the model can recognize patterns in the examples provided.

This helps it understand how to map natural language questions to SQL queries more

effectively.

• Zero-shot scenarios, the model has to infer the required patterns and mappings from

scratch, which can lead to more errors and less accurate query generation.

3. Clarification of Ambiguities:

14

• Text-to-SQL tasks often involve understanding the schema of the database and the re-

lationships between tables. Few-shot prompting provides explicit examples of how to

handle specific database schemas, reducing ambiguity.

• Without examples, zero-shot models may struggle to correctly interpret and generate

queries for unfamiliar or complex schemas.

4. Learning from Similar Cases:

• Few-shot prompting leverages similar cases to illustrate the correct approach to the task.

This helps the model generalize better to new but similar queries by drawing parallels

from the provided examples.

• zero-shot prompting, the model has no such references, making it harder to generalize

accurately from its pre-existing knowledge.

2.3.5 Limitations of Few Shot

While few-shot learning enhances performance in text-to-SQL tasks, several challenges remain.

The problem of exact string matching in the WHERE clause has seen improvement; the model,

informed by few-shot examples, can recognize specific entries. However, two significant issues

persist.

Firstly, the model continues to generate incorrect queries for complex and vague user ques-

tions. This issue arises because intricate queries and the diverse nature of user inquiries demand

extensive knowledge about the types of entries in each column. Without a comprehensive un-

derstanding of the database entries, the model struggles to accurately interpret and construct

the necessary SQL queries.

Secondly, determining the optimal number of examples to include in the prompt poses a

challenge. The context window of large language models (LLMs) limits the number of exam-

ples that can be effectively used. This limitation restricts the model’s ability to fully grasp the

15

diversity of potential queries, thereby impacting its performance.

Addressing these issues is crucial for further advancing the effectiveness of few-shot learn-

ing in text-to-SQL applications.

16

Chapter 3

Method

To address the aforementioned issues, we adopted a novel approach that diverges from the tradi-

tional methods discussed earlier and in the literature. Instead of directly providing the database

schema to the model for SQL generation, we implemented a dynamic few-shot learning tech-

nique enhanced with vector search. The steps of our approach are as follows:

(i) Generating Query-Response Pairs: We created possible pairs of user queries (τ) and

corresponding SQL queries (σ). These pairs were generated in a manner that ensured the

coverage of unique column entries.

(ii) Populating the Vector Database: The generated (τ, σ) pairs were stored in a vector

database.

(iii) Retrieving Similar Pairs: When a user submits a query, the system retrieves the top 10

most similar (τ, σ) pairs from the vector database based on the query.

(iv) Informing SQL Generation: These retrieved pairs provide the model with sufficient

information regarding the formation of the WHERE clause in the SQL query.

By leveraging this dynamic few-shot learning approach combined with vector search, the model

gains a better understanding of the database entries and the diversity of potential queries, lead-

ing to more accurate SQL generation.

17

Generating Query-Response Pairs

Vector DB

User Query

Retrieving Similar Pairs

LLMSQL Output

Figure 3.1: Workflow Diagram

Now we will describe the above steps in detail. To understand the process of (τ, σ) pair

generation, let us consider the following example.

Building Course Teacher Floor Degree
SN Bose ML A Ghosh 9th floor M Tech 1
SN Bose ML B Ghosh 9th floor M Tech 2
SN Bose DL A Ghosh 9th floor M Tech 1
SN Bose DL B Ghosh 9th floor M Tech 2

Table 3.1: Example Database

We can clearly observe that tha table has a lot of redundant information. We don’t want

to flood the vector database with redundant information, because if there are many redundant

information then the similarity search of step (iii) will retrieve very little unique data, hence the

model will only get very little new information (knowledge about database), which is a loss of

tokens. So we carefully design some questions and their SQL query so that the query covers

almost all the unique column elements of each coloumn of the table.

Q: Classes taken by Teacher Name

Pseudocode

Unique_Teachers = [Unique Entries of The Column ’Teacher’]

qa_pair = []

18

for teacher in Unique_Teachers:

Question = f"Classes taken by {teacher}"

SQL = f"SELECT Course, Degree, Building, Floor FROM Example

↪→ Database WHERE Teacher = ’{teacher}’"

qa_pair.append(zip(Question, SQL))

In the pseudo code above only unique entries of the column ”Teacher” gets included. Only the

following two pairs will be included in the database:

1. {’Question’:’Classes taken by A Ghosh’, ’SQL’:’SELECT Course, Degree, Building, Floor

FROM Example Database WHERE Teacher = ’A Ghosh’ ’ }

2.{’Question’:’Classes taken by A Ghosh’, ’SQL’:’SELECT Course, Degree, Building, Floor

FROM Example Database WHERE Teacher = ’B Ghosh’ ’ }

Now suppose the user asks a question like: ” Which course is taught by a ghosh?”. Look that

this question is not same as any of the above two questions that we pushed into the vector

database. Another notable thing is that in the question ” Which course is taught by a ghosh?”

the teacher’s name is written as ’a ghosh’ not ’A Ghosh’. But since we perform a dense vector

vector search of user query ” Which course is taught by a ghosh?” with the questions in the

vector database. It will retrieve the pair :

{’Question’:’Classes taken by A Ghosh’, ’SQL’:’SELECT Course, Degree, Building, Floor

FROM Example Database WHERE Teacher = ’A Ghosh’ ’ }

From this example the model will be able to understand that in the ’Teacher’ column the name

of the teacher is included as ’A Ghosh’ and the columns where course details is given are named

as ’Course’, ’Degree’. Hence the model will be able to generate the following SQL query:

”SELECT Course, Degree FROM Example Database WHERE Teacher=’A Ghosh’ ”.

19

3.1 Results

We have evaluated the text to SQL generation result on WikiSQL dataset. This is the WikiSQL

Leaderboard:

Model Test Logical
Form Accuracy

SeaD +Execution-Guided Decoding (Xu 2021) (Ant Group, Ada &
ZhiXiaoBao)

87.5

SDSQL +Execution-Guided Decoding (Hui 2020) (Alibaba Group) 87.0
IE-SQL +Execution-Guided Decoding (Ma 2020) (Ping An Life, AI
Team)

87.8

Table 3.2: Test Logical Form Accuracy for Various Models

The top two models [9],[3] of the leader board both uses schema aware learning. With

schema aware learning approach they achieve those results. But our approach is different due

to the fact that since we are using pretrained models, that may not be an exact fit for our specific

use case. So, we cannot totally rely on the model also, due to the fact that we have no control

over users query. So, adding question, SQL pair to database gives us some control over the

failed queries. Because, monitoring the failed queries we can add some more examples on the

database to handle that type of queries.

WikiSQL dataset has train, validation and test split. Train split contains 56355 question, SQL

pair. Which we have pushed into database. Validation split contains 8421 question, SQL pair.

Since in our case we don’t train a model and no need of hyperparameter tuning we omit this

split. Test split contains 15878 question, SQL pair. For each question in test split, we retrieve

10 most related sample question sql pair of the train split, and based on that the model generates

a SQL query.

We want to evaluate the accuracy of SQL generation. Now the same SQL query can be written

in different ways. So, it is very time consuming for human evaluation of SQL generation for

a dataset of length 15878. So, we leverage the code understanding and reasoning capability of

GPT-4 to measure the quality of generated SQL against the given sql in the dataset and assign

20

a score between 0 and 1.This gives us the following result.

We are able to reach test logical form accuracy of 85.56%.

21

Chapter 4

Conclusion & Future Works

4.1 Conclusion

Although we have not yet surpassed the top results on the leaderboard, our performance is very

close. More importantly, we have successfully addressed a significant issue that previously

affected our results. We now have the capability to monitor which types of user queries are

failing. Based on this analysis, we can add specific (τ, σ) pairs to our database, thereby im-

proving our model’s accuracy. This capability is particularly vital for enterprises like ours that

prioritize serving their users effectively.

4.2 Future Works

Our approach primarily aims to address two issues: (1) minimizing the exposure of sensitive

data, such as schema information, and (2) generating accurate WHERE clause conditions in

SQL queries. We have made significant progress in addressing the second issue. Although we

do not provide the complete database schema, we include some column entries for the model.

However, without the full schema, these column entries may lack context, which means data

leakage is not completely mitigated. To fully address this problem, we propose using masking

or cryptographic techniques to protect sensitive information while still enabling the model to

generate accurate SQL queries.

22

Bibliography

[1] Prompt engineering. https://en.wikipedia.org/wiki/Promptengineering.

[2] Rishi Bommasani Colin Raffel Barret Zoph Sebastian Borgeaud Dani Yogatama Maarten

Bosma Denny Zhou Donald Metzler et al. ason Wei, Yi Tay. Emergent abilities of large

language models. https://openreview.net/pdf?id=yzkSU5zdwD, 2022.

[3] Ruiying Geng Binhua Li Yongbin Li † Jian Sun Alibaba Group Binyuan

Hui , Xiang Shi. Improving text-to-sql with schema dependency learning.

https://arxiv.org/pdf/2103.04399, Dec 10, 2021.

[4] Jules S. Damji. Best prompt techniques for best llm responses. The Modern

Scientist, https://medium.com/the-modern-scientist/best-prompt-techniques-for-best-llm-

responses-24d2ff4f6bca, Feb 12, 2024.

[5] Chandler K. Context windows: The short-term memory of large language mod-

els. Medium, https://medium.com/@crskilpatrick807/context-windows-the-short-term-

memory-of-large-language-models-ab878fc6f9b5, Nov 4, 2023.

[6] Zhiqiang Shen Sondos Mahmoud Bsharat, Aidar Myrzakhan. Principled instructions are

all you need for questioning llama-1/2, gpt-3.5/4. https://arxiv.org/pdf/2312.16171, 18

Jan 2024.

[7] Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, and Huan Sun. Exploring chain-

of-thought style prompting for text-to-sql. 2023. https://arxiv.org/abs/2305.14215.

23

[8] Richard Socher Victor Zhong, Caiming Xiong. Generating structured queries from natural

language using reinforcement learning. https://arxiv.org/pdf/1709.00103, 2017.

[9] Kuan Xu, Yongbo Wang, Yongliang Wang, Zujie Wen, and China Yang Dong Ant

Group Hangzhou. Sead: End-to-end text-to-sql generation with schema-aware denois-

ing. https://arxiv.org/pdf/2105.07911, Jan 30, 2023.

[10] Qinggang Zhang2 Hao Chen2 Junnan Dong2 Feiran Huang1 Zijin Hong1, Zheng Yuan2

and Xiao Huang2. Next-generation database interfaces: A survey of llm-based text-to-sql.

https://arxiv.org/pdf/2406.08426, 2024.

24

	Introduction
	Background
	Problem Statement
	Research Objectives

	Literature Overview
	Context Windows
	Prompt
	Prompt Principles and Guides
	Zero-Shot Experiments
	Limitations of Zero-Shot Learning
	Few-Shot Prompt
	Few Shot Improvement
	Limitations of Few Shot

	Method
	Results

	Conclusion & Future Works
	Conclusion
	Future Works

