
SECURELY SEARCH ON ENCRYPTED DATA

Final Thesis submitted to the

Indian Statistical Institute, Kolkata

For award of the degree

Master of Technology in Cryptology & Security

by

Soumyadip Guria

(Roll No. CrS2216)

Under the guidance of

Primary Supervisor: Captain Ritesh Wahi

DDG(HOD), WESEE, Ministry of Defence

Co Supervisor: Lt. Cdr. Keval Krishan

SM, WESEE, Ministry of Defence

Secondary Supervisor: Dr. Mriganka Mandal

Assistant Professor

Cryptology & Security Research Unit (CSRU)

Indian Statistical Institute, Kolkata

to

CRYPTOGRAPHY & SECURITY RESEARCH UNIT

INDIAN STATISTICAL INSTITUTE

DECLARATION

I, Soumyadip Guria (Roll No: CrS2216), hereby declare that, this report

entitled “Securely Search on Encrypted Data” submitted to Indian Statistical

Institute, Kolkata towards the fulfilment of the requirements for the degree of Mas-

ter of Technology in Cryptography & Security, is an original work carried out

by me under the supervision of Captain Ritesh Wahi, Lt. Cdr. Keval Krishan

and Dr. Mriganka Mandal and has not formed the basis for the award of any

degree or diploma, in this or any other institution or university. I have sincerely tried

to uphold academic ethics and honesty. Whenever a piece of external information or

statement or result is used then, that has been duly acknowledged and cited.

Kolkata - 700 108 Soumyadip Guria

August 2024

ii

Sourin

Sourin

Sourin

Sourin

Sourin

Certificate

This is to certify that the work contained in this project report entitled ”Securely Search on Encrypted

Data” submitted by Soumyadip Guria (Roll No. CrS2216) to the Indian Statistical Institute, Kolkata

towards the fulfilment of the requirements for the degree of Master of Technology in Cryptology &

Security has been carried out by him under my supervision and that it has not been submitted elsewhere

for the award of any degree.

Captain Ritesh Wahi

Primary Supervisor

DDG(HOD), WESEE, Ministry of Defence

Dr. Mriganka Mandal

Internal Supervisor

CRSU, ISI Kolkata

iii

ACKNOWLEDGEMENT

I thank everyone who has assisted me in seeing this project through to its

completion. I would like to first express my profound gratitude and deepest regards

to my Guides, WESEE and ISI Kolkata, and sincerely wish to acknowledge their

vision, guidance, valuable feedback and constant support throughout this project.

I am indebted to my friends for their steadfast encouragement and time. I am

lastly grateful to the Indian Statistical Institute, Kolkata for providing the

necessary resources and facilities to complete this project to the best of my ability.

WESEE, New Delhi - 110066 Soumyadip Guria

August 2024

iv

ABSTRACT

In our usual life, data is all around us, everywhere we look! Now a days every

individuals and organizations continue to generate, store, and share vast amounts

of data and as a result the role of cloud storage becomes important to us. In the

context of cloud computing, where vast amounts of data are stored and processed

remotely, ensuring the privacy and security of sensitive information becomes even

more challenging. Traditional approaches to data storage and retrieval often

require decrypting the data on the cloud server, which introduces the security

concerns of the data. One promising solution to address this concern is to enable

secure search operations on data that is stored in the cloud in an encrypted form.

Implementing a searchable encryption scheme using Homomorphic Encryption

(HE) allow users to perform searches on encrypted data without compromising its

confidentiality. By developing such a scheme, this thesis aims to contribute to the

advancement of privacy-preserving data management in cloud environments.

With HE, complex mathematical operations can be conducted on ciphertexts,

preserving the privacy of the underlying data throughout the computation. This

opens up a path for searching and retrieving data from an encrypted dataset, as it

enables to operate directly on encrypted inputs and produce encrypted outputs,

thereby ensuring end-to-end data confidentiality. However, the adoption of HE on

encrypted data is not without its challenges. The computational overhead

associated with HE operations, coupled with performance limitations, poses

significant obstacles to scalability and efficiency.

In light of these considerations, the aim of this thesis is to build a practical scheme

using Homomorphic Encryption (HE) for encrypted searching. By investigating the

applications, challenges, and potential contributions of HE in secure search

v

operations, this research endeavors to advance our understanding of

privacy-preserving data management and pave the way for practical

implementations in real-world scenarios.

Keywords:

Fully Homomorphic Encryption(FHE), Order Preserving

Encryption(OPE), Fully Homomorphic Order Preserving

Encryption(FHOPE)

vi

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Conventional Cryptography . 1

1.2 Cloud Computing . 2

1.3 Problem Statement . 3

1.4 Organization of Dissertation . 4

2 Homomorphic Encryption 5

2.1 Types of Homomorphic Encryption 6

2.2 Hard Problems . 8

vii

3 Order Preserving Encryption 10

3.1 Definitions . 10

3.2 Notion of security for OPE . 11

4 Literature Survey 13

4.1 CryptDB . 14

4.1.1 How it actually works? . 15

4.1.2 Problems . 17

5 Fully Homomorphic Order Preserving Encryption Scheme 18

5.1 FHOPE . 18

5.2 Security of FHOPE . 19

6 Our Work 21

6.1 Encryption Scheme Details . 23

6.2 Using FHOPE to Database Server . 25

7 Conclusion and Future Work 30

viii

List of Figures

2.1 Concept of Homomorphic encryption. 5

2.2 Homomorphic Encryption with Asymmetric keys. 6

4.1 CryptDB setup. 14

4.2 Onion encryption layers and the classes of computation they allow. . 15

6.1 Setup. 22

ix

List of Tables

4.1 Dataset . 16

4.2 Encrypted dataset(not completed) . 16

4.3 Encrypted dataset(not completed) . 16

x

Notations and Abbreviations
RND: Randomized

DET: Deterministic

Zq: Set of all integers modulo q

Z: Set of all integers

Z[X]: Polynomial ring over Z
R←−: Randomly chosen

xi

Chapter 1

Introduction

As technology is evolving rapidly, the volume of data stored, generated and

transmitted is increasing exponentially day by day. As the amount of data grows

the concern about the security of data also increases. As a result, cryptography is

also gaining more attention day by day.

1.1 Conventional Cryptography

There are mainly two types of encryption schemes in cryptography. One is

Symmetric encryption and another one is Asymmetric encryption.

1. Symmetric key cryptography uses only one key for encryption and

decryption. Here the key is shared beforehand between sender and receiver in

some way and no person other than the sender and receiver knows the key. A

1

symmetric encryption scheme is a three-tuple of algorithms (KeyGen, Enc,

Dec) defined over a three-tuple of spaces (P , C,K), where

• P : Plaintext Space.

• C: Ciphertext Space.

• K: Key Space.

• KeyGen: The Key-Generation Algorithm, a probabilistic algorithm that

outputs a key k from K chosen according to some distribution.

• Enc: The Encryption Algorithm, Enc : K × P → C Enc(k,m) = c

where k ∈ K, m ∈ P , c ∈ C.

• Dec: The Decryption Algorithm, Dec : K × C → P Dec(k, c) = m

where k ∈ K, m ∈ P , c ∈ C

2. Asymmetric key cryptography uses different keys for encryption and

decryption. Each user has a public key and private key pair called (pk, sk).

Anybody can encrypt a message using public key(pk) of the receiver as

c←− Enc(pk,m). Only receiver can decrypt it using its own private key(sk)

as m←− Dec(sk, c).

1.2 Cloud Computing

Nowadays cloud computing started to gain an enormous amount of attention. Since

cloud providers give nearly unlimited storage and computational power at very low

cost, today most of the companies, hospitals and individual users outsource their

data to the cloud providers. But there might be a huge amount of sensitive data

2

like medical records of patients, credit card details etc becomes available to

everyone. Since our assumption is that the cloud service providers are honest but

curious[8], we need to encrypt the sensitive data before uploading the data to the

cloud server. But if encrypted data are uploaded to the cloud server many

problems arise. Suppose the data owners want some of their data from a cloud

database, then the cloud has to decrypt all the data to give a reply. But this also

concerns security and a tremendous amount of computation cost because every

time it has to decrypt the whole dataset. One solution might be executing SQL

queries over the encrypted data in the cloud. However, encrypted data are not easy

to handle. When FHE was first introduced it opened up many paths in this field

because FHE allows to do computation over encrypted data.

Till date, many FHE schemes and OPE schemes have been proposed. However,

FHE schemes are impractical for both cloud environments and end-parties because

of their significant computational burden[14]. The OPE schemes disclose orders of

the plaintext and some other private informations near to the cloud providers that

allow SQL range queries.

1.3 Problem Statement

Given a large encrypted dataset uploaded in a cloud server, design a scheme for

performing SQL queries over that encrypted dataset.

3

1.4 Organization of Dissertation

• Chapter 2 describes about homomorphic encryption, types of homomorphic

encryption and its applications.

• Chapter 3 describes about order preserving encryption and security of order

preserving encryptions.

• Chapter4 describes some related work about the query over encrypted

dataset.

• Chapter 5 describes about fully homomorphic order preserving encryption

and security of it.

• Chapter 6 describes about the details of this thesis and its implementation.

• Chapter 7 describes some future prospective of this area.

4

Chapter 2

Homomorphic Encryption

Homomorphic encryption is one special type of encryption which allows the

computations to be performed on encrypted data without needing to decrypt it

first. This concept is often regarded as the Holy Grail in the field of cryptography.

Suppose we have a homomorphic cryptosystem and using that we have encrypted

two integers. According to Fig 2.1, 10 and 15 are encrypted. Now when these two

ciphertexts are added to give a new ciphertext, the resultant ciphertext when

decrypted will be equal to the sum of plaintext integers(in this case 25).

Figure 2.1: Concept of Homomorphic encryption.

5

Figure 2.2: Homomorphic Encryption with Asymmetric keys.

2.1 Types of Homomorphic Encryption

There are various kinds of homomorphic encryption based on their properties.

• Somewhat Homomorphic Encryption(SHE): Some homomorphic encryption

schemes support a limited number of additions and multiplications on

ciphertexts. These type of homomorphic encryption schemes are called

Somewhat Homomorphic Encryption schemes.

• Partially Homomorphic Encryption(PHE): The homomorphic encryption

schemes that allows only a single type of operation to be computed over

encrypted data, typically either addition or multiplication(eg. RSA is

partially homomorphic that allows to do multiplication on encrypted data)

are called Partially Homomorphic Encryption schemes. However PHE

6

schemes have inherent limitations.. If a PHE scheme supports only addition

and subtraction, it can compute only linear functions over its input, as a

result this is not useful for general purposes.

• Fully Homomorphic Encryption(FHE): HE schemes that supports both ring

addition and multiplication over encrypted data are called FHE.

• Levelled FHE : Some FHE schemes support unlimited number of additions

but only limited number(this is predefined) of multiplication. These type of

FHE schemes are known as levelled FHE schemes.

• Unqualified FHE: FHE schemes that support any number of addition and any

number of multiplication on encrypted data are called unqualified FHE

schemes.

• Multi-hop Homomorphic Encryption: In some cases, the result of the Eval

algorithm can be used as an input for another homomorphic computation.

These type of homomorphic encryption schemes are called multi-hop

homomorphic encryption scheme.

In 2009, Gentry[6] introduced the first practical schemes for Unlimited FHE by

employing a technique known as bootstrapping. The essential concept of

bootstrapping is to execute the decryption algorithm on a ciphertext within a

leveled FHE framework. This effectively ”refreshes” the ciphertexts which means

the process removes the restrictions on the computations that can be carried out on

encrypted data. However, bootstrapping is quite resource-intensive, as it requires

converting each homomorphic operation into a substantial bootstrapping task.

7

2.2 Hard Problems

There are lots of mathematical NP-hard problems on which the security of FHE

schemes lies. In this section, some hard problems will be discussed.

• Approximate GCD: Approximate Greatest Common Divisor(GCD)

remains a complex task among the classes of symbolic-numeric algorithms.

Different methods try to provide the closest approximate solution and the

subsequent improvement on the degree of precision and accuracy of this

solution. This is used to find the GCD of the numbers a and b which are the

approximation of two given numbers a0 and b0.

• Algebraic Number Theory(ANT): ANT is the field known to specialize

in the area of algebraic structures of Integers. Suppose there is a ring O of

algebraic integers within an algebraic number field. In this branch we looks

into diverse features of this ring, such as behaviour of its ideals, factorization,

field extensions etc.

• Sparse Subset Sum Problem: This is a very important problem in the

context of theory of complexity and cryptography. The problem involves

identifying a non-empty subset from a given set of integers that sums to zero.

For example, in the set {-5, -4, -2, 5, 1}, there exists a subset {-5, 5} whose

sum is equal to zero. So in this case the answer is yes. This problem is

classified as NP-complete.

• Learning with Error (LWE): Regev introduced the Learning with

Errors(LWE)[12] problem and showed that, on average, it is as challenging as

8

solving multiple lattice problems that are standardized, in the worst-case

scenario, even with quantum capabilities. LWE forms the basis of several

cryptographic constructions. It can be viewed as a noisy generalization of the

hidden lattice problem.

Definition 2.1 (Learning With Errors). Let s ∈ Zn
q be a secret vector and let

A ∈ Zn×m
q be a uniformly random matrix. For integers q = q(n) ≥ 2 and a

noise distribution χ = χ(n) over Zq, the LWE problem is to distinguish

between the following two distributions:

{A,AT s+ e} and {A,u},

where m = poly(n), e← χm, and u← Zm
q . We refer to the m columns of the

matrix A as the LWE sample points.

9

Chapter 3

Order Preserving Encryption

Order-preserving encryption (OPE) is a deterministic method of encrypting data

where the encryption process maintains the original numerical order of the

plaintext values. A more formal exploration of the concept of order-preserving

symmetric encryption (OPE) was introduced in the database community by

Agrawal et al [1]. This kind of encryption scheme gains more limelight because

they allow efficient range queries on encrypted data.

3.1 Definitions

Definition 3.1 (Order Preserving Function). Let f be a function from X to Y

where X ,Y ⊆ N with |X| ≤ |Y|. The function f is said to be order preserving or

strictly increasing if f(i) > f(j) ⇐⇒ i > j for all i, j ∈ X .

10

Definition 3.2. Let ε = (KeyGen, Enc, Dec) be a symmetric encryption scheme

with plaintext and ciphertext-spacesM, C. We say that the scheme is an order

preserving encryption scheme if Enc(k, ·) is an order-preserving function fromM

to C for all k ∈ K where K is the key space.

3.2 Notion of security for OPE

Since OPE schemes are deterministic and it also leaks the order-relations among

the plaintexts, it cannot satisfy all the standard notions of security, such as

indistinguishability against chosen-plaintext attack (IND-CPA). So the concept of

IND-CPA security is weakened a little bit for this kind of encryption schemes.

Weaking IND-CPA security: In the context of deterministic symmetric

encryption, a new concept known as indistinguishability under distinct

chosen-plaintext attack (IND-DCPA) has been introduced, as formalized by[2]. The

core idea is that because deterministic encryption schemes reveal equalit of

plaintext, the adversary in the IND-CPA experiment must make only distinct

queries. Specifically, if the adversary makes queries (m1
0,m

1
1), ..., (m

q
0,m

q
1), it must

ensure that m1
b ,m

2
b , ...,m

q
b are all distinct for b ∈ {0, 1}.

Similarly, any Order-Preserving Encryption (OPE) scheme inherently leaks the

order relations among the plaintexts. To address this, the approach should be

generalized. Furthermore, the queries made by the adversary must satisfy

mi
0 < mj

0 ⇐⇒ mi
1 < mj

1 for all 1 ≤ i ≤ q. An adversary meeting these criteria is

termed an IND-OCPA adversary, reflecting indistinguishability under ordered

chosen-plaintext attack. However, IND-OCPA is not particularly useful since an

11

OPE scheme can only achieve IND-OCPA if its ciphertext space is extraordinarily

large, on the order of being exponential in the size of the plaintext space.

12

Chapter 4

Literature Survey

Recently there has been considerable research focus on ensuring the data security

and processing them in encrypted format in cloud database environment. Many

cryptographic techniques have been developed like FHE, multi party

computation(MPC) etc. When Gentry proposed unlimited FHE schemes[6], it

opens up many paths since the FHE supports computations over encrypted data.

After that many improvements[15, 4, 13, 5] have been made to boost the

performance. But, due to the low efficiency of current Fully Homomorphic

Encryption (FHE) schemes, they are not practical for real-world applications.

Various solutions have been suggested for performing queries on encrypted

database [7, 10]. H. Hacigumus et al. proposed one of the most fundamental

solution for performing queries on a database that is stored in encrypted format in

[7]. It does the encryption of data at tuple level, and then used a set of

attributes(predefined) in queries. But the first practically possible system for

processing queries over the encrypted database is CryptDB [11].

13

4.1 CryptDB

In this system, there are three components namely user, proxy server and the

server where the encrypted data is stored. The basic protocol of cryptdb is when a

user does a query, the proxy server intercepts it. Then the proxy server rewrites the

query and send the query to the server. The server executes the modified query

and sends the encrypted result to the proxy server. Proxy decrypts it and sends the

result to user. The workflow is also described in the Figure 4.1. The DBMS server

never receives decryption keys to the plaintext so it never sees sensitive data, so a

curious database adversary cannot gain access to private information.

Figure 4.1: CryptDB setup.

14

4.1.1 How it actually works?

CryptDB divides the SQL queries in different types eg. equality query, range query,

search query etc and it uses different onion layer encryptions for queries on

encrypted dataset One more thing is it uploads the whole encrypted dataset for

each type of query.

Encryption adjustment: It uses different layers of encryption for encrypting the

whole dataset. For equality and range queries it uses one deterministic encryption

scheme as first layer and a randomized encryption scheme as its second layer as

described in Figure 4.2. Whenever user does a query, proxy intercepts it and does

the following:

• Strip off layers of onions(Proxy gives keys to server using a SQL user defined

function and Proxy remembers onion layer for columns.)

• Do not put back onion layers.

Figure 4.2: Onion encryption layers and the classes of computation they allow.

15

Example: Suppose we have a dataset 4.1 containing 3 columns ’Rank’, ’Name’

and ’Salary’.
Rank Name Salary
CEO
Worker

Table 4.1: Dataset

Now user does a query SELECT * FROM emp WHERE Rank = ’CEO’.

Now at the cloud’s end the dataset is uploaded in encrypted format. CryptDB

encypts the dataset for each onion encryption. So the dataset at cloud is shown

below:

Col1 OnionEq Col2 OnionEq Col3 OnionEq Col1 OnionOrder ...
RND RND Search RND ...
RND RND Search RND ...

Table 4.2: Encrypted dataset(not completed)

where Col1, Col2, Col3 are the mapping of Rank, Name and Salary respectively.

OnionEq means the corresponding query is equlity query and similar for others.

Now Proxy intercepts the query and watches that it is an equality query. So Proxy

sends the following query to cloud: UPDATE table1 SET Col1 OnionEq =

DECRYPT RND(key, Col1 OnionEq). Cloud runs the query. So this query removes

the randomized layer of the column1 for equality query. As a result encryption of

that particular column becomes deterministic. So the dataset becomes

Col1 OnionEq Col2 OnionEq Col3 OnionEq Col1 OnionOrder ...
DET RND Search RND ...
DET RND Search RND ...

Table 4.3: Encrypted dataset(not completed)

16

Now Proxy send another query: SELECT * FROM table1 WHERE Col1 OnionEq

= Enc(CEO). Cloud runs the query and send encrypted result to proxy. Proxy

decrypts this and sends it to the application.

4.1.2 Problems

The scheme has the following limitations:

• It uses deterministic encryption scheme as one of its onion layer for equality

query and range query. But we know that deterministic encryption schemes

are not Chosen Plaintext Attack (CPA) Secure.

• CryptDB does not support queries that contains multiplication (eg. CryptDB

can’t be able to execute the query SELECT * FROM table WHERE atti =

100 AND atti + attj * attk > attl).

• It encrypts the whole dataset for every onion classes. For example, for range

queries it encrypts the whole dataset with OPE and for aggregate queries, it

encrypts the dataset with homomorphic encryption. This increases the overall

computation cost.

where the PRF key s is held by the server and the set of

17

Chapter 5

Fully Homomorphic Order

Preserving Encryption Scheme

5.1 FHOPE

Definition 5.1 (FHOPE). A FHOPE scheme consists of four algorithms (KeyGen,

Enc, Dec, Comp). They are described in details:

• KeyGen: sk ←− KeyGen(1λ). KeyGen takes security parameter λ as input and

outputs a private key sk.

• Enc: c←− Enc(sk, v). Enc takes the secret key sk and sensitive data v as

input and outputs the ciphertext c.

• Dec: v ←− Dec(sk, c). Dec takes the secret key sk and ciphertext c as input

and outputs the original data v.

18

• Comp: res←− HAMOE(c1, c2, ..., cn). HAMOE takes ciphertexts c1, c2, ..., cn as

input and can perform addition, multiplication, order comparison, and

equality checks over the ciphertext and then output the result of the

computation.

5.2 Security of FHOPE

Definition 5.2. We say a FHOPE scheme is IND-HOCPA secure, if for any PPT

adversary A has only a negligible advantage AdvIND−HOCPA
FHOPE,A to win in the below

game.

1. Suppose λ is the security parameter, the challenger CH runs KeyGen and

generates the key as, sk←− KeyGen(1λ).

2. The challenger CH and the adversary A interacts with each other for

polynomial number of rounds. In round i,

• the adversary A takes two messages v0i , v
1
i ∈ P randomly where |v0i | =

|v1i | where |vbi | represents the length of the message vbi and sends those

two messages to the challenger CH.

• the challenger CH randomly picks b ∈ {0, 1} and encrypts vbi using the

secret key sk and sends all the ciphertexts to the adversary A.

3. The adversary A outputs b’.

The adversary A wins the game if:

19

(i) it does correct guess(ie, b’ = b) and

(ii) the sequences {p0i }i and {p1i }i have the same order relations(ie, ∀ i, j,

p0i < p0j ⇐⇒ p1i < p1j). That is, A wins the above game if AdvIND−HOCPA
FHOPE,A (k)

is nonnegligible, where the adversary’s advantage AdvIND−HOCPA
FHOPE,A (k) is

defined as:

AdvIND−HOCPA
FHOPE,A (k) =

∣∣1
2
− Pr[win(A, k)]

∣∣
where win(A, k) is a random variable which indicates the success of the

adversary in the above game.

20

Chapter 6

Our Work

Our protocol uses a FHOPE scheme to process the encrypted data and uses hashes

and polynomials to process the equality query. This is implemented over MySQL

database server. There are three parties in this protocol. The parties are:

1. Client: Those who are interested in retrieving some data from the cloud.

2. Proxy Server: This is a trusted server. Proxy stores the secret key for

encryption and decryption. Proxy also maintains a table where it stores hash

value of all possible ”attribute = value” pairs present in the dataset and a

polynomial whose roots are the indices where that particular value is present

in that attribute. Also it stores a mapping of table name and column names.

3. MySQL database server: It stores and manages the encrypted data.

The workflow of this protocol is similar to CryptDB that is mentioned in the

section 4.1. The Workflow described in Figure 6.1 is as follows:

21

• Client does an SQL query for retrieving some data from the server.

• Whenever client does a query, proxy first intercepts the query. Then proxy

checks the type of the query.

• After checking the query it modifies the query accordingly and sends the

modified query to MySQL server.

• MySQL server runs the modified query over the encrypted dataset.

• Then the server sends the encrypted result to proxy.

• Proxy decrypts the result and send the decrypted result to client.

Figure 6.1: Setup.

22

6.1 Encryption Scheme Details

Here one Fully Homomorphic Order Preserving Encryption Scheme [9] is used to

encrypt the dataset.

The encryption scheme is described below:

• KeyGen: The KeyGen algorithm generates the secret key as:

K(n) = [k⃗1, k⃗2, . . . , k⃗n]

= [(u1, v1), (u2, v2), . . . , (un, vn)]

where (ui, vi)(1 ≤ i ≤ n) is a list of pair of large prime numbers, ui ∗ vi > 0,

n > 1, ui ̸= 0 for all i, u2 = −u1, v1 + v2 + ...+ vn−1 ̸= 0 and vn ̸= 0.

• Encryption: Encrypt the plaintext FHOPE(K(n), p) = (c1, c2, ..., cn), where

p is a plaintext; the ciphertext is a n-tuple, Each ci is defined as follows:

ci = Enci(K(n), p) +Noisei(K(n), R) + ξ

where,

Enci(K(n), p) = ui ∗ vi ∗ p

Noisei(K(n), R) =



u1p1
u2

− u1rn
un

+ r1 − pn if i = 1

uipi
ui+1

− uiri−1

un

+ ri − pi−1 if 2 ≤ i ≤ n− 1

unpn
u1

− unrn−1

un−1

+ rn − pn−1 if i = n

23

where, R = {(r1, p1), ..., (rn, pn)} is defined in a finite integer domain. The

noise function should satisfy the below condition:

0 < Noisei(K(n), R) < (Enci(K(n), p+ S)− (Enci(K(n), p))

where S is the sensitivity of the dataset defined below:

Definition 6.1 (Sensitivity). Let P = {p1, p2, ..., pn} be the set of all input

plaintext values. The sensitivity of P is the minimum element in the set

{|x− y| : x ∈ P , y ∈ P , x ̸= y}. That is the sensitivity S is defined as

S = minx,y∈P
x ̸=y
|x− y|.

and ξ denotes random noise. ξ is randomly sampled from (−∞,+∞), ξ is

added to only the first two subciphertexts and for the others, value of ξ is 0.

• Decryption: Decrypt a ciphertext C = (c1, ..., cn), and get the plaintext p.

Dec(K(n), (c1, c2, ..., cn)) = p

where K(n) = [(u1, v1), (u2, v2), ..., (un, vn)] is a secret key and p is a plaintext.

The decryption algorithm is:

∑n
i=1 Deci(ui, vi) ∗ ci = p

where Deci function is defined as:

Deci(ui, vi) =
1

ui ∗
∑n

i=1 vi

24

The above mentioned FHOPE scheme is based on the hardness of Approximate

GCD problem mentioned is section 2.2. This scheme supports additive and

multiplicative homomorphism, order comparisons (for all p1, p2 ∈ P , if p1 > p2,

then C1 > C2 and for any two ciphertexts C1, C2, C1 > C2 means c1i > c2i, where

c1i and c2i are the i-th subciphertexts of C1 and C2 respectively).

Some Results about the security of this encryption Scheme:

• Recovering k⃗i from a key K(n) is challenging, even when an unlimited number

of ciphertexts encrypted using FHOPE with K(n) are available.

• This scheme satisfies IND-HOCPA security.

6.2 Using FHOPE to Database Server

Setup: Using this FHOPE scheme the scheme requires the following setup:

i. The client.

ii. Proxy server.

iii. Database server.

Insert Query : To understand how INSERT queries work suppose the client wants

to execute the query INSERT INTO table name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...); Proxy intercepts the query and changes the

column names according to the mapping present near to it and encrypts each value

25

present in the query and send the query INSERT INTO (NewColumn1,

NewColumn2, NewColumn3, ...) VALUES (FHOPE(K(n), value1), FHOPE(K(n),

value2), FHOPE(K(n), value3), ...) to the MySQL server. At the same time, the

proxy calculates the hash of each new ”attribute = value” expression and if the

hash value is already present in the table it updates the polynomial and if the hash

value is not present it adds a new one degree polynomial in the table. The MySQL

server executes the encrypted query and adds the new encrypted data to the

database.

Select Query : When the client does the query SELECT * FROM table name,

proxy just change the table name using the mapping gets all the encrypted data

from server decrypts it and send to the client.

Sum Query : If the client issues the query SELECT * FROM Table1 WHERE col1

+ col2 = col3, the proxy simply changes the column names and sends the query to

MySQL server. MySQL runs the query over the ciphertexts using some User

Defined Functions(UDFs) and returns the encrypted result to proxy, proxy

decrypts it and send the result to client. Similar things happen when client does a

query to find the sum of elements of some column.

Let C1 and C2 be two ciphertexts such that C1 = (c11, c12, ..., c1n) and

C2 = (c21, c22, ..., c2n) respectively. The sum of two ciphertexts means sum of each

element coordinatewise.

C1 + C2 = (c11, c12, ..., c1n) + (c21, c22, ..., c2n) = (c11 + c21, c12 + c22, ..., c1n + c2n)

Multiplication Query : If the client issues the query SELECT * FROM Table1

WHERE col1× col2 = col3, the proxy simply changes the column names and sends

26

the query to MySQL server. MySQL runs the query over the ciphertexts using some

UDFs and returns the encrypted result to proxy, proxy decrypts it and send the

result to client. Let C1 and C2 be two ciphertexts such that C1 = (c11, c12, ..., c1n)

and C2 = (c21, c22, ..., c2n) respectively. The multiplication of two ciphertexts means:


c11 × c21 c11 × c21 c11 × c2n

...

c1n × c21 c1n × c22 c1n × c2n

C1 × C2 =

Equality Query :

• When the client issues the query SELECT * FROM Table1 WHERE ai = vi;,

proxy intercepts the query and first changes the table name from the

mapping. Then proxy calculates the hash of ai = vi and checks whether the

hash value is present in its table or not. If it is not present proxy sends an

empty result to the client. If it is present in the table proxy retrieves the

corresponding polynomial from the table and finds the roots of the

polynomial. After getting the roots proxy modifies the query as SELECT *

FROM NewTable1 WHERE id IS IN (roots) and sends to the server. The

server runs the query and returns the encrypted result to the proxy. Proxy

decrypts the result and sends it to the client.

• When the client issues the query SELECT * FROM Table1 WHERE a1 = v1

AND a2 = v2 AND ... AND at = vt;, proxy intercepts the query and first

changes the table name. Then proxy calculates the hash of ai = vi for all i

and checks whether all the hash values are present in its table or not. If any

27

one of them is not present proxy sends an empty result to the client. If all the

hash values are present in the table proxy retrieves all the corresponding

polynomials from the table. Then proxy generates a new polynomial by

adding all the polynomials. Since the rows that satisfy all the conditions

should be the result so the index of that row should be the root of all those

polynomials. We know that if r is a common root of two polynomials a(x)

and b(x), then r is also a root of a(x) + b(x) [because, a(r) = 0, b(r) = 0.

Now (a + b)(r) = a(r) + b(r) = 0 + 0 = 0] and if r is not a common root of

a(x) and b(x) then r is not a root of a(x) + b(x)[because r is not a common

root, without loss of generality let r be a root of a(x) and r is not a root of

b(x). So a(r) = 0 and b(r) ̸= 0. So (a + b)(r) = a(r) + b(r) ̸= 0]. So proxy

then calculates the roots of the new polynomial and picks the proper roots.

After picking the roots proxy modifies the query as SELECT * FROM

NewTable1 WHERE id IS IN (roots) and sends to the server. The server runs

the query and returns the encrypted result to the proxy. Proxy decrypts the

result and sends it to the client.

• When the client issues the query SELECT * FROM Table1 WHERE a1 = v1

OR a2 = v2 OR ... OR at = vt;, proxy intercepts the query and first changes

the table name. Then proxy calculates the hash of ai = vi for all i. Then

proxy retrieves all the corresponding polynomials from the table whose hash

values are present in the table. Then proxy generates a new polynomial by

multiplying all the polynomials. Since the rows that satisfy any one of the

conditions should be the result so the index of that row should be the root of

at least any one of those polynomials. We know that if r is a root of any one

of two polynomials a(x) and b(x), then r is also a root of a(x) * b(x) [without

28

loss of generality let r be a root of a(x) and r is not a root of b(x). So a(r) =

0 and b(r) ̸= 0. So (a * b)(r) = a(r) ∗ b(r) = 0]. So proxy then calculates the

roots of the new polynomial. After getting the roots proxy modifies the query

as SELECT * FROM NewTable1 WHERE id IS IN (roots) and sends it to

the server. The server runs the query and returns the encrypted result to the

proxy. Proxy decrypts the result and sends it to the client.

• If AND and OR both are present proxy calculates the roots according to the

precision and does the same.

Max and Min Query : When the client is interested to know the maximum or

minimum element of an attribute, it does the max/min query. After intercepting

the query when proxy watches that it is a max or min query it first changes the

table and column name and then issues a query to MySQL server that will check

only the first sub ciphertext of that particular column and return the row with the

maximum first sub ciphertext in case of MAX query and return the row with

minimum first sub ciphertext in case of MIN query.

29

Chapter 7

Conclusion and Future Work

This homomorphic encryption supports homomorphic addition, homomorphic

multiplication, order comparison. As a result this scheme supports basic MySQL

functions, range queries, equality checks etc. This scheme can be implemented in a

cloud environment which uses MySQL queries to retrieve data. Moreover the

encryption scheme that is used here is secure with respect to IND-FHOPE

adversary and the security of the key K(n) is based on the hardness of AGCD

problem.

Future Work : For equality query when the proxy server sends the ids to MySQL

server after finding the roots the server knows which data are retrieved. A private

information retrieval(PIR) scheme can be integrated between proxy server and

MySQL server to solve this problem where the proxy works as a client and MySQL

server works as a server. Then the server does not know which indices are queried.

This scheme does not support queries that contains regular expression. So this can

be extended so that it supports all the queries containing regular expression.

30

	List of Figures
	List of Tables
	Introduction
	Conventional Cryptography
	Cloud Computing
	Problem Statement
	Organization of Dissertation

	Homomorphic Encryption
	Types of Homomorphic Encryption
	Hard Problems

	Order Preserving Encryption
	Definitions
	Notion of security for OPE

	Literature Survey
	CryptDB
	How it actually works?
	Problems

	Fully Homomorphic Order Preserving Encryption Scheme
	FHOPE
	Security of FHOPE

	Our Work
	Encryption Scheme Details
	Using FHOPE to Database Server

	Conclusion and Future Work

