
INDIAN STATISTICAL INSTITUTE KOLKATA

A SURVEY OF NIST PQC
CODE-BASED PROPOSALS :

CLASSIC MCELIECE AND BIKE

SK RIJWAN

Work done under the supervision of

Dr. Shion Samadder Chaudhury
Department of Cryptography, IAI, TCG CREST and

Dr. Anirban Ghatak
Applied Statistics Unit, ISI Kolkata

JULY 4, 2024

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

M.TECH. CRYPTOLOGY AND SECURITY

https://www.isical.ac.in/

Declaration

I, SK Rijwan (Roll No: CrS2214), hereby declare that this report entitled A SURVEY

OF NIST PQC CODE-BASED PROPOSALS : CLASSIC MCELIECE AND BIKE,

submitted to the Indian Statistical Institute, Kolkata, towards the fulfillment of the

requirements for the degree of Master of Technology in Cryptology and Security, is

an original work carried out by me under the supervision of Dr. Shion Samad-

der Chaudhury [Department of Cryptography, IAI, TCG CREST] and Dr. Anirban

Ghatak [Applied Statistics Unit, ISI Kolkata] . This report has not formed the basis

for the award of any degree or diploma in this or any other institution or university.

Whenever a piece of external information, statement, or result has been used, it has

been duly acknowledged and cited.

SK Rijwan

Roll No: CrS2214

Date:03/07/2024

i

Acknowledgements
I thank everyone who has assisted me in seeing this project through to its

completion. I would like to first express my profound gratitude and deepest regards

to my Guides and ISI Kolkata, and sincerely wish to acknowledge their vision,

guidance, valuable feedback and constant support throughout this project. I am

indebted to my friends for their steadfast encouragement and time. I am lastly

grateful to the Indian Statistical Institute, Kolkata for providing the necessary

resources and facilities to complete this project to the best of my ability.

ii

Shion Samadder Chaudhury,
Assistant Professor,
Department of Cryptology,
Institute for Advancing Intelligence,
TCG Centres gor Research and Education in Science and Technology.

FreeText
Signature of primary supervisor

FreeText
Signature of secondary supervisor

Line

Line

FreeText
Dr. Anirban Ghatak ,
Applied Statistics Unit,
ISI Kolkata .

Contents

1 Introduction - Chapter 1

2 Preliminaries 6

2.1 Linear Codes . 6

2.2 Goppa Codes . 7

2.3 General Decoding Problem . 9

2.3.1 Syndrome Decoding Problem . 9

2.4 Patterson’s Algorithm . 9

2.4.1 Correction of errors/Syndrome decoding of Goppa codes 9

2.4.2 Patterson’s Algorithm for Error Correction 11

2.5 QC-MDPC Codes . 12

2.6 Decoding of QC-MDPC Codes: . 13

2.6.1 Bit Flipping(BF) Algorithm: . 14

2.7 Estimation of Decoding failure rate: . 15

2.8 Hard Quasi-Cyclic Computational Problems 16

2.8.1 Decisional QCSD:- Quasi-Cyclic Syndrome decoding problem . . 16

2.8.2 Decisional QCCF:- Quasi-Cyclic codeword finding problem . . . 17

2.8.3 Utilizing the Quasi-Cyclic Structure 17

3 The Classic McEliece : conservative Code-based cryptography 18

3.1 The McEliece Code-based Cryptosystem 18

3.1.1 Introduction . 18

iii

3.1.2 Outline of the McEliece CBC . 19

3.1.3 Attacks on the McEliece CBC . 20

3.2 A Brief Review of Information Set Decoding Attacks 20

3.3 One-wayness of the McEliece CBC . 25

3.3.1 CCA Vulnerability of McEliece - Sloppy Alice Attacks 28

3.4 Niederreiter Cryptosystem . 29

3.4.1 Introduction . 29

3.4.2 Outline of the Niederreiter cryptosystem 29

3.5 The Classic McEliece PKE/KEM . 31

3.5.1 The Classic McEliece Parameters: 32

3.5.2 Design: . 32

3.5.3 Cryptanalysis . 34

3.6 Partial Information Attack on Classic McEliece 35

4 BIKE 39

4.1 Introduction . 39

4.2 Instance of Niederreiter scheme with QC-MDPC 40

4.3 Overview of BIKE . 40

4.3.1 Specification . 40

4.3.2 BIKE KEM . 42

4.3.3 Decoder . 43

4.3.4 Pseudo-random Bits Generation 46

4.4 Security of BIKE . 46

4.4.1 OW-CPA Security of BIKE: . 47

5 Conclusion 49

iv

1 | Introduction - Chapter

In recent years , a significant change is seen in the topics of interest in the field of

Cryptography. Previously, the focus was primarily on the long-established

public-key cryptosystems like the well-known Rivest-Shamir-Adleman (RSA) (64)

algorithm and algorithms based on elliptic curve cryptography(ECC) (65).

RSA Algorithm

• Given n = pq, the product of two large primes, and a positive integer b with

gcd(b, ϕ(n)) = 1.

• Select e > 1, encryption exponent s.t. gcd(e, ϕ(n)) = 1 where ϕ(n) = (p− 1)(q− 1).

• Compute d = e−1 mod (ϕ(n)); the decryption exponent.

• Public key (n, e); private key (n, d).

• Encryption: Compute ciphertext β = αe for message α ∈ Zn.

• Decryption: A computes γ = βd to get back αed = α.

The two major strategies attacking RSA cryptosystem are

• Factorize n to compute ϕ(n)

• Find d (decryption exponent) directly.

Among these two strategies the factoring attack has been most intensively pursued.

The problem for this attack is known as integer factorization problem: Given an integer

n which is a product of two distinct prime numbers p, q (n = p.q) , factorize n to find

p and q. When p and q are sufficiently large and chosen properly , the factorization is

1

pretty hard and there is still no polynomial time algorithm to solve the integer

factorization problem.

Some of the classical algorithms (The term ’classical algorithm’ has been used to

differentiate with the quantum algorithms, which is discussed later in this chapter)

for the integer factorization problem are

• Fermat’s difference of squares method;

Euler’s extension of Fermat’s method.

• Pollard’s p− 1 algorithm

• Pollard’s Rho algorithm

• The Quadratic Sieve

• The General Number Field Sieve (NFS)

Among these algorithms NFS (66) has proved to be the most efficient with

subexponential complexity in the size of the number to be factored and weakened

the security of the RSA cryptosystem.

In the mean time another public-key cryptosystem based on the elliptic curve

cryptography(ECC) emerged with smaller key sizes compared to RSA while

preserving the same level of security. The security of ECC based cyptosystems is

based on the hardness of the discrete logarithm problem: find an integer a (if it exists)

such that ga = h when given g, h ∈ G, where G is a finite group. There is still no

polynomial time algorithm known to solve the discrete logarithm problem.

So, after decades of research the RSA and ECC based cryptosystems provides

sufficient computational security against the classical attacking algorithms.

There are another type of algorithms ,called quantum algorithms which are designed

to run on a quantum computer. Quantum computer uses qubits which is analogous to

classical bits . Qubits may assume both values- 0, 1 simultaneously during

computation. It follows that with n qubits , 2n states can exist simultaneously

indicating the possibility of using Quantum logic gates during computation, resulting

2

in reduction of time complexity with respect to classical computers.

The major classes of quantum computing are

1. The Hidden Subgroup Problem(HSP)

2. Search algorithms (Grover’s algorithm)

3. Quantum system simulations.

Among these algorithms HSP and Grover’s (67) algorithm pose a real threat to the

security of the existing public-key cryptosytems.

In (1994) Peter Shor (68) proposed an algorithm aiming to factor composite numbers

into their prime number components using Euler’s method. Shor’s algorithm can be

interpreted as an Order-finding algorithm, which is an instance of the HSP. Shor’s

algorithm solves the integer factorization problem and the discrete logarithm problem on

polynomial time when run on a quantum computer. Though there is uncertainty

about the advent and development of quantum computers in the near future, it is

better to have precaution against the possibility of development of a powerful

quantum computer breaking the security of currently used public-key

cryptosystems. Thus the field of post quantum cryptography(PQC) arose and

captured the interest of many researchers.

In 2017, the National Institute of Standards and Technology (NIST) initiated the

standardization of quantum-resistant public-key cryptographic algorithms through

the NIST Post-Quantum Cryptography (PQC) project. Submissions were divided

into two categories: key encapsulation mechanisms (KEM) and digital signatures.

Initially 69 candidates were selected for the first round(2017). After the completion of

the first round in 2019 , 26 of those candidates were selected to proceed for the

second round. 15 of those were selected for the third round(2020). 7 of those were

considered as finalist and 8 were selected as alternate candidates. After the end of

third round (2022) 4 candidates(one KEM and three digital signatures) were selected

for standardization and 4 (all KEMs) were selected to proceed for the fourth round

.The KEM selected for standardization is CRYSTALS–KYBER (69) and the digital

3

signatures to be standardize are CRYSTALS–Dilithium (70), FALCON (76), and

SPHINCS+ (77). The alternate key-establishment candidate algorithms : BIKE (72),

Classic McEliece (7), HQC (71), and SIKE (78) were considered for future

standardization and advanced to round four for evaluation. In the same year SIKE

was proved to be not secure by a successful attack on it. The 5th NIST PQC

Standardization Conference took place in 2024 aimed to discuss on various elements

of the algorithms under selection and evaluation, as well as to gather insightful

feedback to guide standardization decisions. NIST extended invitations to the teams

behind BIKE, Classic McEliece, Falcon, and HQC to provide updates on their

respective algorithms.

CRYSTALS–KYBER is a lattice-based KEM while BIKE, Classic McEliece, HQC are

code-based KEMs. While lattice-based KEMs have efficient computation and

moderate key sizes ,existence of some inherent structure give rises to uncertainties

about their security in the future. The code based cryptosystems have relatively

larger key sizes but have a long history of security, well-studied theoretical

foundation.

Classic McEliece is a code-based KEM that uses a binary Goppa code in the

Niederreiter (8) variant of the McEliece cryptosystem (1) combined with standard

techniques to achieve CCA security. Based on the assumption that the 1978 McEliece

scheme provides one-way under chosen-plaintext attacks (OW-CPA) security a tight

proof of the submitted KEM’s IND-CCA2 security in the quantum random oracle

model is given in various research results and their submission paper to the NIST.

The fourth round submission is a merger of the second-round submissions Classic

McEliece and NTS-KEM. NIST expresses confidence in the security of Classic

McEliece and may consider to standardize it.

BIKE(Bit Flipping Key Encapsulation) BIKE differs from Classic McEliece in its

choice of family codes used. While Classic McEliece relies on binary Goppa codes,

BIKE utilizes QC-MDPC (Quasi-Cyclic Moderate-Density Parity-Check) codes,

inspired by the Niederreiter cryptosystem. Both BIKE and Classic McEliece are based

4

on the Niederreiter cryptosystem, where the main challenge is decoding random

linear codes. This similarity allows BIKE to also demonstrate CPA-security. As BIKE

employs a different family of codes, it utilizes a different decoding algorithm (Black

Gray Flip decoder) compared to Classic McEliece. The decryption method is

associated with chances of decryption failure unlike Classic McEliece. Though the

decryption failure rate(DFR) is low. Initially entered with 3 variants, BIKE has only

one variant in the final submission with claims of being chosen ciphertext

attack(CCA) secure. BIKE also remains to be a suitable choice for standardization by

NIST.

HQC (Hamming Quasi-Cyclic) also uses QC-MDPC like BIKE but does not use

Niederreiter template. Unlike Classic McEliece and BIKE, HQC does not hide any

code structure and is more complex in its design (Analogous with some lattice

scheme working on code-based environment).

Though HQC also is tough competitor in NIST PQC , due to the differences with

Classic McEliece and BIKE, only the survey of the later two KEMs are included in the

report.

5

2 | Preliminaries

2.1 Linear Codes

The concept of error correcting codes come from the problem of sending information

over a noisy channel. A t Error correcting code can successfully decode the original

message sent if there is a occurrence of maximum t errors .

Linear codes are error correcting codes with the property that the sum of any two

codewords is also a codeword.

Let Fq be a finite field with q elements. A [n, k] code C is a linear code of length n and

dimension k, i.e., a k dimensional subspace of Fn
q . Every element of the code C is

called a codeword c.

The Hamming weight denoted by wH(c) of an element c ∈ Fn
q is the number of

nonzero entries of c. Hamming distance of two codewords y, c ∈ Fn
q is d(y, c) =

wH(y− c).

A generator matrix G for the code C is a k× n matrix such that C = mG : m ∈ Fk
q . So

G corresponds to a map sending a message of length k to a element of Fn
q .

A parity check matrix H for the code C is a (n− k)× n matrix such that

C = c ∈ Fn
q : HcT = 0.

Let x = c + e is transmitted where wH(e) ≤ t. Then c is the unique codeword closest

to x and the term s(x) = HxT = H(cT + eT) = HeT is called the syndrome of x.

A systematic generator matrix is of the form (Ik | P) where Ik is the the k× k identity

matrix and P is k× (n− k) matrix. Then the parity check matrix is of the form

(PT | In−k).

6

2.2 Goppa Codes

Let L = (α1, . . . , αn) ∈ F2m be a set of points known as Goppa points and

g(x) ∈ F2m [x] be an irreducible, degree-t polynomial known as Goppa polynomial.

Then we define a Goppa code (16)

C(L, g) =

{
c ∈ Fn

2 :
n

∑
i=1

ci

x− αi
≡ 0 mod g(x)

}
. (1)

This code can correct upto t errors.

Let us consider ĤGoppa(L, g) ∈ Ft×n
2m of the form

ĤGoppa(L, g) =



1 1 · · · 1

α1 α2 · · · αn

...
...

αt−1
1 αt−1

2 · · · αt−1
n


·



g−1(α1) 0 · · · 0

0 g−1(α2) · · · 0
...

...

0 0 · · · g−1(αn)


.

From ĤGoppa(L, g) ∈ Ft×n
2m , we construct the parity-check matrix

HGoppa(L, g) ∈ Fmt×n
2 by applying the bijection V : F2m → Fm

2 , that represents F2m as

an m-dimensional vector space over F2, i.e., ∑m−1
i=0 aiγ

i 7→ [a0, . . . , am−1].

Complexity Classes in Computer Science

In computer science, problems are classified according to their computational

complexity. This classification helps in understanding how difficult it is to solve a

problem and how time is required as the input size grows. Here are the some classes

of problems:

• P (Polynomial Time):

– Problems that can be solved by a deterministic Turing machine in

polynomial time. In other words, there exists an algorithm that can solve

7

the problem in time O(nk) for some constant k, where n is the size of the

input.

– Examples: Sorting a list (e.g., Merge Sort), finding the greatest common

divisor (Euclidean algorithm).

• NP (Nondeterministic Polynomial Time):

– Problems for which a solution can be verified in polynomial time by a

deterministic Turing machine. If a given solution can be checked quickly

(in polynomial time), the problem belongs to NP.

– Examples: Boolean satisfiability problem (SAT), Hamiltonian path

problem.

• NP-complete:

– These are the hardest problems in NP. A problem is NP-complete if it is in

NP and as hard as any problem in NP, meaning any NP problem can be

transformed into it using a polynomial-time reduction.

– Examples: SAT (Satisfiability), 3-SAT, Traveling Salesman Problem

(decision version).

• NP-hard:

– Problems that are at least as hard as the hardest problems in NP. However,

NP-hard problems are not necessarily in NP (they may not have solutions

verifiable in polynomial time).

– Examples: Halting problem, Generalized Chess (determining if a player

can guarantee a win from a given position).

8

2.3 General Decoding Problem

2.3.1 Syndrome Decoding Problem

on Input: H ∈ F
(n−k)×n
2 , s ∈ Fn−k

2 , integer t Can one find e ∈ Fn
2 such that wH(e) ≤ t

and eHT = s?

The general decoding problem for a linear code involves either solving for the

syndrome or the codeword c itself, without any assumption other than that c satisfies:

cHT = 0.This general decoding problem and the problem of finding the weight

distribution of a code (i.e., finding the numbers of codewords of given weights) were

proved to be NP-complete by Berlekamp, McEliece, and van Tilborg in 1978(2).

2.4 Patterson’s Algorithm

Let Γ(L, g(x)) be a Goppa code, where g(x) is a primitive polynomial with

deg(g(x)) = t and |L| = n. Let dimFq(Γ(L, g(x))) = k, and G be k× n sized generator

matrix for respective Goppa code; then encoding of a k-length message vector m over

Fq is mG.

2.4.1 Correction of errors/Syndrome decoding of Goppa codes

Let the vector y = (y1, y2, . . . , yn) be received with r number of errors, where

2r + 1 ≤ d′ (for maximum number of error correction). Let L = {α1, α2, . . . , αn},

y = (y1, y2, . . . , yn) = (c1, c2, . . . , cn) + (e1, e2, . . . , en)

with ei ̸= 0 at exactly r-places. We need to

• locate positions of error (say B = {i : 1 ≤ i ≤ n and ei ̸= 0});

• find the corresponding error values (values of ei : i ∈ B).

9

In order to find these, we define two polynomials

[Error locator polynomial σ(z) and Error evaluator polynomial w(z)]

σ(z) = ∏
i∈B

(z− αi) (this is a ’r’ degree polynomial);

w(z) = ∑
i∈B

eiβi ∏
j∈B,j ̸=i

(z− αj) (this is a ’r - 1’ degree polynomial).

[Syndrome of received vector] The Syndrome of received vector y is defined as S(y)

where:

S(y) =
n

∑
i=1

yi

x− αi
= ∑

i∈B

ei

x− αi
mod g(x).

Error-correction: Algorithm for correcting r ≤
⌊

d′
2

⌋
errors in a Goppa code:

Step (i): Compute the syndrome

S(y) =
n

∑
i=1

yi

x− αi

Step (ii): Solve the key equation

σ(x)S(y) = w(x) mod g(x)

by writing

σ(x) = xr + σr−1xr−1 + · · ·+ σ1x + σ0,

w(x) = wr−1xr−1 + · · ·+ w1x + w0

and solve for r equations and 2r unknowns. If the code is binary, take

w(x) = w0.

10

Step (iii): Determine the set of error locations

B = {i : 1 ≤ i ≤ n and σ(αi) = 0}.

Step (iv): Compute the error values ei =
w(αi)
σ′(αi)

for all i ∈ B.

Step (v): The error vector e = (e1, e2, . . . , en) is defined by ei for i ∈ B and zeros

elsewhere.

Step (vi): The codeword sent is calculated as c = y− e.

2.4.2 Patterson’s Algorithm for Error Correction

The Patterson algorithm (17) decodes only binary Goppa codes. It computes the

syndrome S(y) of a received vector y. It then solves the key equation

σ(x)S(y) = w(x) mod g(x) by heavily exploiting the requirement that the code is

binary. The error locator polynomial can be split in even and odd powers of x such

that σ2(x) + x2τ2(x2) = 0, as field has characteristic 2.

The Patterson algorithm can be described as below:

Input: The received vector y and the Goppa code Γ(L, g).

Step (i): Compute syndrome S(y) an element of Fq.

Step (ii): Compute T(x) = S(y)2 mod g(x).

Step (iii): Compute P(x) =
√

T(x) mod g(x).

Step (iv): Compute and solve τ(x) with xτ(x2) = P(x) mod g(x).

Step (v): Compute the locator polynomial σ(x) = xτ(x2).

Step (vi): Find the roots of σ(x).

Step (vii): Compute the error vector e.

Output: The error vector e.

With the error vector the codeword can be recovered from the erroneous vector

received(that is the codeword plus random error with weight up to t).

11

2.5 QC-MDPC Codes

Quasi-Cyclic(QC) Code : A linear code C of length n = n0 + n1 is called a

quasi-cyclic code if the cyclic shift of any codeword by n0 symbols yields another

codeword.

The generator and the parity-check matrix of the quasi-cyclic code C is completely

defined by its first row because every other row is a cyclic shift by n0 symbols of the

preceding one.

circulant matrix: A circulant matrix is a square matrix in which every row is a cyclic

shift of the previous one and every column is a cyclic shift of the adjacent

column.

A circulant matrix A:

A =



a0 an−1 an−2 · · · a1

a1 a0 an−1 · · · a2

a2 a1 a0 · · · a3

...
...

...

an−1 an−2 an−3 · · · a0


is fully determined by its first row. The polynomial a(x) = ∑n−1

i=0 aixi associated with

the first row of A = (a0, a1, . . . , an−1) is called the generating polynomial of A. A cyclic

shift of a row corresponds to the multiplication of the polynomial a(x) by x

mod (xn − 1).Therefore, there is a natural one-to-one correspondence between

circulant matrices of size r× r and ideals of the quotient ring F2[x]/(xr − 1).

The product of two circulant matrices is a circulant matrix. Furthermore, the product

of two circulant matrices corresponds to the multiplication of their generating

polynomials modulo (xr − 1). . The inverse of a non-singular circulant matrix A is

also a circulant matrix, and the polynomial corresponding to A−1 is the inverse of the

12

polynomial a(x) in the ring Fq[x]/(xr − 1).

The parameter r defining the ring R used in BIKE is chosen such that the polynomial

defining R factors as (xr − 1) = ϕr(x)(x− 1) ∈ F2[x], where the cyclotomic

polynomial ϕr(x) = (xr − 1)/(x− 1) ∈ F2[x] is irreducible. As a result the checking

of the invertibility of the elements of the polynomial ring R is easy. And it follows

that only the elements with odd weight are invertible. ϕr(x) is irreducible when r is

prime and 2 is a primitive root modulo r.

(QC-MDPC code). An (n0, k0, r, w)-QC-MDPC code is an (n0, k0) quasi-cyclic code of

length n = n0r, dimension k = k0r, order r (and thus index n0), admitting a

parity-check matrix with constant row weight w = O(
√

n).

The sparsity of the parity-check matrix allows the use of relatively efficient iterative

decoding techniques, such as the bit-flipping algorithm.Bit-flipping decoding is a

method of choice in BIKE because it offers good properties while also being very

simple. BIKE makes use of (2, 1)-QC codes. Such codes are subspaces of R2. The

private key (h0, h1) ∈ Hw defines the code

C = {(f h1, f h0) | f ∈ R} =
{
(f0, f1) ∈ R2 | f0h0 + f1h1 = 0

}

with generator and parity check matrices (in R1×2) respectively:

G =

[
h1 h0

]
, H =

h0

h1

 .

The corresponding binary matrices are obtained by expanding the polynomials into

circulant block.

2.6 Decoding of QC-MDPC Codes:

Decoding of QC-MDPC codes can be achieved by iterative decoders with bit

flipping(BF) algorithm(which is also used for decoding LDPC codes). But BF-based

13

decoders are probabilistic decoders with non-zero decoding failure rate(DFR). DFR ,

which is defined as the percentage of decoding failures in a given number of

decoding attempts, effects the efficiency and security of cryptographic schemes based

on QC-MDPC codes. Several improvements have been made for BF-based decoders

with negligible DFR.

2.6.1 Bit Flipping(BF) Algorithm:

The Bit Flipping algorithm was proposed by Gallager (75) in 1963. The Bit-Flipping

(BF) algorithm is described using the Tanner graph of an LDPC/MDPC code. The

Tanner graph provides a visual representation of the parity-check matrix and

comprises two sets of nodes:

1. Check nodes (illustrated by squares in Fig. 3) represent the rows of the

parity-check matrix. Therefore, every Tanner graph has N − K check nodes

(each representing a row of the matrix).

2. Variable (Bit) nodes (illustrated by circles in Fig. 3) represent the N bits of a

received vector that should be decoded. Each bit node in the Tanner graph

corresponds to a column in the parity-check matrix, as the size of the matrix is

given by the number of columns and N.

The following steps are performed to generate the Tanner graph of an LDPC/MDPC

code with the N − K parity-check matrix H in which hij is the element located at row

i and column j:

1. Draw N − K check nodes (squares) and N bit nodes (circles).

2. Connect each check node to bit node j if hij = 1.

The number of edges that are connected to the bit nodes (i.e., the column weight)

indicates the number of codedword bits participating in the i-th parity-check

equation (defined by row i of H).

The BF decoding algorithm then operates as follows:

14

1. We generate the Tanner graph of the code using the parity-check matrix H.

2. Given a specific vector r = (r1, r2, . . . , rN) that should be decoded, label each bit

node j of the Tanner graph with rj (1 ≤ j ≤ N).

3. We compute the result of the parity-check equation for every row H as

Si = ∑N
j=1 hijrj mod 2 for 1 ≤ i ≤ N − K.

4. If Si = 0 ∀ 1 ≤ i ≤ N − K, we return r as the decoded word.

5. Otherwise, we label the check node i with "unsatisfied".

6. We compute another label f j for each bit node j, where f j is the number of

"unsatisfied" check nodes connected to bit node j.

7. Flip the value of rj if f j is greater than a predetermined threshold, T.

8. Set the error limit Iter for iterations.

9. If 1 ≤ i ≤ N − K such that Si ̸= 0, we return "failure" and terminate the

algorithm.

10. With the updated r, we jump to step 2.

This algorithm is probabilistic with non-zero DFR.

2.7 Estimation of Decoding failure rate:

Decoding of BIKE is not an deterministic algorithm unlike BIKE. There is a chance of

not able to decrypt at all, which is referred to as decryption failure. The decryption

failure rate (DFR) is a key parameter for the performance and CCA security of BIKE.

The technique for estimation of DFR for BIKE is listed below as given in specification

provided in the BIKE round 4 submission.

15

The Low Impact of Block Size on Computational Assumptions

The block size r must be chosen large enough to allow efficient decoding. In practice,

one must choose r = Ω(wt). The higher r, the lower the Decoding Failure Rate

(DFR). On the other hand, the best known attacks for codes of rate 1
2 are of order

2t(1+o(1)) or 2w(1+o(1)). This is corrected by a polynomial factor in r, which is very

small in practice. An interesting consequence is that if w and t are fixed, a moderate

modification of r (say plus or minus 50%) will not significantly affect the resistance

against the best known key and message attacks. This simplifies the extrapolation

methodology described in the next paragraph.

Estimating the DFR by Extrapolation

Low DFRs, e.g., 2−128, as required for Chosen-Ciphertext Attack (CCA) security,

cannot be directly estimated by simulation. Instead, simulations are combined with

extrapolations, as described next. First, the DFR is measured for smaller block sizes r,

for which simulations provide reliable estimations. Subsequently, one can define a

curve based on the sample of r-DFR acquired values, and the curve is extrapolated to

a larger block size where the extrapolated DFR reaches the target. Linear

extrapolation over two acquired points tends to overestimate the required r (i.e., a

conservative estimation). More extensive simulations can refine the DFR estimation

and hence lead to smaller (more desirable) sufficient r.

2.8 Hard Quasi-Cyclic Computational Problems

2.8.1 Decisional QCSD:- Quasi-Cyclic Syndrome decoding problem

Given h ∈ R, a vector y ∈ R, and target t > 0, determine whether there exists

(e0, e1) ∈ R2 such that |e0|+ |e1| = t and e0 + e1h = y.

16

2.8.2 Decisional QCCF:- Quasi-Cyclic codeword finding problem

Given h ∈ R and target v > 0, determine whether there exists (c0, c1) ∈ R2 such that

|c0|+ |c1| = v and c0 + c1h = 0.

Though there is a search to decision reduction in the context of the general syndrome

decoding problem, for the quasi-cyclic case, no such reduction is known. Best known

solvers for the quasi-cyclic problems mentioned above derive from Information Set

Decoding (ISD) ,designed for search problems.

2.8.3 Utilizing the Quasi-Cyclic Structure

Identifying codewords and decoding are somewhat simpler (by a polynomial factor)

when the target code is quasi-cyclic. If a QC code contains a word of weight w, then

its quasi-cyclic shifts are also included. This property typically offers a factor of r

speedup compared to a random code. Furthermore, using the Decoding One Out of

Many (DOOM) method (79), it is feasible to produce r equivalent decoding instances.

Addressing these instances together yields a workload reduction factor of
√

r.

17

3 | The Classic McEliece : conserva-

tive Code-based cryptography

Classic McEliece is a submission to NIST’s Post-Quantum Cryptography (PQC)

Standardization Project (7). Based on the Niederreiter variant (8) of the

Goppa-code(16) based McEliece code-based cryptography (CBC)(1), the Classic

McEliece Key-encapsulation Mechanism(KEM)(7) was one of the fourth-round finalists

in the public-key encryption/key establishment category of the NIST Post-Quantum

standardization [https://csrc.nist.gov/projects/post-quantum-cryptography/

round-4-submissions].

we will first have some brief description of the McEliece CBC and Niederreiter’s dual

version of McEliece CBC. Then have a walk through the design and cryptanalysis of

the Classic McEliece public key encryption(PKE)/KEM.

3.1 The McEliece Code-based Cryptosystem

3.1.1 Introduction

Figure 3.1:
R.J.McEliece
(21.05.1942 -
08.05.2019)

R.J.McEliece proposed a public key cryptosystem based

on algebraic coding theory in 1978 using some Goppa codes

(1).Thus the first code-based cryptosystem(CBC) was created.

This cryptosystem used the hardness of the random decoding

problem, which was proved to be NP-complete(as mentioned

18

https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions

above in the context of general decoding problem). But there

exist fast decoding algorithm (Algorithm due to Patterson)

(17) for Goppa codes.

3.1.2 Outline of the McEliece CBC

The Public key:

• Let G′ be the generator matrix of an [n, k] irreducible Goppa code Γ, which can

correct t errors.

• Let S be a random k× k invertible matrix and P, a random n× n permutation

matrix.

• Define G := SG′P ∈ Fk×n
2 .

• The tuple (G, t) is the public key.

The Secret key:

• The triple (G′, S, P) is the secret key.

Encryption:

• Let m ∈ Fk
2 be the plaintext, and e ∈ Fn

2 be a random vector with wH(e) ≤ t.

• The ciphertext is defined as: y = mG + e. Clearly y is seen as a noisy

“codeword” corresponding to the randomized “generator matrix” G.

Decryption:

• Compute y′ = yP−1 = mSG′ + eP−1.

• As wH(eP−1) ≤ t, the decoder for the t-error correcting Goppa code Γ can

decode y′ to obtain mS.

• Extract plaintext m using S−1.

The first McEliece proposal used an irreducible binary Goppa code with n = 1024,

k = 524, correcting t = 50 errors. The public key was a randomized version of the

19

code - difficult to decode. The size of the public key was ≈ 32 KB, with a ciphertext of

size 1024 bits. The Encryption and Decryption algorithms can be implemented using

digital logic and communication rates near 106 bits per second is feasible.

3.1.3 Attacks on the McEliece CBC

From the above mentioned design,an attacker who got hold of an encrypted message

y has two possibilities in order to retrieve the original message m:

Structural attack: The attacker can try to recover G from G′ so that he/she can use

Patterson’s algorithm. This attack is hopeless if n and t are large enough, because

there are huge possibilities for G only and there are possibilities for S and P also.

Among other codes with efficient decoding, Goppa codes have resisted structural

attacks so far.

Generic attack: The attacker can try to recover m from y without knowing G. Which

is same as solving general decoding problem for a random [n , k] code in the presence

of at most t errors.

Among the generic attacks structure-oblivious Information Set Decoding (ISD)

attacks, which have been considered to be the benchmark for cryptanalysis of

McEliece-type CBC’s. One of the most successful generic attacks was the modified

ISD attack by Bernstein, Lange and Peters in 2008 (5).

3.2 A Brief Review of Information Set Decoding Attacks

The concept of ISD was introduced by E. Prange(4) in relation to decoding cyclic

codes. Recalling the decoding problem of random linear codes, upon receiving a

input y ∈ Fn
2 we have to find the unique closest codeword c ∈ C , where y = c + e,

where wH(e) ≤ t. If the syndrome decoding problem of x can be solved, i.e., find e s.t.

wH(e) = w ≤ t and HeT = HxT , then the decoding problem can be solved. It follows

that e defines the unique linear combination of exactly w columns of H , having the

sum HeT. If that w out of n columns can be found, the syndrome decoding problem can

20

be solved. The idea is to find a set I of w vectors whose combination reaches the

target value s(x). The search space for linear codes is large enough to be exploited by

brute force search. Different ISD algorithms has tried to reduce this search space over

the years. Let us now have a brief description of information sets before looking into

various ISD algorithms.

It is evident that using a systematic generator matrix Gs = [Ik|Pk×(n−k)] implies that

the first k symbols of a codeword c = mGs are information symbols.

Let Gk×n be random generator matrix. We can find a set I with k elements such that

I ⊆ {1, 2, . . . , n} and the sub-matrix of G formed by these k elements indexed

columns, denoted GI , is invertible.Also, It can be shown that G−1
I G and G are

equivalent generator matrices. The I-indexed entries of any codewordc = mG−1
I G

are called information symbols of c and so, I is an information set. The matrix G−1
I G is

often termed a ‘systematized’ version of G.

ISD in its simplest form

• takes input y ∈ Fn
2 with d(y, C) := min{d(y, c) | c ∈ C} = w = wH(e); let c ∈ C

be the codeword closest to y.

• Assume y and c coincide on the indices of some information set I. Then all

these are assumed to be error-free coordinates.

• It follows that yIG−1
I is the preimage of c under the map induced by G, i.e.,

c = (yIG−1
I)G.

For codes over F2, an equivalent formulation is to identify w columns of the

‘systematized’ H matrix which are chosen by the non-zero entries of the syndrome s.

In Prange’s algorithm, this identification is done by randomly choosing w columns,

out of (a subset of) n columns of H, in every iteration and checking if their XOR

matches the syndrome. One of the main objectives of subsequent developments was

to improve the search for the columns of the parity check matrix that correspond to

the error vector.

Lee–Brickell’s algorithm: A modification of the basic formulation further reducing

21

the search space is the Lee Brickell’s algorithm (18) which is considered as a classical

information set decoding algorithm. The algorithm is as follows

Let p be an integer with 0 ≤ p ≤ w

1. Choose an information set I.

2. Replace y by y− yIG−1
I G.

3. For each size-p subset A = {a1, . . . , ap} ⊆ I and for each m = (m1, . . . , mp) in

(F∗q)
p, compute

e = y−
p

∑
i=1

migai .

If e has weight w print e. Else go back to Step 1.

in step 1 , I has to be chosen such a way that GI is invertible. Step 3 requires going

through all possible weighted sums of p rows of G which needs to be subtracted from

y− yIG−1
I G in order to make up for the p errors permitted in I. So its better to not set

p very large. p = 2 is optimal. If in the first iteration, the chosen I does not yield a

weight w codeword, another iteration has to be done.

Stern’s Algorithm: Originally proposed for the problem of finding low weight

codeword, Stern’s attack (19) can be used to decode linear codes by finding low

weight codeword(e , as mentioned earlier in the context of ISD) in a slightly larger

code.

Stern’s algorithm uses the idea of Lee and Brickell to allow a fixed number of errors

in the information set. On input of weight of the codeword w and a (n− k)× n parity

check matrix H of a [n, k] linear code over F2, Stern randomly selects n− k columns of

the parity check matrix and selects a random size l subset Z from those n− k

columns. Then he divides the remaining k columns randomly into two sets X and Y.

Then he searches for a codeword having p, p, 0 nonzero bits in X, Y, Z respectively

and w− 2p in the remaining columns. Here p and l are parameters of the algorithm.

If the search fails then he starts with a new selection of columns. The searching part

of Stern’s algorithm has three steps as mentioned in the Bernstein, Lange and Peter’s

22

paper (5).

1. Stern applies elementary row operations on H to make an identity matrix by

the n− k selected columns. The algorithm restarts if it fails due to the

(n− k)× (n− k) submatrix of original H not being invertible. To avoid the cost

of restarting, he chose each column adaptively as a result of pivot in the

previous columns leaving a room for bias with no significant effects in the

performance.

2. Each column of the (n− k)× (n− k) submatrix corresponds to a row where the

column has 1 in it.So, l columns of Z corresponds to a set of l rows. For every

size-p subset A and B of X and Y respectively, he adds each of these l rows with

columns of A and B separately, obtaining l bit vectors π(A) and π(B).

3. for each collision π(A) = π(B), Stern computes the sum of the 2p columns in

A ∪ B. This sum is an (n− k)-bit vector. If the sum has weight w− 2p, Stern

obtains 0 by adding the corresponding w− 2p columns in the (n− k)× (n− k)

submatrix. Those w− 2p columns, together with A and B, form a codeword of

weight w.

Summary of Bernstein-Lange-Peters’(BLP) attack: One of the mos successful fastest

known attacks is the modified ISD attack by Daniel J. Bernstein, Tanja Lange, and

Christiane Peters in 2008(5). The attack strategy is mostly some improvements over

Stern’s attack. The modifications are as follows.

• Reuse of existing pivots: Instead of applying Gauss elimination to each newly

supplied H for same code to get the identity submatrix(as in the Stern’s attack),

this attack uses the identity submatrix generated in the previous iteration. As

about (n− k)2/n columns will match, the work for these columns is eliminated.

• Forcing more pivots: (n− k− c) columns can be artificially reused and the other c

columns can be selected from the remaining k columns. c is a parameter of the

algorithm. Choosing extreme value of c like c = 1 minimizes the time for

23

Gaussian elimination but maximizes the number of iterations of the entire

algorithm. So a more optimized choice of c is values between 1 and

(k/n)(n− k)(as used in the Stern’s attack).

• Faster pivoting: For Stern’s algorithm it has frequently been observed[REF from

BLP1] that 25 percent of the rows will have both first and second row added to

it. Almost half of this work can be saved by pre-computing the sum of the first

two rows(which is only one vector addition).

• Multiple choices of Z: Differing from the Stern’s attack , instead of selecting one Z

this attack selects m number of size-l disjoint subsets Z1, Z2, . . . , Zm with the

same X, Y. Though there is an m fold increase in the cost in the first and second

step of Stern’s algorithm due to this generalization, the chance of finding any

particular weight-w word grows by a factor of nearly m because Gaussian

elimination which depends on only X and Y is done only once.

• Reusing additions of the ‘-bit vectors: In Stern’s algorithm it is observed that while

computing π(A) or π(B) almost p− 2 of the p− 1 additions were carried out

before. This attack(BLT) caches those p− 2 additions to reduce the cost of

computing π(A) or π(B). This is very significant as p grows.

• Faster additions after collision: In the third step of Stern’s algorithm, after finding

one collision for the pair (A, B) all the columns of A ∪ B are added. Bernstein,

Lange, Peters pointed out that there is overlap in many of these additions and

not all the additions are necessary. As mentioned in their paper after computing

2(w− 2p + 1) rows one already has, on average, w− 2p + 1 errors and as soon

as the number of errors exceeds w− 2p, the pair (A, B) can be safely aborted.

They have successfully implemented an attack against the cryptosystem parameters

originally proposed by McEliece by decoding 50 errors in a [1024, 524] code over F2 in

just 1400 days by a single 2.4GHz Core 2 Quad CPU , breaking all the previous

records of attack on the McEliece cryptosystem.

24

Some current ISD developments: In 2011 Bernstein-Lange-Peters another ISD

technique called ball-collision decoding further modifying the running time to

O(20.0558n) (20).

In 2011 Alexander May, Alexander Meurer, Enrico Thomae present a new algorithm

(21) for decoding linear codes that is inspired by a representation technique due to

Howgrave-Graham and Joux in the context of subset sum algorithm (23) bringing

down the complexity to O(20.05363n).

In 2012 Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer proposed

a new information set decoding algorithm[(22)] with further increment in the

number of representations and reducing the time complexity to O(20.0494n).

3.3 One-wayness of the McEliece CBC

One-wayness means that it is easy to generate ciphertext from input but difficult to

invert the map from random input to ciphertext, given the public key. One-wayness

is modernly known as One-Way Chosen-Plaintext Attack (OW-CPA) secure.

OW-CPA security of Goppa-code McEliece has withstood four decades of

cryptanalysis. As mentioned in the Classic McEliece submission (7), after 1978 there

were 25 publications studying the one-wayness of the system and introducing

increasingly sophisticated non-quantum attack algorithms:

• 1981 Clark–Cain (24), crediting Omura.

• 1988 Lee–Brickell (18).

• 1988 Leon (25).

• 1989 Krouk (26).

• 1989 Stern (19).

• 1989 Dumer (27).

• 1990 Coffey–Goodman (28).

25

• 1990 van Tilburg (29).

• 1991 Dumer (30).

• 1991 Coffey–Goodman–Farrell (31).

• 1993 Chabanne–Courteau (32).

• 1993 Chabaud (33).

• 1994 van Tilburg (34).

• 1994 Canteaut–Chabanne (35).

• 1998 Canteaut–Chabaud (36).

• 1998 Canteaut–Sendrier (37).

• 2008 Bernstein–Lange–Peters (5).

• 2009 Bernstein–Lange–Peters–van Tilborg (38).

• 2009 Finiasz–Sendrier (39).

• 2011 Bernstein–Lange–Peters (20).

• 2011 May–Meurer–Thomae (21).

• 2012 Becker–Joux–May–Meurer (22).

• 2013 Hamdaoui–Sendrier (40).

• 2015 May–Ozerov (41).

• 2016 Canto Torres–Sendrier (42).

• 2017 Leif Both, Alexander May (45).

• 2017 Ghazal Kachigar, Jean-Pierre Tillich (46)

• 2018 Elena Kirshanova (47).

• 2018 Leif Both, Alexander May (48).

26

• 2022 Thomas Debris-Alazard, Léo Ducas, Wessel P. J. van Woerden (49).

• 2022 Andre Esser, Emanuele Bellini (50)

• 2022 Andre Esser, Alexander May, Floyd Zweydinger (51).

• 2022 Andre Esser, Sergi Ramos-Calderer, Emanuele Bellini, José Ignacio Latorre,

Marc Manzano (52).

• 2022 Andre Esser (53).

• 2022 Asuka Wakasugi, Mitsuru Tada (54).

• 2023 Shintaro Narisada, Kazuhide Fukushima, Shinsaku Kiyomoto (55).

• 2023 Andre Esser, Floyd Zweydinger (56).

• 2023 Qian Guo, Thomas Johansson, Vu Nguyen (57).

• 2023 Yu Li, Li-Ping Wang (58).

• 2023 Naoto Kimura, Atsushi Takayasu, Tsuyoshi Takagi (59).

• 2023 Daniel J. Bernstein, Tung Chou (60)

• 2023 Sreyosi Bhattacharyya, Palash Sarkar (61).

• 2024 Léo Ducas, Andre Esser, Simona Etinski, Elena Kirshanova (62).

• 2024 Shintaro Narisada, Shusaku Uemura, Hiroki Okada, Hiroki Furue, Yusuke

Aikawa, Kazuhide Fukushima (63).

All the above mentioned papers are focusing on the most effective attack strategy

known : ISD attack. McEliece CBC has shown remarkably stable security against all

these attacks.

Though there are also many papers studying attacks that instead recover McEliece’s

private key from the public key G like Sendrier’s “support splitting” algorithm (9),

ISD remains the fastest attacking strategy.

Various studies about the possibility of successful effects on the Goppa code by the

attack strategies successful to other codes consistently show that McEliece’s system is

27

far beyond all known attacks.

3.3.1 CCA Vulnerability of McEliece - Sloppy Alice Attacks

In practice more than one-wayness is required. an attacker can try to exploit the

specific structures inherent in the message to guess the plaintext or can try sending

modified ciphertexts to learn from the reactions of the sender. To be secure against

such attacks is known as INDistinguishability under adaptive Chosen Ciphertext

Attack(IND-CCA 2) . Though OW CPA security of Goppa-code McEliece has

withstood four decades of cryptanalysis, CCA vulnerability has been found for the

cryptosystem. One of this is against Sloppy Alice Attack formulated by Verheul,

Doumen, Tilborg (12).

Sloppy Alice Attack : The Sloppy Alice attack assumes that the decoding algorithm

to satisfy the Maximum Error Property (MEP) : that is on input of a vector v, the

decoding algorithm will either return a codeword c at a distance ≤ t to v or it will

return an error message.

The formulation is as follows.

Suppose Eve, attacker intercepts a ciphertext v = mG′ + e, while Alice was sending it

to Bob, where G′ is the public generator matrix, sent by Alice to Bob. Then Eve:

1. increases the number of errors made by Alice to exactly t by changing a random

coordinate (without any repetition in the coordinates) and sending the resulting

codeword to Bob until an error message is returned. This means that the

message prior to the error message has the maximum number of decodable

errors.

2. determines enough error-free coordinates: .Having identified a message with

exactly t errors, Eve randomly changes coordinates, other than those used in

the previous step, and checks with Bob until an error message is returned again.

This shows that the last coordinate was error-free before the change.

3. determines the plaintext by solving v = mG, using Gaussian elimination on the

28

error-free columns identified as above.

3.4 Niederreiter Cryptosystem

3.4.1 Introduction

The McEliece system has prompted a lot of followup work. This includes a “dual”

variant of the McEliece Cryptosystem published by Harald Niederreiter in 1986 (8)

improving efficiency while preserving the security. Originally this system used

Genealized Reed Solomon (GRS) codes, which later turned out to be not a suitable

choice as the presence of structural attack on them as shown by Sidelnikov and

Shestakov (43) in 1992; then came another Niederreiter’s system with the same

Goppa codes as used by McEliece. It had the same security as McEliece’s system(11).

Niederreiter’s system differs from McEliece’s system in public-key structure,

encryption mechanism, and decryption mechanism.

3.4.2 Outline of the Niederreiter cryptosystem

The Public key:

• Let H′ be the parity check matrix of a Goppa code Γ = (g, α0, . . . , αn) of length n

and dimension k = n−mt.

• Let S be a random (n− k)× (n− k) invertible matrix and P, a random n× n

permutation matrix.

• Define H := SH′P ∈ Fn−k×n
2 .

• H is the public key.

The Secret key:

• The triple (H′, S, P) is the secret key.

Encryption:

29

• Let e ∈ Fn
2 be the plaintext,with wH(e) = t.

• The ciphertext is defined as: y = He. Clearly recovering y is solving a

syndrome decoding problem for random code which is NP complete.

Decryption:

• Compute y′ = S−1y = H′Pe.

• As wH(Pe) = t, the efficient syndrome decoder for H′ can obtain e′ such that

H′e′ = y′ .

• Extract plaintext e = P−1m′.

So, mainly there was two modifications.

1. Instead of using a generator matrix of a random binary Goppa code, a parity

check matrix has been used. This shows equivalence because one can easily

compute parity check matrix in systematic from a generator matrix in

systematic form and vice versa.

2. The inversion problem in McEliece CBC was to compute a uniform random

input (a, e) given G and the ciphertext Ga + e, whereas Niederreiter’s inversion

problem is to compute a uniform random input e given H and the ciphertext

He. Any attack recovering e from He can be used to recover a, e from Ga + e for

the same Goppa code. Multiply H to Ga + e and we will get HGa + He = He. If

we can compute e from He then we can subtract e from Ga + e and use linear

algebra to get a from G . This shows the equivalence in security. Hence,

Niederreiter dual version is also OW-CPA.

But it has also CCA vulnerabilities. The Classic McEliece PKE/KEM achieves

IND-CCA2.

30

3.5 The Classic McEliece PKE/KEM

Conversion of a OW-CPA PKE into a KEM , IND-CCA2 secure against all Random

Oracle Model attacks is well known. This conversion is tight preserving the security

level under two assumptions

1. PKE is deterministic

2. The PKE has no decryption failure for valid ciphertext.

Both of these assumptions are met by McEliece CBC ,hence Niederreiter dual

version. Recent studies(13) show possibility of achieving similar tightness against

broader class of Quantum Random Oracle Model(QROM) attacks.

The Classic McEliece KEM is designed to be IND-CCA2 secure from Niederreiter’s

dual version of McEliece CBC, which is OW-CPA secure PKE. KEM-DEM

composition (44) produces a PKE with IND-CCA2 security. To construct KEM

• The session key as a hash of a uniform random input e is computed.

• Ciphertext is the original ciphertext plus a “confirmation”: another

cryptographic hash of e.

• After using the private key to compute e from a ciphertext, The ciphertext is

recomputed (including the confirmation) and is checked if it matches.

• If decryption fails (i.e., if computing e fails or the recomputed ciphertext does

not match), Instead of returning a KEM failure, a pseudorandom function of the

ciphertext, specifically a cryptographic hash of a separate private key and the

ciphertext is returned.

The intuitive arguments for the above mentioned practices discussed in the Classic

McEliece submission (7) are

• A KEM construction published in a classic 2003 paper by Dent (14) features a

tight proof of security against ROM attacks, assuming OW-CPA security of the

31

underlying PKE. This theorem relies on the first three items in the list above.

• A much more recent KEM construction by Saito, Xagawa, and Yamakawa (13)

features a tight proof of security against the broader class of QROM attacks,

under somewhat stronger assumptions. This theorem relies on the first, third,

and fourth items.

3.5.1 The Classic McEliece Parameters:

As mentioned in the Classic McEliece submission (7), a Classic McEliece (CM)

parameter set specifies the following:

• A positive integer m. This also defines a parameter q = 2m.

• A positive integer n with n ≤ q.

• A positive integer t > 1 with mt < n. This also defines a parameter k = n−mt.

• A monic irreducible polynomial f (z) ∈ F2[z] of degree m. This defines a

representation F2[z]/ f (z) of the field Fq.

• • A positive integer l and a cryptographic hash function H that outputs l bits

3.5.2 Design:

Key Generation: Given a set of Classic McEliece(CM) parameters, a user generates a

CM key pair as follows:

1. 1. Generate a uniform random monic irreducible polynomial g(x) ∈ Fq[x] of

degree t.

2. 2. Select a uniform random sequence (α1, α2, . . . , αn) of n distinct elements of Fq.

3. 3. Compute the tn matrix H̃ = hi,j over Fq, where hi,j = αi−1
j /g(αj) for

i = 1, . . . , t and j = 1, . . . , n.

4. 4. Form an mt× n matrix Ĥ over F2 by replacing each entry

c0 + c1z + · · ·+ cm−1zm−1 of H̃ with a column of t bits c0, c1, . . . , cm−1.

32

5. 5. Reduce Ĥ to systematic form (In−k | T), where In−k is an (n− k)× (n− k)

identity matrix. If this fails, go back to Step 1.

6. 6. Generate a uniform random n-bit string s.

Public Key: The binary (n− k)× k matrix T such that H = [In−k | T] is the parity

check matrix of a Goppa code Γ = (g, α0, . . . , αn) of length n and dimension

k = n−mt.

Private Key: The tuple (s, Γ) , where s is a uniform random n bit string.

Encoding Subroutine: Inputs a weight t column vector e ∈ Fn
2 ; public key

T ∈ F
(n−k)×k
2 , and returns a vector c0 ∈ Fn−k

2 as follows:

1. Define H = [In−k | T].

2. Compute c0 = He ∈ Fn−k
2 .

Decoding Subroutine:

1. Extend c0 to v = (c0, 0, . . . , 0) ∈ Fn
2 by appending k zeroes.

2. Find the unique codeword c in the Goppa code Γ, from the private key (s, Γ), at

a distance ≤ t from v.

3. If there is no such codeword, return ⊥.

4. Set e = v + c.

5. If wt(e) = t and c0 = He, return e; else return ⊥.

Encapsulation Subroutine: Generates a session key K and its ciphertext C using a

cryptographic hash function H with an l-bit output:

1. Generate uniform random vector e ∈ Fn
2 of weight t.

2. Use encoding subroutine on e and T to compute c0.

3. Compute c1 = H(2, e). Define C = (c0, c1).

4. Compute key K = H(1, e, C).

33

5. Output (K, C).

Decapsulation Subroutine: Recovering the session key K from the ciphertext

C.

1. Split C as c0 ∈ Fn−k
2 and c1 ∈ Fl

2.

2. Set b = 1. Use decoding subroutine on (c0, Γ) to compute e. If decoding returns

⊥, set e = s and b = 0.

3. Compute c′1 = H(2, e); if c′1 ̸= c1, set e = s and b = 0.

4. Compute K = H(b, e, C).

5. Output session key K.

If C is a legitimate ciphertext then C = (c0, c1) with c0 = He for some e ∈ Fn
2 of

weight t and c1 = H(2, e). The decoding algorithm will return e and the c′1 = c1 check

will pass, thus b = 1 and K matches the session key computed in encapsulation.

3.5.3 Cryptanalysis

As mentioned earlier, breaking one wayness is same as solving the inversion problem

of McEliece PKE. One of the best possible inversion attack strategy is ISD attacks,

which is already discussed on the context of security of McEliece CBC. Other known

attacks are key recovery and chosen-ciphertext attacks.

Key Recovery This is another inversion approach is to recover of the private key

Γ = (g, α1, . . . , αn). This isn’t as difficult as brute force attack. Partial key exposure is

possible such as recovery of Goppa points from the Goppa polynomial or vice versa

(15). But the claim is due to the choice of Classic McEliece parameters the

possibilities of Goppa points is too huge to implement such attacks.

Chosen-Ciphertext attack A traditional approach (Little similar to Sloppy Alice

Attack) to chosen-ciphertext attacks against the McEliece system is to add two errors

to a ciphertext v = Gm + a which is same as adding two errors to the term e.

Successful decryption is possible if and only if the weight of the resulting vector is t.

34

For that to happen there must be the case where one of the error reduces the weight

having same coordinate in that position while the other makes the weight t again as

the term wH(e) = t. e can be obtained from the patterns of decryption failure.

The Classic McEliece PKE/KEM claims to be secure against such attacks because of

two reasons.

1. The KEM decapsulation stage requires the ciphertext to include a hash of e as a

confirmation, and the attacker has no way to compute the hash of a modified

version of e without knowing e in the first place.

2. The KEM does not reveal decryption failures: the modified ciphertext will

produce an unpredictable session key, whether or not the modified error vector

has weight t. So finding e is no longer possible from the patterns of decryption

failure.

3.6 Partial Information Attack on Classic McEliece

In 2022, Kirshanova and May reported algebraic attacks on the McEliece CBC

assuming partial knowledge of the secret key (6). They proposed polynomial time

algorithms for three cases:

1. Only tm + 1 Goppa points together with the public key is enough to recover the

Goppa polynomial g(x) in O(n3) operations in F2m . As, with typical McEliece

parameters, tm + 1 ∼ n
4 , the knowledge of only a quarter of the Goppa points is

enough to recover the Goppa polynomial.

2. With the knowledge of any tm + 1 points αi and the Goppa polynomial, such

that the submatrix of the public parity check matrix indexed by the known

points has full rank, the remaining Goppa points can be recovered in

polynomial time.

3. As a final refinement, the knowledge of only t(m− 2) + 1 Goppa points along

with the Goppa polynomial, suffices to recover the full key.

35

This represents a potential paradigm shift in attacks on the McEliece CBC. However

it is not known whether this methodology is directly applicable for attacking the

Classic McEliece PKE/KEM (Public-key Encryption/Key-encapsulation

Mechanism)(7).

Before proceeding to the algorithms for those cases, we shall have a look on an

interesting feature of Goppa codes, which is The binary irreducible Goppa code

C(L, g) satisfies

C(L, g) = C(L, g2).

. The proof is in the paper (6). From this result Kirshanova and May proposed an

algorithm, with the name TEST-GOPPA-POLYNOMIAL to test whether a potential

Goppa polynomial satisfies the equation

C(L, g) =

{
c ∈ Fn

2 :
n

∑
i=1

ci

x− αi
≡ 0 mod g(x)

}
.

for all codewords in the span of some projected Goppa code. This algorithm

TEST-GOPPA-POLYNOMIAL is used in the algorithms for the three cases. Another

notation used in these algorithms is of the index set. Let H = (h1 . . . hn) ∈ Ftm×n
2 be a

matrix with n columns hi ∈ Ftm
2 . Let I ⊂ {1, . . . , n} be an index set. Then we denote

by H[I] the projection of H’s to the columns defined by I = {i1, . . . , iℓ}, i.e.,

H[I] = (hi1 , . . . , hiℓ).

The respective algorithms for the above mentioned cases are:

Algorithm for case-1:

• Getting Public key Hpub ∈ Ftm×n
2 , index set I ⊂ {1, . . . , n} with |I| > tm, Goppa

points ai ∈ F2m with i ∈ I as input, Compute G[I] ∈ F(ℓ−rank(H))×ℓ
2 as the right

kernel of Hpub[I].

36

• For some non-zero m ∈ Fℓ−rank(H)
2 set c = mG[I]T ∈ Fℓ

2.

• Construct c by appending to c zeros in all positions {1, . . . , n} \ I.

• Compute f (x) = ∑i∈I ci ∏j∈I\{i}(x− aj) ∈ F2m [x] and factor f (x) into

irreducible factors over F2m . Set L = ∅

• For all irreducible degree-t factors g̃(x) such that g̃(x)2 divides f (x) if

Test-Goppa-Polynomial(g̃(x), I, G[I]T) = 1 , then L = L ∪ {g̃(x)}.

Algorithm for case-2:

• INPUT: public key Hpub ∈ Ftm×n
2 , Goppa polynomial g(x), index set I with

ℓ := |I| > tm and rank(Hpub[I]) = tm, Goppa points αi ∈ F2m with

i ∈ I ⊂ {1, . . . , n}.

• While I ̸= {1, . . . , n} Pick r ∈ {1, . . . , n} \ I.

• Find c ∈ Ftm
2m that solves the linear equation system Hpub[I]c = Hpub[{r}].

• Compute f (x) =
(

∑i∈I
ci

x−αi

)−1
mod g(x) .

• If f (x) is of the form x− αr

• Output αr,

• Else Output FAIL.

• Set I ← I ∪ {r}.

It is clear that using the above mentioned two algorithms together we can recover the

Goppa polynomial and remaining Goppa points from only tm + 1 Goppa points and

the public key.

Algorithm for case-3:

Let Ī = {1, . . . , n} \ I be the complement of I, and Ic = I ∩ supp(c), Īc = Ī ∩ supp(c).

37

where supp(c) is the set of coordinates with non zero entries. It follows that

∑
i∈I

ci

x− αi
≡∑

i∈ Ī

ci

x− αi
mod g2(x),

or equivalently,

∑
i∈Ic

ci

x− αi
≡ ∑

i∈ Īc

1
x− αi

mod g2(x).

Let h(x) = ∑i∈Ic
ci

x−αi
. And another polynomial p(x) is defined as

p(x) := ∏
i∈ Īc

(x− αi) of deg(p(x)) = | Īc| ≤ t.

The algorithm is as follows

• On input public key Hpub ∈ Ftm×n
2 , Goppa polynomial g(x), index set I, Goppa

points αi ∈ F2m with i ∈ I ⊂ {1, . . . , n}, c ∈ C(L, g) such that k := |Ic| ≤ t.

Derive M ∈ F2t×2k−1
2m and b ∈ F2t

2m such that My = b over F2m .

• If My = b has a unique solution y = (p0, . . . , pk−1, p′0, . . . , p′k−2) ∈ F22k−1

• Then p(x)← xk + ∑k−1
i=0 pixi ∈ F2m [x]

• Factor p(x) over F2m [x] into linear factors p(x) = ∏k
i=1(x− αi).

• Return AIc ← {α′1, . . . , α′k}.

• Else Output FAIL.

For detailed explanations, proofs and results of these algorithms (6) is referred.

38

4 | BIKE

4.1 Introduction

BIKE (72) is a Key Encapsulation Mechanism (KEM) that uses Quasi-Cyclic Moderate

Density Parity-Check (QC-MDPC) codes that is one of the fourth round contenders

in NIST PQC. BIKE is based on the Niederreiter framework, hence encoding is done

with the parity check matrix in its systematic format. Using Niederreiter framework

instead of analogous McEliece framework reduces the communication bandwidth to

half with the trade-off of costlier polynomial inversion for key generation.

After the second round in NIST the proposal for BIKE included six variants: BIKE-1,

BIKE-2, BIKE-3, BIKE-1-CCA, BIKE-2-CCA, and BIKE-3-CCA. Following NIST’s

recommendation to simplify the proposal, the BIKE designers consolidated it into a

single version, BIKE-2-CCA, now simply called BIKE. This version is different from

the previously proposed BIKE-2-CCA (after round 2) and has three parameter sets

(r, w, t), providing security for three levels :- Level-1 ,Level-3, Level-5. BIKE was

initially proposed for ephemeral key use (using a public/private key pair only once.)

giving forward secrecy. For such usage achieving IND-CPA is sufficient. It has now

been claimed to also support static key use (using same keys indefinitely) which

require IND-CCA security. The IND-CPA security of BIKE is based upon the well

studied quasi-cyclic variants of computationally hard code-based problems: the

decisional Quasi-cyclic Syndrome Decoding (QCSD) and the decisional Quasi-cyclic

Codeword Finding (QCCF) problems. BIKE is claimed to have IND-CCA security

with the adaptation of Fujisaki-Okamoto transformation (73)(from δ- correct PKE to

39

an IND-CCA KEM) without compromising the performance. The decoder associated

with BIKE is Black-Gray-Flip (BGF) (74) with very low decryption failure rate(DFR).

The minimum memory requirements for BIKE:

Quantity Size Level 1 Level 3 Level 5
Private key ℓ+ w · ⌈log2(r)⌉ 2,244 3,346 4,640
Public key r 12,323 24,659 40,973
Ciphertext r + ℓ 12,579 24,915 41,229

Table 4.1: Size of Keys and Ciphertext for Different Security Levels

4.2 Instance of Niederreiter scheme with QC-MDPC

The McEliece scheme can be implemented with QC-MDPC codes. A public key

encryption scheme with QC-MDPC codes in the Niederreiter template is discussed

below.

Private Key: (h0, h1) ∈ Hw

Public Key: h = h1h−1
0 ∈ R

Encryption: (e0, e1) ∈ Et 7→ s = e0 + e1h ∈ R

Decryption: s ∈ R 7→ decoder(sh0, h0, h1) ∈ Et

This system is based on the hardness of the following two problems

for security of:

Key: distinguish h1h−1
0 from random, (h0, h1)

$←− Hw

Message: distinguish (e0 + e1h, h) from random, ((e0, e1), h) $←− Et ×R

4.3 Overview of BIKE

4.3.1 Specification

1. System Parameters: Based on the required level of security (denoted by λ),

system parameters r, w, l, and t are determined.

• r is the length of circulant blocks (equivalent to p as discussed earlier).

40

Given r = N/n0 and n0 = 2 in BIKE, we have N = 2r. Moreover, since

r = N − K, we have N = 2r or r = K. It should be sufficiently large to

result in (together with w and t) a low level of DFR such that the required

security level λ is finally met (in BIKE, three security levels 1, 3, and 5 have

been considered, corresponding to the security of AES-128, AES-192, and

AES-256, respectively. To satisfy each level, a separate set of system

parameters are recommended).

• w is the row weight of the parity check matrix which is an even positive

integer (i.e., w/2 is odd).

• t is the Hamming weight of the error vector which is a positive integer.

• l is the size of the generated (shared) symmetric key which is a positive

integer.

Suggested parameters and DFR for BIKE for different security level are :

Table 4.2: Security Parameters and DFR

Security Level r w t DFR

Level 1 12,323 142 134 2−128

Level 3 24,659 206 199 2−192

Level 5 40,973 274 264 2−256

The DFR values are based on BGF decoder and BGF decoder parameters

(Discussed later in this chapter) for three security levels namely level 1,3 and 5 ,

corresponding to the security of AES-128, AES-192, and AES-256, respectively

are

• For Level 1:

– Number of Iterations (NbIter): 5

– τ: 3

– threshold(S, i) = max(⌊0.0069722 · S + 13.530⌋, 36)

41

• For Level 3:

– Number of Iterations (NbIter): 5

– τ: 3

– threshold(S, i) = max(⌊0.005265 · S + 15.2588⌋, 52)

• For Level 5:

– Number of Iterations (NbIter): 5

– τ: 3

– threshold(S, i) = max(⌊0.00402312 · S + 17.8785⌋, 69)

2. Hash Functions: In BIKE, three hash functionsH, L, and K are uniformly

selected at random that are modeled as random oracles. H takes an l-bit

sequence and generates a 2r-bit sequence of Hamming weight t (i.e.,

H : {0, 1}l → {0, 1}2r). It is generated by the algorithm WSHAKE256-PRF(seed,

len, wt) mentioned in the context of pseudorandom bit generation. Similarly for

L and K we have L : {0, 1}r → {0, 1}r and K : {0, 1}2r → {0, 1}l, respectively.

Select a decoder decoder, which takes as input s ∈ R and (h0, h1) ∈ Hw. The call

decoder(s, h0, h1) returns either (e0, e1) ∈ R2 such that e0h0 + e1h1 = s, or the failure

symbol ⊥. The decoding failure rate is defined as:

DFR(decoder) = Pr [(e0, e1) ̸= decoder(e0h0 + e1h1, h0, h1)]

when ((h0, h1), (e0, e1)) is drawn uniformly from Hw × Et.

4.3.2 BIKE KEM

Key Generation:

• Private Key:Generate h0, h1 ← R both of weight |h0| = |h1| = w/2, where R is a

cyclic polynomial ring F2[X]/(Xr − 1) (equivalently, h0 and h1 can be

42

considered as r× 1 column vectors). Then, select σ at random (uniformly) from

the message spaceM = 0, 1l. Finally, set the private key as sk = (h0, h1, σ).

• Public Key: : Compute h = h1.h−1
0 and send it to the other party as the public

key pk .

Encapsulation subroutine: h 7→ K, c

Input: h ∈ R

Output: K ∈ K, c ∈ R×M

1: m R←M

2: (e0, e1)← H(m)

3: c← (e0 + e1h, m⊕L(e0, e1))

4: K ← K(m, c)

Decapsulation subroutine: (h0, h1, σ), c 7→ K

Input: ((h0, h1, σ) ∈ Hw ×M, c = (c0, c1) ∈ R×M)

Output: K ∈ K

1: e′ ← decoder(c0h0, h0, h1)

2: m′ ← c1 ⊕L(e′)

3: if e′ = H(m′) then K ← K(m′, c) else K ← K(σ, c)

with the convention ⊥= (0, 0)

4.3.3 Decoder

Black-Gray-Flip (BGF) decoder has been used in BIKE. The BGF decoder is a variant

of the Black-Gray (BG) decoder, which is a complex version of the BF decoder. The

main difference between BG and the original BF decoder is that a BG decoder may

flip back the value of a bit (variable) node (or an error bit, equivalently) if it is

convinced that the bit was mistakenly flipped in the previous iteration. A simple

version is the Time-to-Live (TTL) mechanism. However, in BG, a more complex

version of TTL is used. The decoder creates two lists of bit nodes (called Black and

43

Gray lists) to keep track of the uncertain bit nodes to be flipped. The Black list keeps

track of the flipped bit nodes while the Gray list keeps track of the bit nodes with

unsatisfied parity checks close to the threshold without exceeding it.

In every iteration of the BG decoder, three steps are performed:

1. The decoder decides if a bit node should be flipped by comparing unsatisfied

parity checks with a threshold b (similar to the BF decoder). It computes black

and gray lists.

2. Another BF iteration considers only black list bit nodes, updating values if

unsatisfied parity checks exceed the threshold
⌈

d+1
2

⌉
+ 1 (where d = w

2).

3. Similarly, a BF iteration for gray list bit nodes is performed.

If the syndrome is zero, the error vector is returned; otherwise, iterations continue

until the maximum is reached.

The BGF decoder, used in BIKE, starts with one BG iteration followed by several BF

iterations until the syndrome is zero or the maximum iterations are reached. BGF

requires fewer steps than BG to achieve lower DFR. For NI iterations, BG needs

3× NI steps, whereas BGF needs 3× (NI − 1).

The BGF decoder is the most efficient BF variant in terms of DFR and complexity. In

BIKE, thresholds for BGF are derived from extensive simulations and are crucial

system parameters, targeting DFRs of 2−128, 2−192, and 2−256 for respective security

levels.

Inputs to the BGF decoder are: a vector s ∈ Fr
2 and a matrix H ∈ Fr×n

2 . The matrix H

is a of the form [H0 | H1] , where H0 and H1 are circulant blocks derived from

(h0, h1) ∈ Hw. The algorithm is defined for every parameter sets (r, w, t,) and uses

additional parameters

1. NbIter: the number of iterations to be performed.

2. τ : a threshold gap used to determined the size of the ’gray’ set of positions

44

3. Threshold(S, i) : This is the threshold function and used as a threshold selection

rule .It depends on the syndrome weight S, the iteration number i, and various

system parameters.

4. ctr(H, s, j). This function computes a quantity referred to as the counter (also

known as the number of unsatisfied parity-checks) of j. It is the number of ’1’

(set bits) that appear in the same position in the syndrome s and in the j-th

column of the matrix H.

The BGF algorithm is the following.

Algorithm 1 Black-Gray-Flip (BGF)
• Parameters: r, w, t, d = w/2, n = 2r; NbIter, τ, threshold (see text for details)
• Require: s ∈ Fr, H ∈ Fn×k

2
• e← 0n

• for i = 1, . . . , NbIter do
– T ← threshold(s + eHT, i)
– eblack, egray ← BFIter(s + eHT, e, T, H)
– if i = 1 then

* e′ ← eblack
– else

* e′ ← BFMaskedIter(s + eHT, eblack, (d + 1)/2 + 1, H)

* e′′ ← BFMaskedIter(s + eHT, egray, (d + 1)/2 + 1, H)

– if s = eHT then
* return e

– else
* return ⊥

• end for
• return e
• procedure BFIter (s, e, T, H)

– for j = 0, . . . , n− 1 do
* if ctr(H∗,js) ≥ T then

· ej ← ej + 1
· if ctr(H∗,js) ≥ T − τ then gray← gray + 1
· else black← black + 1

• return eblack, egray
• procedure BFMaskedIter (s, e, mask, T, H)

– for j = 0, . . . , n− 1 do
* if ctr(H∗,js) ≥ T then

· ej ← ej ⊕maskj
• return e

45

4.3.4 Pseudo-random Bits Generation

Key Generation, Encapsulation, and Decapsulation of BIKE KEM involve

pseudorandom bits stream generation. The algorithms are based on SHAKE256. With

an input of 256 bits seed SHAKE256 outputs µ blocks each of 1088 bits . The output

for that seed is denoted by SHAKE256(seed,µ,)., the least significant ν bits of

SHAKE256(seed, ceil(ν/1344)) are denoted by SHAKE256-Stream(seed, ν).

The pseudo-random bit generation algorithm with no constraints on the output is

GenPseudoRand(seed, len) : It takes 256-bit seed as input and outputs

SHAKE256-Stream(seed, len). The pseudo-random bit generation algorithm with a

specific weight w output is WSHAKE256-PRF(seed, len, wt) which on input: seed

(32 bytes), len, wt outputs a list (wlist) of wt distinct elements in 0, . . . , len - 1.

• : wlist← () [() is an empty list]

• s0, . . . , swt−1 ← SHAKE256-Stream(seed, 32 · wt)

• For i = (wt− 1), . . . , 0 do (i decreasing from wt− 1 to 0):

• pos← i + b(len− i) · si
2

• wlist← wlist, (pos ∈ wlist) ? i : pos

6. Return wlist

This algorithm is used in the key generation.

4.4 Security of BIKE

The proof of IND-CPA security of the BIKE depends on the difficulty of solving the

decisional Quasi-cyclic Syndrome Decoding (QCSD) and the decisional Quasi-cyclic

Codeword Finding (QCCF) problems (discussed in the chapter preliminaries). The

best known algorithms for solving these problems are information set decoding (ISD)

and its variants discussed in the chapter- Classic McEliece.The work factor for solving

46

linear decoding problems using ISD was shown to be asymptotically equivalent

across all variants of ISD.

The system parameters for BIKE are selected according to the following

guidelines:

• BIKE Message Security:

WF(QCSDρ) ≈ WFISD(2r, r, t)√
r

• BIKE Key Security:

WF(QCCFρ,w) ≈ WFISD(2r, r, w)

r

where WF(QCSDρ) and WF(QCCFρ,w) denote the average cost for finding a witness

for Problems QCSD and QCCF (mentioned in preliminaries), respectively and WFISD

is the average cost of the best known ISD variant for the generic decoding of linear

codes.

For security against CCA , another factor is crucial:- correctness of the decoder. As

discussed earlier , the decoder used in BIKE (in the decoding step of decapsulation) is

BGF decoder, which has a non-zero probability of decoding failure. The decoder is

called δ correct if probability of decoding failure is at most δ over all message and key

space. With non-negligible the scheme can be prone to reaction attacks. With BGF in

use the current version of BIKE has been claimed to be secure against CCA by the

BIKE team.

4.4.1 OW-CPA Security of BIKE:

BIKE is one way secure against chosen plaintext attack(OW-CPA). To prove the one

way security of BIKE, it is enough to show the generalised OW-CPA security of the

PKE instance of Niederreiter like scheme with QC-MDPC(discussed earlier in this

47

chapter[4.2]). This security proof is collected the the BIKE (72) submission for the 4th

round.

Game G3 (OW-CPA) Game G4 D(h)

1: (h0, h1)
$← Hw

2: h← h1h−1
0

3: (e∗0 , e∗1)
$← Et

4: s∗ ← e∗0 + e∗1h
5: e← A′(h, s∗)
6: return QCSD(e, h, s∗)

1: (h0, h1)
$← Hw

2: h $← Rodd

3: (e0, e∗1)
$← Et

4: s∗ ← e0 + e∗1h
5: e← A′(h, s∗)
6: return QCSD(e, h, s∗)

1:
2:

3: (e∗0 , e∗1)
$← Et

4: s∗ ← e∗0 + e∗1h
5: e← A′(h, s∗)
6: return QCSD(e, h, s∗)

By the attack game we are going to show that If there exist an OW-CPA adversary A′

for the PKE , then there exist a distinguisher D against QCCF (quasi cyclic codeword

finding problem) such that

AdvPKE
OW−CPA(A′) ≤ AdvPKE

IND−QCCF(D) + AdvPKE
OW−QCSD(A”0) Proof.

1. The difference between G3 and G4 lies solely on the way h is selected. The

distinguisher D defined in Table 11 verifies

AdvG3(A′) = Pr
[

D(h, h1
2) /∈ (h0, h1) ∈ H2

]
AdvG4(A′) = Pr

[
D(h, h1

2) | h← Rbad

]

and thus ∣∣∣AdvG3(A′)−AdvG4(A′)
∣∣∣ = AdvH2

IND(D).

2. The adversary A′ can be viewed as a decoder against QSD. It verifies

AdvG4(A′) = AdvG4
QSD(A′).

Finally, since G3 is the OW-CPA game against PKE,

AdvRbad
OW-CPA(A′) ≤ AdvH2

IND-QSD(D) + AdvG4
OW(A′).

This proves the one wayness of BIKE.

48

5 | Conclusion

Both Classic McEliece and BIKE represent robust approaches to post-quantum

cryptography, each with its strengths and potential applications. Classic McEliece

offers a mature and well-understood solution with a long history of security analysis,

while BIKE introduces innovative techniques that promise efficient implementation

and strong theoretical security. The choice between these schemes would depend on

specific deployment requirements, such as performance constraints and risk

tolerance, highlighting the diversity and depth of the NIST PQC standardization

process.. A parameter set for a proposal is said to match the security level of category

one, three or five if the scheme instantiated with the corresponding parameters is at

least as hard to break as AES-128, AES-192 or AES-256 respectively. Classic McEliece

presents one parameter set for each level 1 and level 3 security and three different

parameter sets for level 5.BIKE has one parameter set for each security level. Here is

some comparison of these two with respect to cryptographic parameters size,

performance efficiencies and bit complexity estimates for ISD attack and its variant

attacks on all the parameter sets submitted, collected from the paper Syndrome

Decoding Estimator published by Andre Esser and Emanuele Bellini (50).

Table 5.1: Cryptographic parameters of the Classic McEliece algorithm

NIST level Designation Public key size (bytes) Private key size (bytes) Ciphertext size (bytes) Session key size (bytes)
L1 mceliece348864 261120 6492 96 32
L3 mceliece460896 524160 13608 156 32

L5a mceliece6688128 1044992 13932 208 32
L5b mceliece6960119 1047319 13948 194 32
L5c mceliece8192128 1357824 14160 256 32

As for performance efficiency in terms of computational costs, Classic McEliece

required significantly more computational resources for a key generation across all

49

Table 5.2: Performance indicators of the Classic McEliece algorithm (AVX512), cycles

NIST level Designation KeyGen Encaps Decaps
L1 mceliece348864 56705880 36457 127140
L3 mceliece460896 153626194 76086 263046
L5a mceliece6688128 443476968 171442 306212
L5b mceliece6960119 316995472 144678 286596
L5c mceliece8192128 486159290 156945 310097

Table 5.3: Cryptographic and performance metrics of the BIKE algorithm

NIST Level Public key (bits) Private key (bits) Ciphertext (bits) Performance Indicators (AVX512-enabled) (cycles)
KeyGen Encaps Decaps

L1 12323 2244 12579 589 97 132
L3 24659 3346 24915 1823 223 387
L5 40973 4640 41229 3659 400 822

security levels. This aspect might limit its adoption in environments where

computational power is a primary concern, despite its efficiency in the encapsulation

and decapsulation processes. Meanwhile, BIKE demonstrated an overall balanced

performance profile with relative efficiencies across all procedures.

The complexities listed are the best complexities obtained when considering the

logarithmic and cube-root memory access model. First table shows the complexities

Classic McEliece parameter sets and the next one shows for BIKE parameter sets.

Table 5.4: bit estimates for Classic McEliece

Category 1 (n = 3488) Category 3 (n = 4608) Category 5 (n = 6688) Category 5 (n = 6960) Category 5 (n = 8192)
T M T M T M T M T M

Prange 173 22 217 23 296 24 297 24 334 24
Stern 151 50 193 60 268 80 268 90 303 109

Both-May 143 88 182 101 250 136 249 137 281 141
May-Ozerov 141 89 180 113 246 146 246 140 276 144

B.JMM 142 97 183 121 248 160 248 163 278 189

It should be noted that the parameter set intended for level-3 security in the Classic

McEliece submission falls short of the desired security level after relevant analysis.

Meanwhile, BIKE continues to show promise in meeting the targeted security levels.

Both being a tough contender in the 4th round, Classic McEliece and BIKE has

different advantages in different scenarios. In scenarios where computational

resources and storage are not stringent, Classic McEliece might be an appropriate

choice due to its relative performance efficiency. Conversely, in situations with strict

50

Table 5.5: Bit estimates for BIKE

Category 1 Category 3 Category 5
(n = 24646) (n = 49318) (n = 81946)

T M T M T M

Prange 167 28 235 30 301 32
Stern 146 40 211 43 277 45
Both-May 147 38 212 41 276 63
May-Ozerov 146 55 211 57 276 61
BJMM 147 38 211 59 277 63

size limitations, BIKE might be the more suitable algorithm.

51

Bibliography

[1] Robert J. McEliece. “A public-key cryptosystem based on algebraic coding

theory”, DSN Progress Report 42–44, pp. 114–116. (1978).

[2] Berlekamp, E.R., McEliece, R.J. and van Tilborg, H., “On the Inherent

Intractability of Certain Coding Problems,” IEEE Trans. Inform. Theory, IT-24,

(1978).

[3] Goppa, Valery Denisovich, “A new class of linear error-correcting codes”, Probl.

Inf. Transm. 6: 300–304, (1970).

[4] Eugene Prange. “The use of information sets in decoding cyclic codes." IRE

Transactions on Information Theory (1962).

[5] D. J. Bernstein, T. Lange, and C. Peters. “Attacking and defending the McEliece

cryptosystem”. In J. A. Buchmann and J. Ding, editors, PostQuantum

Cryptography, Second International Workshop, PQCrypto 2008, Cincinnati, OH,

USA, October 17-19, (2008).

[6] Elena Kirshanova, Alexander May. “Breaking Goppa-based McEliece with

hints." SCN (2022); Information and Computation, vol. 293, (2023).

[https://eprint.iacr.org/2022/525]

[7] Daniel J Bernstein et al. , “Classic McEliece: conservative code-based

cryptography”.

[https://https://classic.mceliece.org/nist/mceliece-submission-20221023.pdf]

(2022).

52

[8] Harald Niederreiter. "Knapsack-type cryptosystems and algebraic coding

theory." Problems of Control and Information Theory. 1986.

[9] Nicolas Sendrier. "Finding the permutation between equivalent linear codes:

The support splitting algorithm." IEEE Transactions on Information Theory.

2000.

[10] V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems based on

generalized ReedSolomon codes. Discrete Mathematics and Applications, 1992.

[11] Li Yuanxing, Robert H. Deng, and Xinmei Wang. On the equivalence of

mceliece’s and niederreiter’s public-key cryptosystems. IEEE Transactions on

Information Theory,:271-273, 1994.

[12] Eric R. Verheul, Jeroen M. Doumen, Henk C. A. van Tilborg. "Sloppy Alice

attacks! Adaptive chosen ciphertext attacks on the McEliece public-key

cryptosystem." Information, coding and mathematics. 2002.

[13] Tsunekazu Saito, Keita Xagawa, Takashi Yamakawa. "Tightly-secure

key-encapsulation mechanism in the quantum random oracle model." Eurocrypt

2018. https://eprint.iacr.org/2017/1005

[14] Alexander W. Dent. "A designer’s guide to KEMs." Cirencester 2003.

[https://eprint.iacr.org/200]

[15] Pierre Loidreau and Nicolas Sendrier. Weak keys in the McEliece public-key

cryptosystem. IEEE Trans. Information Theory, 47(3):1207–1211, 2001.

[16] Goppa, Valery Denisovich, “A new class of linear error-correcting codes”, Probl.

Inf. Transm. 6: 300–304, (1970)

[17] Nicholas J. Patterson, The algebraic decoding of Goppa codes, IEEE Transactions

on Information Theory 21 (1975), 203–207. DOI: 10.1109/ TIT.1975.1055350.

[18] Lee, P.J., Brickell, E.F. (1988). An Observation on the Security of McEliece’s

Public-Key Cryptosystem. In: Barstow, D., et al. Advances in Cryptology —

53

https://eprint.iacr.org/2017/1005
https://eprint.iacr.org/200

EUROCRYPT ’88. EUROCRYPT 1988. Lecture Notes in Computer Science, vol

330. Springer, Berlin, Heidelberg.

[19] Jacques Stern. A method for finding codewords of small weight. In G´erard D.

Cohen and Jacques Wolfmann, editors, Coding theory and applications, volume

388 of Lecture Notes in Computer Science, pages 106–113. Springer, New York,

1989.

[20] Daniel J. Bernstein, Tanja Lange, Christiane Peters. "Smaller decoding exponents:

ball-collision decoding." Crypto 2011. https://eprint.iacr.org/2010/585

[21] Alexander May, Alexander Meurer, Enrico Thomae. "Decoding random linear

codes in O(20.054n)." Asiacrypt 2011. https://www.cits.ruhr-uni-bochum.de/

imperia/md/content/may/paper/decoding.pdf

[22] Anja Becker, Antoine Joux, Alexander May, Alexander Meurer. "Decoding

random binary linear codes in 2n/20: How 1+1=0 improves information set

decoding." Eurocrypt 2012. https://www.cits.ruhr-uni-bochum.de/imperia/

md/content/may/paper/isd-extended.pdf

[23] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard

knapsacks. In EUROCRYPT’2010, pages 235–256, 2010.

[24] George C. Clark, Jr., and J. Bibb Cain. "Error-correcting coding for digital

communication." 1981. Credits Omura for an ISD attack.

[25] Jeffrey S. Leon. "A probabilistic algorithm for computing minimum weights of

large error-correcting codes." IEEE Transactions on Information Theory. 1988.

[26] Evgueni A. Krouk. "Decoding complexity bound for linear block codes."

Problemy Peredachi Informatsii. 1989. http://www.mathnet.ru/eng/ppi665

[27] Ilya I. Dumer. "Two decoding algorithms for linear codes." Problemy Peredachi

Informatsii. 1989. http://www.mathnet.ru/eng/ppi635

54

https://eprint.iacr.org/2010/585
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/decoding.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/decoding.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/isd-extended.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/isd-extended.pdf
http://www.mathnet.ru/eng/ppi665
http://www.mathnet.ru/eng/ppi635

[28] John T. Coffey, Rodney M. Goodman. "The complexity of information set

decoding." IEEE Transactions on Information Theory. 1990.

[29] Johan van Tilburg. "On the McEliece public-key cryptosystem." Crypto 1988,

published 1990

[30] Ilya I. Dumer. "On minimum distance decoding of linear codes." Fifth joint

Soviet-Swedish international workshop on information theory. 1991.

[31] John T. Coffey, Rodney M. Goodman, P. Farrell. "New approaches to reduced

complexity decoding." Discrete and Applied Mathematics. 1991.

[32] Herve Chabanne, Bernard Courteau. "Application de la méthode de décodage

itérative d’Omura à la cryptanalyse du système de McEliece." 1993.

[33] Florent Chabaud. "Asymptotic analysis of probabilistic algorithms for finding

short codewords." EUROCODE 1992, published 1993.

[34] Johan van Tilburg. "Security-analysis of a class of cryptosystems based on linear

error-correcting codes." PhD thesis, Technische Universiteit Eindhoven. 1994.

[35] Anne Canteuat, Herve Chabanne. "A further improvement of the work factor in

an attempt at breaking McEliece’s cryptosystem." EUROCODE 1994.

https://hal.inria.fr/inria-00074443

[36] Anne Canteaut, Florent Chabaud. "A new algorithm for finding

minimum-weight words in a linear code: application to McEliece’s

cryptosystem and to narrow-sense BCH codes of length 511." IEEE Transactions

on Information Theory. 1998. https://www.rocq.inria.fr/secret/Anne.

Canteaut/Publications/Canteaut_Chabaud98.pdf

[37] Anne Canteaut, Nicolas Sendrier. "Cryptanalysis of the original McEliece

cryptosystem." Asiacrypt 1998. https://www.rocq.inria.fr/secret/Anne.

Canteaut/Publications/Canteaut_Sendrier98.pdf

55

https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Chabaud98.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Chabaud98.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Sendrier98.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Sendrier98.pdf

[38] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Henk C. A. van Tilborg.

"Explicit bounds for generic decoding algorithms for code-based cryptography."

WCC 2009.

[39] Matthieu Finiasz, Nicolas Sendrier. "Security bounds for the design of

code-based cryptosystems." Asiacrypt 2009.

https://eprint.iacr.org/2009/414

[40] Yann Hamdaoui, Nicolas Sendrier. "A non asymptotic analysis of information

set decoding." 2013. https://eprint.iacr.org/2013/162

[41] Alexander May, Ilya Ozerov. "On computing nearest neighbors with

applications to decoding of binary linear codes." Eurocrypt 2015. https:

//www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/codes.pdf

[42] Rodolfo Canto Torres, Nicolas Sendrier. "Analysis of information set decoding

for a sub-linear error weight." PQCrypto 2016.

https://hal.inria.fr/hal-01244886v1/document

[43] Vladimir M. Sidelnikov, Sergey O. Shestakov. "On insecurity of cryptosystems

based on generalized Reed-Solomon codes." Discrete Mathematics and

Applications. 1992.

[44] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key

encryptionschemes secure against adaptive chosen ciphertext attack. SIAM J.

Comput., 33(1):167– 226, January 2004.

[45] Leif Both, Alexander May. "Optimizing BJMM with nearest neighbors: full

decoding in 22n/21 and McEliece security." WCC 2017.

[46] Ghazal Kachigar, Jean-Pierre Tillich. "Quantum information set decoding

algorithms." PQCrypto 2017.

[47] Elena Kirshanova. "Improved quantum information set decoding." PQCrypto

2018.

56

https://eprint.iacr.org/2009/414
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/codes.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/codes.pdf
https://hal.inria.fr/hal-01244886v1/document

[48] Leif Both, Alexander May. "Decoding linear codes with high error rate and its

impact for LPN security." PQCrypto 2018.

[49] Thomas Debris-Alazard, Léo Ducas, Wessel P. J. van Woerden. "An algorithmic

reduction theory for binary codes: LLL and more." IEEE Transactions on

Information Theory. 2022.

[50] Andre Esser, Emanuele Bellini. "Syndrome decoding estimator." PKC 2022.

[51] Andre Esser, Alexander May, Floyd Zweydinger. "McEliece needs a

break—solving McEliece-1284 and Quasi-Cyclic-2918 with modern ISD."

EUROCRYPT 2022.

[52] Andre Esser, Sergi Ramos-Calderer, Emanuele Bellini, José Ignacio Latorre, Marc

Manzano. "Hybrid decoding – classical-quantum trade-offs for information set

decoding." PQCrypto 2022.

[53] Andre Esser. "Revisiting nearest-neighbor-based information set decoding."

2022.

[54] Asuka Wakasugi, Mitsuru Tada. "Security analysis for BIKE, Classic McEliece

and HQC against the quantum ISD algorithms." 2022.

[55] Shintaro Narisada, Kazuhide Fukushima, Shinsaku Kiyomoto. "Multiparallel

MMT: faster ISD algorithm solving high-dimensional syndrome decoding

problem." IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences. 2023.

[56] Andre Esser, Floyd Zweydinger. "New time-memory trade-offs for subset sum –

Improving ISD in theory and practice." Eurocrypt 2023.

[57] Qian Guo, Thomas Johansson, Vu Nguyen. "A new sieving-style information-set

decoding algorithm." 2023.

57

[58] Yu Li, Li-Ping Wang. "Security analysis of the Classic McEliece, HQC and BIKE

schemes in low memory." Journal of Information Security and Applications.

2023. https://eprint.iacr.org/2023/428

[59] Naoto Kimura, Atsushi Takayasu, Tsuyoshi Takagi. "Memory-efficient quantum

information set decoding algorithm." ACISP 2023.

[60] Daniel J. Bernstein, Tung Chou. "CryptAttackTester: formalizing attack

analyses." 2023.

[61] Sreyosi Bhattacharyya, Palash Sarkar. "Concrete time/memory trade-offs in

generalised Stern’s ISD algorithm." Indocrypt 2023.

[62] Léo Ducas, Andre Esser, Simona Etinski, Elena Kirshanova. "Asymptotics and

improvements of sieving for codes." Eurocrypt 2024.

[63] Shintaro Narisada, Shusaku Uemura, Hiroki Okada, Hiroki Furue, Yusuke

Aikawa, Kazuhide Fukushima. "Revisiting the May–Meurer–Thomae algorithm

— solving McEliece-1409 in one day." 2024.

[64] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Commun. ACM, vol. 21, p. 120–126,

Feb. 1978.

[65] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol.

48, pp. 203–209, Jan. 1987.

[66] A. K. Lenstra and H. W. Lenstra, The development of the number field sieve,

vol. 1554 of Lecture notes in mathematics. Berlin [etc.: Springer-Verlag, 1993.

[67] Grover L.K.: From Schrödinger’s equation to quantum search algorithm,

American Journal of Physics, 69(7): 769–777, 2001. Pedagogical review of the

algorithm and its history.

58

https://eprint.iacr.org/2023/428

[68] Shor, Peter W. (October 1997). "Polynomial-Time Algorithms for Prime

Factorization and Discrete Logarithms on a Quantum Computer". SIAM Journal

on Computing. 26 (5): 1484–1509.

[69] Bos2017CRYSTALSK, CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based

KEM, Joppe W. Bos and Léo Ducas and Eike Kiltz and Tancrède Lepoint and

Vadim Lyubashevsky and John M. Schanck and Peter Schwabe and Damien

Stehlé, 2018 IEEE European Symposium on Security and Privacy

(EuroS&P),2017,pages: 353-367,

https://api.semanticscholar.org/CorpusID:20449721

[70] CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme, Léo Ducas

and Eike Kiltz and Tancrède Lepoint and Vadim Lyubashevsky and Peter

Schwabe and Gregor Seiler and Damien Stehlé, journal=IACR Trans. Cryptogr.

Hardw. Embed. Syst.,2018, volume-2018, pages: 238-268,

https://api.semanticscholar.org/CorpusID:3593118

[71] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier

Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles

Zémor, and Jurjen Bos. HQC. Technical report, National Institute of Standards

and Technology, 2020.

[72] BIKE—Bit Flipping Key Encapsulation. https://bikesuite.org/

[73] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmetric and

Symmetric Encryption Schemes. In J. Cryptology, volume 26, pages 80–101, 2013.

[74] Nir Drucker, Shay Gueron, and Dusan Kostic. QC-MDPC decoders with several

shades of gray. In Jintai Ding and Jean-Pierre Tillich, editors, PQCrypto 2020,

volume 12100 of LNCS, pages 35–50. Springer, 2020.

[75] Gallager R. G., Low-Density Parity-Check Codes, 1963, MIT Press, Cambridge,

MA.

59

https://api.semanticscholar.org/CorpusID:20449721
https://api.semanticscholar.org/CorpusID:3593118
https://bikesuite.org/

[76]] P. A. Fouque et al., “Falcon: Fast-fourier lattice-based compact signatures over

NTRU.”

[77] https://sphincs.org/

[78] https://sike.org/

[79] Decoding One Out of Many - Nicolas Sendrier

.https://eprint.iacr.org/2011/367.pdf

60

https://sphincs.org/
https://sike.org/
https://eprint.iacr.org/2011/367.pdf

	Introduction - Chapter
	Preliminaries
	Linear Codes
	Goppa Codes
	General Decoding Problem
	Syndrome Decoding Problem

	Patterson's Algorithm
	Correction of errors/Syndrome decoding of Goppa codes
	Patterson's Algorithm for Error Correction

	QC-MDPC Codes
	Decoding of QC-MDPC Codes:
	Bit Flipping(BF) Algorithm:

	Estimation of Decoding failure rate:
	Hard Quasi-Cyclic Computational Problems
	Decisional QCSD:- Quasi-Cyclic Syndrome decoding problem
	Decisional QCCF:- Quasi-Cyclic codeword finding problem
	Utilizing the Quasi-Cyclic Structure

	The Classic McEliece : conservative Code-based cryptography
	The McEliece Code-based Cryptosystem
	Introduction
	Outline of the McEliece CBC
	Attacks on the McEliece CBC

	A Brief Review of Information Set Decoding Attacks
	One-wayness of the McEliece CBC
	CCA Vulnerability of McEliece - Sloppy Alice Attacks

	Niederreiter Cryptosystem
	Introduction
	Outline of the Niederreiter cryptosystem

	The Classic McEliece PKE/KEM
	The Classic McEliece Parameters:
	Design:
	Cryptanalysis

	 Partial Information Attack on Classic McEliece

	BIKE
	Introduction
	Instance of Niederreiter scheme with QC-MDPC
	Overview of BIKE
	Specification
	 BIKE KEM
	 Decoder
	Pseudo-random Bits Generation

	Security of BIKE
	OW-CPA Security of BIKE:

	Conclusion

