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A REMARK ON SPIN CORRELATIONS

By K. R. PARTHASARATHY
Indian Statistical Institute

SUMMARY. Boll (1064) showod that for any three random variables &, i =1,2,3
assuming only the valus +1 tho inoquality 1—E£& > IE£(£,—¢)l holds but for thres
quantum mechanical obsorvables Sy, ¢ =1, 2, 3 which are selfadjoint oporators with spectrum
{-1,1}anda nonnegativo solfadjoint operator p of unit trace in a Hilbert space it is possibly
that 1—tr p 8;S; < |tr p Sy(Sy—S5)|. Hore we show that given any positive dofinite kernel
K(z,y), z,y ¢ X such that K(z, z) = 1 thore always exists a unit vector Q, o family {U;, z¢ X}
of unitary oporators and a selfadjoint oporator § with spectrum {—1,1} in & Hilbert space such
that <N, 8:N>=0,<N,S:50> = K(z,y) for all z,y ¢ X whore S; = U;‘SU,. In
other words, any igned lati can be achioved by a process of spin obser.

vables.
1. INTRODUCTION
Let X bo a set, 4, B, C C X be throe subsets and let 4’, I4 denote res-
pectively tho complement of A and the indicator function of 4. Then
Ig(1—Ia=Ic)+Ialc = Ipso0r v a0 o (1Y)
where AB denotes the interesection of 4 and B. In particular, if Pisa
probability distribution over X and 4, B, C are events then (1.1) implics
P(B)—P(4B)—P(BC)+P(4AC) > 0. e (12)
A random variable assuming only the values 41 is called a spin random
variable. If £ is a spin random variable then #(14-£) is the indicator of an
event. From this obsorvaton and (1.2) one obtains for any three spin random
variables ¢, $ =1,2,3
1—E, & > | EEy(E,—Ey)| . (13)
which is Bell’s inequality (Bell, 1964).
In the context of quantum probability (cf. Meyer, 1984) consider the Hilbert

space K = €%, the density matrix p = (3 2) and the Hermitian matrices

= (o) o= (0)

[
8 = eltHSeH — ( ,teR.
et 0
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Then S; is Hermitian with eigenvalues 41 and
tr p Sy =0, tr p 848, = cos(t—s).
Thore exist f, &y, &3 such that
1—cos(t;—1y) < |cos(ty—t;)—cos(t—t5) |
For examplo one may chooso lp—!; = a, ty—t, =n+a, 0 <a <z This
is usually called a violation of Bell’s inequality (1.3) by quantum observables
with spectrum {—1, 1}.

We shall generalise the above mentioned example as follows. A selfad-
joint operator in a complox Hilbert space with spectrum {—1,1} is called a
spin observable. If 8 is a spin observable and U is a unitary oporator then
U-1S U is also a spin observable. If X is a sct, a map K : Xx X— @ such
that K(x, z) =1 and the matrix ((K(xy, 77))), 1 £ §,j € n is positive semi-
definite for any finite sot {r;, 2,,...,2,} C X is called a correlation kernel.
The aim of the present article is to show by means of very elementary argu-
ments that to any preassigned correlation kernel on X thero exists a family
of unitary operators {Uz, x € X}, a spin observable § and a pure state detor-
mined by a unit vector Q2 in some Hilbert space such that the family of spin
observables S; = U;'SU,, xe X satisfics the following: < Q, S:Q> =0,
< Q, 8:8,Q> = K|z, y) for all 2,y e X. In particular, cach Sz has the
Bernoulli distribution with probability } for +1 in the stato Q.

We adopt tho convention that Hilbert spaces are complox and inner
products < .,.> are conjugate linear in the first variablo and linear in the
second variable.

2. THE MAIN RESULT
Let  be a correlation kernel on X. Enlarge the set z by adding a point

e put X = XU {e} and dofine ¥ on Xx X by
He, &) = 1, Fe, 2) = Kz, ¢) = 2-12
F(z,y) = } (14+K(z, y) for all 2, y ¢ X. . (2)
Lomma 2.1: % is a correlation kernel on X.

Proof : 1t suffices to show that for any 2y, z, ..., Z5 € X the matrix
1 e g

2-13

((} (1A (a0, 7))

A2-10
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is positive idefinite. This is i diate from the observation that

1 (12-v2,. 2-¥2)43 (0 |0 0..0

M= 2.-1/1 o
[ 5-ua R,z
0

Lemma 2.2: (Gelfand, Neumark, Segal theorem): There ezisls o
Hilbert space A and a total family {v(x), z € X) of unit vectors in N such that

<vz),vly) > = R (z,y) for all z, yeX . (29

Proof : In view of Lemma 2.1 this 13 immediate from the fact that there

exists a complex valued Gaussian family {v(z),zgj') of rondom varisbles

with mean 0 and covariance Ev(z)u(y) = K(z,y) for all z,y e X. We msy

choose  to be the closed linoar span of the Gaussian variables {¢(z), z € X}. 0

Lomma 2.3: Let {o(z), z € X} be as in Lemma 2.2. Suppose Py is lk
orthogonal projection on the one dimensional subspace Cu(z), Sy = 2Ps~1
and Q = v(e). Then Sy is a spin observable and

<0,8:0>=0<Q,8:8 Q> =XHxy)
Jorall z,ye X.

Proof: By definition P; Q = <v(z), v(c) > v(z). The lemma is nov
immediate from (2.1) and (2.2). O

Lemma 2.4: Let Q,v(z), Sz be as in Lemma 2.2—2.3. Let §,=8§
Then there exisls a family {Vz, z € X} of unitary operators such that

VzQ = v(z)
Veu=ut@V3—2) < Q+tv(z), »>Q
F2U2 < QH(1—22)0(z), u > v(z) .. (2)
for all we M. Furthermore Vz8V3' = Sz for all ze X.

Proof : Consider the two di ional subspace W spanned by Qand
v(x) in A for each fixed z ¢ X. In this sub-space A there is a unitary operator
V2 defined by

V2 Q = v(z), VIv(z) = — Q+2V%(z).
Indeed, this follows from the fact that Q and v(z) are unit voctors such thst
< Q,v(x)> =22 Define V;=Vi@]I in the direct sum decomposition
N= N;@® . An easy computation shows that Vu is given by (23
Sinco V; Q = v(z), § = 2P,—1, §, = 2P,—1 it follows that VS V;'=50
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Theorom 2.5 : Let K(z, y) be a correlation kernel on a set X. Then there
exists a Hilbert space K, a unit vector Q, a family {Uz, z € X} of unitary opera-
tors and a spin observable 8 in K such the family {S, = U;'SUs, x € X} of spin
observables salisfy the relations

<G8 Q> =0,<Q8:8 Q> =K(z,y) for allz,ye X.
If X isa topological space and K is continuous on XXX then the family
{Us, © € X} can be chosen to be strongly continuous.

Proof : The first part is immediate from Lemma 2.3, 2.4 if we put
U,=V;l. To prove the sccond part wo observe that < v(z), v(y) > =
}(1+H(z,y)) is & continuous function on XX X. Henco the map z—» v(z)
is strongly continuous. Equation (2.3) shows that the map z—» V; is strongly
continuous and hence the map z— Uy is strongly continuous. (]

Corollary : Suppose @ is a group of lransformations acting on X such
that the map z—» g is bijective on X for each g € G and the correlation kernel K
is G-invariant in the sense that K(z,y) = Kl(gx,gy). Then in Theorem 2.5
one has a unilary representation g— Wy of G in A such that WS W;' = S,z
forallze X, ge@. If X is a topological space, G is a topological group acting
continuously on X and K is a G-invariant continuous correlation kernel then the
representation g— 1, can be chosen to be strongly continuous.

Proof : This is immediate from tho proof of Theorem 2.5 if we observe
that thero exists a unitary operator IV, satisfying Wy v(z) = v(gz) if ze X
and W, Q= Q=19(c).0
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