A REMARK ON SPIN CORRELATIONS

Bu K. R. PARTHASARATHY

Indian Statistical Institute

SUMMARY. Bell (1964) showed that for any three random variables ξ_i , i=1,2,3 assuming only the values ± 1 the inequality $1-E_{\xi_1^{\prime}\xi_2} > |E_{\xi_2^{\prime}\xi_1^{\prime}}(-\xi_2^{\prime})|$ holds but for three quantum mechanical observables S_i , i=1,2,3 which are selfadjoint operators with spectrum $\{-1,1\}$ and a nonnegative selfadjoint operator ρ of unit trace in a Hilbert space it is possible that $1-\operatorname{tr}\rho S_iS_2 < \operatorname{tr}\rho S_i(S_1-S_3)|$. Here we show that given any positive definite kenel $K(x,y), x,y \in X$ such that $K(x,z) \equiv 1$ there always exists a unit vector Ω_i a family $(U_x,z \in X)$ of unitary operators and a selfadjoint operator S with spectrum $\{-1,1\}$ in a Hilbert space such that $\langle \Omega, S_z \Omega \rangle = 0, \langle \Omega, S_z S_y \Omega \rangle = K(x,y)$ for all $x,y \in X$ where $S_z = U_x^{-1}SU_x$. In other words, any preassigned correlation structure can be achieved by a process of spin observables.

1. INTRODUCTION

Let X be a set, A, B, $C \subset X$ be three subsets and let A', I_A denote respectively the complement of A and the indicator function of A. Then

$$I_B(1-I_A-I_C)+I_AI_C=I_{BA'C'\cup B'AC}$$
 ... (1.1)

where AB denotes the interesection of A and B. In particular, if P is a probability distribution over X and A, B, C are events then (1.1) implies

$$P(B)-P(AB)-P(BC)+P(AC) \ge 0.$$
 ... (1.2)

A random variable assuming only the values ± 1 is called a *spin random variable*. If ξ is a spin random variable then $\frac{1}{2}(1+\xi)$ is the indicator of an event. From this observation and (1.2) one obtains for any three spin random variables ξ_i , i=1,2,3

$$1 - E\xi_1 \xi_3 \geqslant |E\xi_2(\xi_1 - \xi_3)|$$
 ... (1.3)

which is Bell's inequality (Bell, 1964).

In the context of quantum probability (cf. Meyer, 1984) consider the Hilbert space $\mathcal{H} = \mathcal{C}^2$, the density matrix $\rho = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$ and the Hermitian matrices

$$H = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
 $S_t = e^{itH}Se^{-itH} = \begin{pmatrix} 0 & e^{it} \\ e^{-it} & 0 \end{pmatrix}, t \in \mathcal{R}.$

Then St is Hermitian with eigenvalues ±1 and

$$\operatorname{tr} \rho \, S_t = 0, \, \operatorname{tr} \rho \, S_t S_s = \cos(t-s).$$

There exist t1, t2, t3 such that

$$1 - \cos(t_1 - t_3) < |\cos(t_2 - t_1) - \cos(t_2 - t_3)|$$
.

For example one may choose $t_2-t_1=\alpha$, $t_3-t_2=\pi+\alpha$, $0<\alpha<\pi$. This is usually called a violation of Bell's inequality (1.3) by quantum observables with spectrum $\{-1,1\}$.

We shall generalise the above mentioned example as follows. A selfadjoint operator in a complex Hilbert space with spectrum $\{-1,1\}$ is called a spin observable. If S is a spin observable and U is a unitary operator then $U^{-1}S$ U is also a spin observable. If X is a set, a map $\mathcal{H}: X \times X \to \mathcal{C}$ such that $\mathcal{H}(x,x) \equiv 1$ and the matrix $((\mathcal{H}(x_i,x_j)))$, $1 \leqslant i,j \leqslant n$ is positive semi-definite for any finite set $\{x_1,x_2,...,x_n\} \subset X$ is called a correlation kernel. The aim of the present article is to show by means of very elementary arguments that to any preassigned correlation kernel on X there exists a family of unitary operators $\{U_x,x\in X\}$, a spin observable S and a pure state determined by a unit vector Ω in some Hilbert space such that the family of spin observables $S_x = U_x^{-1}SU_x$, $x\in X$ satisfies the following: $\langle \Omega, S_x\Omega \rangle = 0$, $\langle \Omega, S_xS_y\Omega \rangle = \mathcal{H}(x,y)$ for all $x,y\in X$. In particular, each S_x has the Bernoulli distribution with probability $\frac{1}{2}$ for $\frac{1}{2}$ in the state Ω .

We adopt the convention that Hilbert spaces are complex and inner products < .,. > are conjugate linear in the first variable and linear in the second variable.

2. THE MAIN BESULT

Let \mathcal{K} be a correlation kernel on X. Enlarge the set x by adding a point \mathfrak{c} , put $\widetilde{X} = X \{ \} \{ \mathfrak{c} \}$ and define $\widetilde{\mathcal{K}}$ on $\widetilde{X} \times \widetilde{X}$ by

$$\widetilde{\mathcal{H}}(\varepsilon, \varepsilon) = 1, \ \widetilde{\mathcal{H}}(\varepsilon, x) = \widetilde{\mathcal{H}}(x, \varepsilon) = 2^{-1/2}$$

$$\widetilde{\mathcal{H}}(x, y) = \frac{1}{2} (1 + \mathcal{H}(x, y) \text{ for all } x, y \in X.$$
... (2.1)

Lemma 2.1: $\widetilde{\mathcal{R}}$ is a correlation kernel on \widetilde{X} .

Proof: It suffices to show that for any $x_1, x_2, ..., x_n \in X$ the matrix

$$M = \left[egin{array}{c} rac{1}{2^{-1/2}} rac{2^{-1/2} \cdots 2^{-1/2}}{\vdots \ \vdots \ 2^{-1/2}} & ((rac{1}{2} \left(1 + \mathcal{K}(x_i, x_j))
ight) \end{array}
ight]$$

is positive semidefinite. This is immediate from the observation that

$$M = \left(\begin{array}{c} 1 \\ 2^{-1/2} \\ \vdots \\ 2^{-1/2} \end{array}\right) (12^{-1/2} \dots 2^{-1/2}) + \frac{1}{2} \left(\begin{array}{c} 0 & 0 & \dots & 0 \\ \hline 0 & \\ \vdots & \\ \vdots & \\ 0 & \end{array}\right) ((\mathcal{H}(x_i, x_j))) \right)$$

Lemma 2.2: (Gelfand, Neumark, Segal theorem): There exists a Hilbert space \mathcal{H} and a total family $\{v(x), x \in \widetilde{X}\}$ of unit vectors in \mathcal{H} such that

$$\langle v(x), v(y) \rangle = \widetilde{\mathcal{H}}(x, y) \text{ for all } x, y \in \widetilde{X}$$
 ... (2.2)

Proof: In view of Lemma 2.1 this is immediate from the fact that there exists a complex valued Gaussian family $\{v(x), x \in \widetilde{X}\}$ of rendom variables with mean 0 and covariance $Ev(x)v(y) = \widetilde{\mathcal{H}}(x,y)$ for all $x,y \in X$. We may choose \mathcal{A} to be the closed linear span of the Gaussian variables $\{v(x), x \in \widetilde{X}\}$.

Lemma 2.3: Let $\{v(x), x \in \widetilde{X}\}$ be as in Lemma 2.2. Suppose P_x is the orthogonal projection on the one dimensional subspace $\mathfrak{C}v(x)$, $S_x = 2P_x - 1$ and $\Omega = v(z)$. Then S_x is a spin observable and

$$<\Omega$$
, $S_x \Omega>=0$, $<\Omega$, $S_z S_y \Omega>=\mathcal{H}(x,y)$

for all $x, y \in X$.

Proof: By definition P_x $\Omega = \langle v(x), \ v(\varepsilon) \rangle v(x)$. The lemma is now immediate from (2.1) and (2.2). \square

L₀mma 2.4: Let Ω , v(x), S_x be as in Lemma 2.2—2.3. Let $S_* = S$. Then there exists a family $\{V_x, x \in X\}$ of unitary operators such that

$$\begin{split} V_x & \Omega = v(x) \\ V_x & u = u + (2^{1/2} - 2) < \Omega + v(x), \ u > \Omega \\ & + 2^{1/2} < \Omega + (1 - 2^{1/2})v(x), \ u > v(x) & \dots \end{aligned} \tag{2.3}$$

for all $u \in \mathcal{A}$. Furthermore $V_x S V_x^{-1} = S_x$ for all $x \in X$.

Proof: Consider the two dimensional subspace \mathcal{N}_x spanned by Ω and v(x) in \mathcal{N} for each fixed $x \in X$. In this sub-space \mathcal{N}_x there is a unitary operator V_x^0 defined by

$$V_x^0 \Omega = v(x), \ V_x^0 v(x) = - \Omega + 2^{1/2} v(x).$$

Indeed, this follows from the fact that Ω and v(x) are unit vectors such that $\langle \Omega, v(x) \rangle = 2^{-1/2}$. Define $V_x = V_x^0 \oplus I$ in the direct sum decomposition $\mathcal{H} = \mathcal{H}_x \oplus \mathcal{H}_x^1$. An easy computation shows that $V_x u$ is given by (2.3) Since $V_x \Omega = v(x)$, $S = 2P_x - 1$, $S_x = 2P_x - 1$ it follows that $V_x V_x^{-1} = S_r \Pi$

Theorem 2.5: Let $\mathcal{H}(x,y)$ be a correlation kernel on a set X. Then there exists a Hilbert space \mathcal{H} , a unit vector Ω , a family $\{U_x, x \in X\}$ of unitary operators and a spin observable S in \mathcal{H} such the family $\{S_x = U_x^{-1}SU_x, x \in X\}$ of spin observables satisfy the relations

$$< \Omega$$
, $S_x \Omega > = 0$, $< \Omega$, $S_x S_y \Omega > = \mathcal{H}(x, y)$ for all $x, y \in X$.

If X is a topological space and $\mathcal R$ is continuous on $X\times X$ then the family $\{U_x,x\in X\}$ can be chosen to be strongly continuous.

Proof: The first part is immediate from Lemma 2.3, 2.4 if we put $U_x = V_x^{-1}$. To prove the second part we observe that $\langle v(x), v(y) \rangle = \frac{1}{2}(1+\mathcal{H}(x,y))$ is a continuous function on $X \times X$. Hence the map $x \to v(x)$ is strongly continuous. Equation (2.3) shows that the map $x \to V_x$ is strongly continuous and hence the map $x \to U_x$ is strongly continuous.

Corollary: Suppose G is a group of transformations acting on X such that the map $x \to gx$ is bijective on X for each $g \in G$ and the correlation kernel $\mathcal H$ is G-invariant in the sense that $\mathcal H(x,y) \equiv \mathcal H(gx,gy)$. Then in Theorem 2.5 one has a unitary representation $g \to W_g$ of G in $\mathcal H$ such that $W_g S_x W_g^{-1} = S_{gx}$ for all $x \in X$, $g \in G$. If X is a topological space, G is a topological group acting continuously on X and $\mathcal H$ is a G-invariant continuous correlation kernel then the representation $g \to W_g$ can be chosen to be strongly continuous.

Proof: This is immediate from the proof of Theorem 2.5 if we observe that there exists a unitary operator W_g satisfying $W_g v(x) = v(gx)$ if $x \in X$ and $W_g \Omega = \Omega = v(t)$. \square

Acknowledgement. The author wishes to thank P. S. Puri and K. B. Sinha for useful conversations on Bell's inequality and quantum correlation.

REFERENCES

BELL, J. S. (1964): On the Einstein Podolsky Rosen paradox. Physics 1, 195-200.

MEYER, P. A. (1984): Elonents de probabilités quantiques, Séminaire de probabilités XX. Univ. de Strassbourg 1984/85, Lecture Notes in Mathematics 1204, 186-312 (1986), Springer Verlag, Berlin, Heidelberg, New York.

Paper received: February, 1988.