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SUMMARY. With every probability distribution funation F on therosl lino isasscoiated ady 0
such that F has absolute momonts of all ordere < ip (if 2p>0) but not of any ordor > Mg (the moment of
ordor Ay itsolf may or may not oxist). Thia papor first obtains cortain results concerning the ccnneoticn
botwoen the oxi of aad tho behaviour (in the noi h of the origin) of the character-
istio funotion f of F, for arbitrary ¥ in particular, o nocossary and sufficient condition onf for F to have
the absclute momont of any givon ordor (Theorom 6), and the proceduro and formula for obtaining Ay
in torms of f (Theoroms 6 and 7 and the romarke thereon). Thoso results aro then epacislized to in-
finitoly divisible {i.d.) laws (Thoorems 8 and 9). Theorem 8 shows that an i.d. law has tho abeohte
moment of a specifiod order A if and only .r i |u|ldM(u)+ I uldN(u)< o¢, whore M and N are

-7, =

the Lovy functions in tho Lovy ropmonumnn for l.hn law : for A>2 thuukoe tho ploasant form that the
faw hes the moment of order A if and only if the Lovy functions Af and N also have the moment of
that ordor. Thoorem 9 idontiflos Ap for an i.d. law F in torms of its Levy functions.

1. INTRODUOTION

A well-known result asserts that a probability distribution famction (d.f.)
F on the resl line has the moment of & specified oven-integer order iff (= if and only if)
1, its characteristic function (o.f.), has the derivative of that order (at the origin, equi-
valently everywhere). Informative as this result is, it does not go very far in the
study of the existence of (absolute) moments of d.f.’s through their o.f.’s (throughout
what follows, the phrase “absolute moment™ will be abbroviated as “moment”):
for example, taking the non-Normal stable laws, every such law has an “exponent”
o such that 0 < & < 2 and possesses moments of all orders < a but not of any order
>a; these facts have been established by obtaining estimates for the density funotions
of these laws via the inversion formula and by other ad hoc methods. It was obviously
desirable to obtain criteria based directly on the c.f., for the existence of moments of
other than even-integer orders. In what follows, we eatablish several results exhibiting
the connection between the existence of moments and the behaviour of the cf.
(in the neighbourhood of the origin). Theorem 1 is taken from Romachandran
and Reo (1988), to provide us with an auxiliary result. Theorems 2 and 3 concern
finite geries expansions for the o.f. and their connection with the existenco of moments.
Theorems 4 and 5 provide & necessary, and a necessary and sufficient, condition res-
pectively on f for F to have the moment of any apecified order. Theorems 6 and 7
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and the remarks thereon provide the formula and the procedure for obtaining the
“oritical order” Ay =sup {A: f|z|* dF(r) < o} for arbitrary F, in terms of f.
(Ramachandran, 1962, gives A, in terms of F.) Theorems 8 and 9 concern infinitely
divigible (i.d.) laws. Theorem 8 shows that an i.d. law has the moment of order A iff
} J N |u|* dM(u)+ “ [) u* dN(u) < oo where M and N are the Levy functions in the
Levy representation for log f; for A > 2, this condition can be expressed as follows:
an i.d. law has the moment of a apecified order iff its Levy functions have the same.
Theorem 9 givea the formula for Ay, if F is an i.d. law, in terms of the Levy functions
Mand N.

Theorem 5 is easentially due to R. P. Boas (sce Boas, 1967) and the present
author is grateful to the referee for drawing his attention to that paper. This further
made it possible for us to establish Theorem 8; only a weaker version, namely
Theorem 9 (a), had been given in the original version of this paper.

2. RESULTS CONGERNINU THE EXISTENCE OF ABSOLUTE MOMENTS FOR
ARBITRARY d.f.'8 IN TERMS OF TAEIR o.f.'s

In Ramachandran and Rao (1968), investigating the properties of a class of
probability lawa which include the semi-stable laws of Paul Levy, the following auxiliary
result was established. The reader is referred to that paper for the proof.

Theorem 1: (a) If, for some A < 2, log |f(t)|/|t]* is bounded away from zero
at some sequence {t,} of poinls lending lo zero, then F does not have moments of any order
> A; in parlicular, this is lrue if log | f(t)|]|¢|* is not bounded in the (deleted) neighbour-
hood of the origin.

(b) If log [f(t)]/1* is bounded in the (deleted) neighbourkood of the origin, then
F has moments of all orders < A; more generally, if log |f(t)|/|¢]* is bounded al some
sequence {t,} of points tending lo zero such that (i) T|t,| << oo for every £ > 0, and
(ii) {t,y/t,) is a bounded sequence (example :t, = r", 0 < r < 1), then F has momenis
of all orders < A.

(e) If log |f(t)| t* is bounded al some sequence of poinis lending lo zero. then
F has the second moment. (The converse is true for all such sequences, i.e., as i— 0).

(d) Iflog | f(t}] [8— O as t— O through some sequence of values, then F is dege-
nerale. (The converse is Irivially true for all such sequences).

Remarks: (1) We prove beluw (Theorem 4) a stronger version of Theorem
1(a), namely, that under those conditions, the moment of order A itself daes not exial.

(2) If ais real and 1/2 € @ < 1, we have from the logarithmic series
expansion that 1—a £ —log e < 2(1+-a), so that in an interval around the origin
where |f(1)|® 3> 1/2, we have

1-f))]* < —2log |f)] < 21— 1f)]*).
Henoe, in all the statements (a)-(d) of Theorem 1, we my replace log|f(¢) | by 1— | f(¢)|*

(3) Proceeding as in the proof of Theorem 1(b), we can establish the following
sufficient condition for the existence of the moment of order A < 2 : for some sequence
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{a,}— 0 such that {a, ,fa,} is bounded, we must have I |a,|~*[1—]|fla,)|] < oo
this of course has its oxtension to moments of orders 2n+A (n > 0 intoger, 0 < A < 2).
See also our comments following Theorem 6.

We may remark at this stage that, in i igating the exist: of \¢
it suffices to consider only symmetric d.f.’s, since F has the moment of any given
order iff F* = F+ F has, where » {(on the RHS) denotes the lution op and

F is the d.f. conjugate to F (defined for all real z by Flz) = 1—F(—z—0)), and conse-
quently F* is aymmetric, i.e., F* = F*. 1ffbethe cf. of F, then that of F* is /1%
a8 is well-known.

We begin by idering two results ing finite series expansiona for
a c.f. (in the neighbourhood of the origin). Both were used in an earlier version of
this paper to provo Theorem 9(a). Theorem 2 is used in the proof of Theorem 7; &
proof thereof may be found for instance in Loeve (1963, pp. 109-200). Theorem 3,
though no longer used elsewhere in this paper, is of some independent interest
because of its relationship to Theorem 2.

Theorem 2: Let F be a symmelric d.f. having the moment of order 2n+A, n » 0
integer and 0 < A 2. Then [ admits the following expansion in the neighbourkood
of the origin :

0= l+2,f(0)+ + f“"’(0)+0(|l|"'+") e {9)

The result below is in the nature of a converse to Theorem 2.

Theorem 3. Let F be a symmelric d.f. having the moment of even-inkeger order
2n{n > 0) and suppose tha! f admils an expansion of the above form, with 0 < A < 2,
in the neighbourhood of the origin. Then F has momenis of all orders < 2n+-A.

Remark : The moment of order 2rn+A itself cannot, in general, be asserted
to exist. as illustrated by any non-Normal symmetric stable law, whose c.f. is of the
form exp(—e¢|/]%), e > 0 and 0 < & < 2; it does not possess the moment of order
«. Thus the above is a best possible result.

Proof : For n =0, the assertion of the theorem follows from Theorem 1(b}
(or from Theorom 6 below). We consider below the cases n » 1. F being symmetric,
fis real and given by f(!) = [ cos {z dF(x) for all real¢. Hence, Re 2 denoting the real
part of the complex number z, we have for sufficiently small |¢] and |A| that

Sot2nh)— () fl Za— R . 410~ 2mb)
= Reffe!t2(ethz—e-thz)ind P(z)} = (— 1) [ cos ({2 sin hz)**dF(x).

The same differencing operation applied to the right side of relation (e) gives:
(2h)nf 2 0)+ A(t, k), whore A(h, h) = O(|h|*»+), Honce, setting ¢ = & in the nbove,
we have (for all sufficiently small |2|)

[ cos hx(2 sin hz)indF(z) = (2h)** [ a%ndF(z)+O0(| k|38 +),
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or,
1 (8222 V™) samie) < [ [1—000 hef 3202\ ™ osmipie) = 011,
(%) J

Setting G(z) = [ u*ndF(u), so that G(+0) < 0, we have for small 5 > 0,
{~»z3)

n sin hz (2% _
(-2 )u!mda(z) < wjm [1— T) ]w(z)— O,

whence (+00)—G(y)} < O(y>) as y— 0. Hence G has moments of all orders < A,
i.e., F has moments of all orders < 2n-+A.

Theorem 4 : Let F be a symmeiric d.f. having the moment of order Znin > 0
inleger). A necessary condilion for F lo have the moment of order 2n+A, where 0 < A
< 2, 18 that

f‘_’::' [£]=>. log [f1*»14)[f*MY0)] (exist and be) = 0.

Proof : We need only consider the case n = 0, the general case following
from the fact that, if F has the moment of order 2», then f1*"(})/f28)(0) is a c.f., the d.f.
oorresponding to which has the moment of order A iff F has the moment of order 2n4-A.
We begin by remarking that, for the moment of order A to exist for F, it is necessary
that 2[1—F(2)] € (&J’)u*di‘(u)—r 0 as x> 00, 50 that, if & sequence 8,— o0 a8 k> ®

exists such that s}[1—F(s)] is bounded away from zero, then the moment of order
A does not exist.

Suppose then that |¢[-*. log f(¢) does not tend to zero as t— 0. Let ¢;, ¢y
and ¢, below denote suitable positive constants. Then there exist ¢, and & sequence
{ts} 1 O such that —f). log f(ta) > ¢,. Since, for real z such that I > z > 1/2, as
we have already noted, 2(1—z) » —log {3 1—z), it follows that [1—f(ta)] . &% 3> ¢y
for all (sufficiently large) n, i.e.;a j")(l —c08 inx)dF () 3> cyfh (note that the integrand vani-

shes at the origin 8o that [ (1—cos tyz)dF(z) = 2 [ (1—c08 t4%)dF(z)). On integrating
we)

by parts, we have

li i - -1

K (JX) 8in a2 . [1—F(2)ldz > oyfy
Since 1—F(z) is a non-increasing fanotion of z; (0, X] = (0, 7jtx]lJ (m/tn, 2nftalJ ...
and sin (n(z--71fty) = —Bin {42; we easily seo that the LHS of the above relation is
< o I i gin tnz . [1—F(z)]dz, so that setting h(z, t) = [1-~P{zft)].(zft}*, we have

;h(:;,t,).r"sh:d:):,.

Now, either (A) Mz, ¢s) is uniformly bounded for all z in (0, 7) and all », or (B) there

exist sequences {z;) and (’"k) such that hze, ¢, )— 0. In case (B), setting s¢ = &lt,, ,
x

we see that, 1—F(s) being bounded, sz~ c0 88 k— co, and then [1— Flsg)lsi—» 0

implies (by our reasoning earlier) that the moment of order A does not exist. In case
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(A), = sin % being integrable over (0, 7) since A < 2, and Mz, ts) being uniformly
bounded, we have by Fatou’s lemma that

f[limmph(z,t.)}z'*ninzdx)c,
o ne

80 that limsup Az, ¢,) > 0 on a set of positive Lebesgue measure. All that we need
n=dw

in that this should be true for some = > 0, and it follows that F' does not have the mo-

ment of order A.

Corollary : If, at some sequence of poinis {i}—> 0, |ix| . log]f*)(te)ifsm(0)|
is bounded away from zero, where 0 < A < 2, then F does not have the moment of order
2a+A. In particular, a non-Normal slable law with exponent a does not have the moment
of order « (and s0 of any higher order).

Remark : As an example due to A. Wintner shows (Lukaes, 1960, p. 32),
the condition of the theorem is not sufficient.

We pass on to & NASC (necessary and sufticient condition) on the c.f. for a
d.f. to have the absolute moment, of any prescribed order. This is essentially contained
in {the proof of ) Theorem 3 of Boas (1967), where, however, it is obscured by the fact
that the concern of that theorem is with the integrability properties of ¢.f.’s and not
with momenta per se.

Theorem 6: (a) A NASC for F to have the momend of order ), where
0 < A< 248 that, for-aome ¢ > 0,

[ bog 0] & esist itly
or, equivalently,
S - <o
(b) A4 NASC for F, having the moment of order 2n, n > 0 integer, lo have the
moment of order 2n+A (0 < A < 2) is that, for some ¢ > 0,
uj', =31, [log | fOm(2)[fAm(0)|1de exist finitely,
or equivalendly,
of 141, (1 | fme)ifem(0) |3}t < co.
Proof : We need prove only (a). (b) follows from (a) by the usual argument.
The fact that F has the moment of an even-integor order iff f has the derivative of that

order (at the origin) and Theorem & togethor give ur critevia for the existonce of the
momont of any presoribed order.
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Since (cf. our Remark 2 following the statement of Theorem 1),
21— '] > —log /)M 2 1—f()|* for [t] <8,
if 8> 0 be chosen and fixed auch that |f(8)|2 3> 1/2 for |{| € 8, we need only establish
the “equivalent” condition in (a). It follows that we noed only show that for a sym-
metric d.f. F to have the moment of order A, 0 << A < 2, it is necessary and sufficient

that fH-l[l—j(t)]dl < oo, where 8 > 0 is chosen and fixed such that f(1) » 12 for
[
|#] < & :in fact, in this form for the NASC, 62> 0 cun be arbitrary, as is easily seen.
Supose then that | |x|* dF(x) < oo for & symmetric d.f. F. Then

{1 — gyt = 140 71— cos tz)a Ry}t
o []

[
- J'[ i t—l-l(l_coslw)dl]'lp(x)

= “z,A[ dflzlﬂ-l—) (1—cos u)dv}nii‘(z)_

"
Now, since 0 < A < 2, the inner integral is bounded | »~*-)(1—cos v)dv < o0 and since
L]

iz dF(x) < oo. the dition stated is y. Conversely, suppose

of [ J{1—cos tx)dF(x))t~*~" dI < o0,
Then, as above, we see that
Ilx ‘[":f' w41 (1—co8 1Mo dF(@) < oo,
80 that

j".r“ [ }'v"‘—' (1—cos v)dv]dF(r) < 0.
1 o

4
But the inner integral is bounded away from zero, being 2> [ v=*-)(1—cos v)dv > 0
v
o
since x > 1, 50 that [ 2*dF(z) < cc. F being symmetric, the same is true of
1

-1
[ lz|*dF(z), and the sufficiency part of the theorem follows.
Remarks : (1) It is interesting to note that, s a consequence of Theorems
4 and 5, it follows that if j’c [log | f(t) | }—2-dt exists finitely for some A, 0 < A < 2,
[

and some c > 0, then log|f{t)|/|¢]*— 0 as t— 0. The latter fact is, however, not a
simple and direct consequence of the former in that, if g is & non-negative continuous

function on (0, ¢) such that _[‘ [g(¢)/¢1d¢ exists finitely, it does not necessarily follow that
a

g(t)—> 0 a8 t—> 0. Theorem 4 is thus not a simple corollary of Theorem 5.

(2) Though the firat assertion of Theorem 1(b) follows from Theorer 5, the
“more generally” part of Theorem 1(b) is, again, not a simple consequence of

(]
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Theorem 5. Similarly for the sufficient condition given undor Remark (3) following the
atatement of Theorem 1. While Theorem 5 is in a sonse the last word on the subject,
giving as it does a condition whioh is both y and suffici we are i
faced with situations where it is not applicable, whereas Theorems 1(b) and 4 provide
plete answer regarding the exi of ts : as an le, we may cite the
proof of Theorem 3.1 in Ramachandran and Rao (1068), where, from the fact that a
certain o.f. f has the property : log [f(t,)[/[¢.1* = log[f(1)[ + O for all n, where {t,}
is a certain sequence tending to zero and 0 < A < 2, it is inferred that F has moments
of all orders < A but not of any order > A.
(3) Theorems 6 and 7 below again provide instances where Theorems 1, 2
and 4 enable us to draw lusi which are app ly not directly derivable from

Theorem 5.
(4) The NASC of Theorem 5 is an integrability condition on the c.f. Other
such NASC's can be given—for example, the condition that the function -2

j" log f(h)dk be integrable over (0, ¢) for some ¢ > 0 is necessary and sufficient for the
[

symmetric d.f. F to have the moment of order A(0 < A < 2), and of course extenda
easily to cover moments of order 2n+2. The proof runs along lines similar to those
of the proof of Theorem 5.

We now take up the question of identifying the “critical order” Ap in terms of
f. Theorem 6 is an immediate consequence of Theorem 1 : Part (b) thereof also follows
from Theorem 5. We consider below only symmelric d.f.'s which are further non-
degenerate so that log f does not vanish identically in a neighbourhood of the origin,
Also the phrase "‘bounded” is used below for brevity in place of the complete phrase
“bounded in a deleted neighbourkood of the origin”.

Theorem 6 : Suppose F has the moment of order 2n{n 2> O integer) and le
A = sup{d: |¢]| 2. log [ famy)/fn)(0)] is bounded}. Then

(a) A2

(b) F has moments of all orders < 2n+A;

(¢} if A <2, then F has no momenls of order > 2n+A; and

(d) if (A =2 and further) (2. log [f*™(t)/f*™(0)] is bounded, then F has the
moment of order 2n+2, and ly. (The bounded; of this funciion ai some
sequence of poinis tending lo the origin is sufficient for the exislence of the moment of
order 2n-+2).

Proof :  Assertion (a) is a consequence of Theorem 1(d) and our assumption
that F is non-degenerate. The other assertions follow from the corresponding asser-
tions of Theorem 1. Assertion (b) above also follows from Theorem 6.

Theorem 7: For a d.f. F with moment of order 2u(n > O integer),

sup{8: 0 < 8 < 2,[¢]-* log [ fEM(1)f=m(0)] is bounded)

=sup(s:0 € 5 < 2 [[z]HdF(z) < oo}
7
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Proof : We begin by remarking that, apparently, Theorem 6 only permits
the deduction that the LHS < the RHS; to obtain the reverse inequality, some

PP Y orgl jally an appeal to Theorem 2 a8 in the proof below)
&ppears necessary.

If Yolt) = |¢] - log [f#(){f14n(0)] is bounded, then, by Theorem (3 or 5 or)
8, momenta of all orders < 2n+6 exist. Conversely, if moments of all orders < 2a+-¢&
oxiat, then fum(t){f18nY0) is the'o.f. of a (symmetric) d.f. with moments of all orders
< 8, 8o that, by Theorem 2, fitn)(t) = fn}0)4O(|¢t]’} for every ¢ < 8, whence it
followa that ,(¢) is bounded for all ¢ << 6. Henoe the theorem.

A criterion in terms of the c.f. for the exi of int rder t
being available, Theorems 8 and 7 point the way for identifying the ‘“‘eriticel order”
Ag for arbitrary F. Theorem 6 or Theorems 1 and 4 may then be used to test whether
the moment of the oritical order itself exists or mot.

8. APPLIOATION TO INFINITELY DIVISYBLE LAWS

We proceed to apply the results of Section 2 to infinitely divisible (i.d.) laws.
If f is an id. c.f., suppose ¢ = log f has the Levy ropresentation L{s, 7, M, N), ie.,

$() = fat—yit+ (_I‘_ o A, u)'iM(u)+mI”’ M, w)dN(u),

where Alt, u) = ety — 1 —[ituf(1+ub)), a is real, y > 0, M and N are respectively
non-decreasing on (—oo, 0) and (0, c0) respectively, with M(—o0) = N(+o0) = 0 and

| wdM(u)+ [ uldN(u) < 0. M and N will be called the Levy functions of f or P.
<1, w1
The Normal component with exp (iaZ— %) as its c.f. has moments of all orders. Also,

if gy(t) = (EI' l]h(l. u) dN(u), then the component with exp ($,) aa its o.f. also has moments
' 3

of all orders : for, [ u*dN(x) < co implies the existence of ¢; and ¢y ; in particular,
0

i) = 6[‘ (fu)teitud N(u); then, trivially, ¢{™(¢) exists for all £ and = Jl (fu)® ettvdN(u)
for every » 2> 2; hence exp (@) also has derivatives of all orders, and the above assertion
follows. Similarly, the component with exp { I_J". o Me, u)d M(u) } a8 its o.f. also has
moments of all orders. Thus we need only investigate the existence of moments of

d.f.’s whose o.f.'s are of one or the other of the forms : exp ["J')h{i, u)dN(u)] and

oxp [ (_'J:_” A, u)dl}l(u)] —indeed it suffices to conaider only the former cless in
view of an obvious duality that exists between the two classes; yet again, it suffices to
consider d.f.’s with o.f.’a of the form exp [ u.{‘) (008 hl—l)dN(u)] by the usual “sym-
metrization” argument.
We require & couple of suxiliary reaults.
8
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Lemma L: Let f be a real-valued and even funclion defined and non-vanishing
on the compact snterval I :(—c, c], with f(0) = 1. If f1®), the derivative of order 2n,
exisls and 18 conlinuous on I, and ¢ denoles the conlinuous version of the logarithm of f
with $(0) = 0, then, for 0 < A < 2, the lwo slalements :

6{6 | fAme)—fm(0) | 1t < 00 and 6{‘ [P — g m(0) |4 < 0

are equivalent. In partioular, this is true if f is the c.f. of a symmelric d.f. having the
moment of order 2n.

Proof : Since f(0) = 1 and f is continuous {our assumptions imply that f and
all its derivatives upto and including order 2n are continucus on I}, there exists a

&> 0such that |f)—1] < 1/2 for |¢] <a,mw% HO-1] < 180] <2 [f0—1)

for such ¢, (Note that 1—a  —loga < 2(1—a) if% <a<l, and ;7 (a—1) g loga
€a—1if 1 €a<2). Forn=0, these relations immediately yield the assertion
of the lemme. We discuss below the cases n > 1. Let gu{t) = fR(j[f(¢) for k = 1,2,
..., 2n. Then every gx is defined on I and it is well-known and easy to check that if
¢ =logf, then ¢ = gyt Plgen_y, fan-z --- §1), Where P is & polynomial in the

;-1
functions indicated, with ghe property that if a typicel term be = conatant, [T g;’ ,
J=1

P
then I Ij. as = 2n. This property implies that the terms in the polynomial P(gy,_,,
It

..., 1) can only be one of two kinds : (A) terms in which no ¢ with an odd index ogcurs
a8 & factor, and (B) terms in which at least one g with an odd index ocecurs as & factor
and consequently at least lwo such g's occur as factors (the same g may be repeated).
Since (1) & funoti i ona pact interval is bounded, (2) f is even and

{3) fl‘“‘ dt < 00 gince (0 <CJA < 2, we have :
[]
i) f9()if(®) is bounded on I for all k < 27, by (1).

(if) Since [fi*Y1)—fEex0))/1*— %f"“”(o) by (2), and 50 is bounded, for

0 < k < n—1, and hence, in particuler, [f(£)— 1]/ is bounded as well, it follows from
(3) that

190 < o,

_f(ik)(o)

(iii) fm-1(0) = 0 for m =, by (2); and f¥p-1ie) . fi%-1)/ ig therefore
bounded, since it converges to f¥}0) f13)(0), as ¢{— 0; hence it follows from (3) that
APk )

(T MY < 00,

0
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Invoking facts (i) and (ii) above in the caso of terms of type (4) above, and all
tho three facts in the case of terms of typo (B), wo see that if Plg,, ,, ..., g,) be denoted

by @, then | Q) —Q(0) ] 4-1-Mt exiats finitely. Honoe it follows that (for 0 < A < 2)
d
.
[ 1m0 -gmoleod and gt —gpal0)] -
o
are both of thum finite or both of them intinite. But the latter is finite iff
T U —femi0)] -t < o,
[
since | [1—f()}i~'dl < 0. Hence the lemma.
0

Lemma 2: If Ht) = f (cos tu-—1)dN(x), then the d.f. with ¢ as ils log f has
(OS]
the moment of an cven-integer order 2n l:f!“['.u‘ dN(u) < oo,

Proof : If F has the moment of order 2n, then f and hence ¢ = log f haa the
derivative of order 2z, so that

(—pgeni) = (— 1y tim { {goh— () Bn— D81+ 80—n] 400)

= (= lim {k* Re | (elnun_z-lhu/l)uﬂv(u)}
A0 )

o sin (huf2) %™ n
- ,{l':: u{v) ( huf2 ) W) >(|.Iv) N )

by Vutou’s lomma. Conversely, if | u™ dN(u) < co,then §{0) = [ (costu—1)dN(u)
e )

can be differentiated (under the integral sign) 2xn times, 80 thut the same is true of f,
and quently F has the of order 2a.

Theorem 8: Let [ be un id.cf. with the Levy representution Lu, y, M, §).
TlmehaalhemommIojorder/hj/ [ jul‘d}l(u)+ }' u‘d\N{u)<ao {If A > 2, this

can be more succinctly slated thus : Fhaathe moment oforder)\tfjbolh}l{andlv have
the same).

Proof : In view of the remarks earlier, it suffices to prove the assertion in the
case where log f = ¢ has the form : ¢{t) = 1I {coslu—1)dN(u). From Lomma 2above,
1)
it follows that F hes the moment of order 2n(n > 0 integer) iff | wrdN(u) < 0.
{1,m)

Buppose then that F has the moment of order 2z and let us investigate conditions for the
existence of the moment of order 2n+-A, whero U < A < 2. By Theorem 5, this moment

10
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exists iff !5[’ {-1-M| famH0) — fIRYY) | d2 < o0 for Bome ¢ > 0. By Lemma 1, this is equi-

valont to
i 47153 | plan)(4) BN 0) | dt < o0,
0
o f e [ { uds{1—cos tu)dN(u)]dt < o0,
H i)
g, oo <o
) °
o, f u"'”[ J'" v=1-3{1—cos u)du]dN(u) < 0.
e ]

An in the proof of Theorem 5, this is equivalent to [ ut+dN(u) < c0. Hence the
)
theorem.

Theorem 8: Lel F be an i.d. law with the Levy representalion [{a,y, M, N)
Jor logf. Then

@ Ap=eup (81 [ |ulMupt [ wdNw <o)
(b) Ap = the smaller of the two quantilies below :

. . —log M(%) .. log[N(u)l
tim inf [ Tpog ] and timing [ SRR

(In termn of F iteelf, 4p = lim inf{MH—E(—_i)l}. )
e log z
Note :  These threo quantities are to be taken aa +co if respectively M(—u),
N(u), 1— F(u)+ F(—u) vanishes for (some % > 0 and so for) all large « > 0.

Proof :  Assertion (a) follows at once from Theorem 8. Assertion (b) follows
from (a) and Theorem 3.1 of Ramachandran (1062} also see pp. 19-20 of Ramachandran
(1967) : the statement in parenthesea above gives the statement of that theorem.

4. CONOLUDING REMABKS

It is instructive to examine the foregoing results in relation to the stable lawa.
A non-Normal stable law with ‘exponent’ a (0 < a < 2) has its |f(t)| of the form
exp(—ec|!|%), where ¢ > 0; it is infinitely divisible, with the Levy functions A and N
given by the formulas : M(u) = ¢, ||~ and N(u)= —ec,u= (for v <0 and % > 0 res
pectively), where ¢, > 0, ¢; » 0, and ¢y+¢, > 0. Theoroms 1{a) and 1(b) as well as
Thoorem 9 confirm that such n law has moments of all orders < a (this is also confirmed
by Theorem 3) but not of any order > &, and Theorem 4 confirms that the moment of

11
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the critical order « does not exist. All these lusi 1| ly yielded
by Theorem 6 or by Theorem 8. As already stated, ’l‘heomma 1{b) and 4 ennble us
to arrive at similar conclusions in respect of the semi-stable laws and of a certain class
of ‘generalized stable lawa’ considered by Ramachandran sud Reo (1868, Section 3).
In all these cases, the critical order Ap coincides with the ‘exponent’ of the law con-
cerned,

In conclusion, the author would like to thank the refereo for his commenta
in general and for his drawing the suthor's attention to the paper by Boss, in
particular, These helped make the paper more “complets’ than would otherwise have
been possible. Thanks are again due to Dr. C. Radhakrishna Rao, di ions with
whom (in connection with our joint work frequently cited in the course of this paper)
1aid the foundation for this work.
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