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SUMMARY. Consitler o finito population containing N unita on which it is proposed
to carry out k scparate survoyw, ench with it's own probabilitics of seleeti pocified for the
N units. This poper roviows tho existing lilerature on tho subject of cost optimnl integration
of the k surveys for various typos of cost functions. Some of tho appronchos aro houriatic
while others formulate the problom as a linear programming problom and recommond standard
LP tochniques. Thia paper also considers sampling with probabilitics proportional to the
total rize of tho sample units and intogration of & surveys of thia typo, each eurvey possibly
wing a difforent indicator of sizo.

1. THE PROBLEM : HISTORY AND THE REYFITZ AND
OTHER SOLUTIONS

1.1. The problem : Tho problem appoars to havoe beon originally for-
mulated by Nathan Koyfitz in 1951 and can bo statod thus. Wo have a
finito population of N units on which it is proposed to carry out k soparate
survoys. Each survoy assigns distinct sets of probabilities of seloction to tho
N units. Tor examplo, tho units may bo villages and for tho first survey o
domographic one, tho sampling design may dictato soloction of villagos with
probabilities proportional to tho population of tho villago. The socond oro
could bo o land utilization survoy for which it sooms desirablo to solect
tho villagos with probabilities proportional to tho aroa of thoe village
and so on.
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Wlon the same agoncy is carrying out all the surveys simultancously,
thoro may Lo some distinet advantago if tho samplo units for tho difforont
surveys overlap as this would reduco tho amount of timo the investigator
would have to spend moving from ono unit to another, with a consoquent
roduction in tho cost of tho survoy.

Even if all tho surveys were not held simultanoously and thero aro short
gaps betwoon thom, it may bo advantageous if tho investigator visits & largo
numbor of common villagos for tho separato survoys, as the knowlodgo and
oxporionco gainod from his first visit may load to a bettor oxccution of the
subsoquent survoys if they aro carriod out in the samo village.

The problom can bo mathomatically formulated as follows in tho con-
text of k-surveys. Lot X; donoto tho serinl no. of tho unit solocted for
the i-th survoy. The samplo design for tho i-th survey stipulates that
Prob {Xi =5} =Py(f=12..,N;i=12, ..k ;we have thus k random
variablos Xy, X, ..., Xi. Lot § donoto tho sot of intogors {1, 2, ..., N}. By
intogration of survoys, we mean dofining a joint distribution of the k random
variables, X,, Xy, ..., Xg on §* tho k-th Cartesian powor of § which roalises
for cach Xy, tho samo marginal distribution as dictated by the sampling design
of the i-th survoy. In tho integrated survoy, using the joint probability
distribution so definod, at ono stroko, ono selocts a k-tuplo (i), 1y, ..., 1) which
will requiro him to consider tho #,-th unit for survey 1, i,-th unit for survey 2
and so on. Lot »(i) denoto the number of distinet units appearing as coordi-
nates of &= (i, i, ..., 3%). Dut

={i)=1), u=1,2..FL e (1)

An intograted survoy is callod optimal if tho joint distribution of X is so
dotormined that E[1{(X)] is & minimum.

Such & survey is cost optimal if tho cost function of tho survey is of

the form
atby, b>0. -

Tho problom is to find an integrated survoy schomo which is cost-optimal.
Maczynski and Pathak (1980) havo shown that this problom always has o
aolution though not necossarily unique. Tho problom of optimal integra-
tion has a closo rescmblanco to that of controlled soloction boyond stratifica-
tion. A typical examplo horo is tho problom studied by Goodman and Kish
(1950). Those authors considored two strata, ono containing threo coastal
and threo inland units whilo tho othor contains ono coastal and four inlard



OVERLAPPING MAPS IN SURVEY SAMPLING 11

units. Tho probabilitios of soloctions of various units within a stratum are
specified for both tho strata, Tho objoct is to soloct ono unit from each stra-
tum by assigmng probabilities to the various possiblo pairs of units 20 as to
maximiso tho probability of solocting ono constal and ono inland unit.

Koyfitz (1951) gave u solution to tho problom of optimal integration of
two survoys.

1.2, Keyfitz solution for k = 2: Assumo that j-th unit has boon soloctod
for survey 1, following a procoduro, which ensuros probabilities of soloction
Py, Py ooy Pyy to tho N units 1, 2, ..., N,

(1) If Py > Py, scloct j for survoy 2 as well.
(2) Othorwise if Py < Pyy, thon soloct the j-th unit for survey 2 with

o probability Py/Pyy and rojoct tho j-th unit with a probability
1—Py|Py.
If tho j-th unit is so rojoctod thon for survoy 2, solect a unit from

among thoso units w in tho population for which Py, > Py, assign-
ing a probability of soloction proportional to Pyy—Piy.

(@

It is casily soon that this procodure will ensure that tho probability that unit
j is solectod for Loth survey 1 and survoy 2 = min (Py, Py).

This ostablishes the optimality of tho Keyfitz solution.

1.3.  The problem of overlapping maps as a special case of the lransporia-
tion problem : Des Raj (1957) pointod out that tho problom of optimal in-
togration of surveys is a spocial caso of tho transportation problom and honco
tho simplox mothod or othor mothods for solving the LP problem could bo
usod to obtain an optimnl solution, oven for cost functions which aro moro
complicatod than the ono wo havo just considorod. This approach is dos-
cribed in groater detail in tho book by Arthanari and Dodgo (1081).

In tho contoxt of two survoys tho problom can bo stated as an LP problem
ag follows :

Lot pyp denoto tho probability of solocting unit j for survey 1 and j° for
survoy 2.

Maximiso Z py e (3)
1
at. 3; Py =Py ;‘-'- Py = Poy, pyy 2 0. - @)

We shall come back to the LP approach in a lator soction,
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L4, Another algorithm for oplimal inlegration of surveys: Mitra and
Pathak (1984) present an alterntive algorithm for this problom. This caa bo
doseribed ag follows.

Wo first arrango tho & marginal distributions in a two-way table with &
rows and N columns, the i-th row doscribing tho probabilitios of seloction for
tho i-th survoy. Such an arrangoment will bo enllad the initial configuration,
A configuration ia gonoral will denoto a two-way arrungomont of nonnogative
ontries with oach row adding up to tho samo numlor 1ot neoessarily = 1,
which is truo only at tho initial configuration]. IEach stop of tho algorithm
transforms ono configuration into arother with the common row sum of the
configuration progrossively shrinking to zero. Whon tho final configuration,
which has all ontrios oqual to 0, is reached, this is an indication that all the
marginal distributions havo now boon fully accounted for.

Wo first introduce somo notations :

Lot Py, Py, ..., Pry, (tho ontrics in tho j-th column of the initial con-
figuration) bo arranged in increasing order of magnitudo and tho ordered
values bo denotod Ly

Py € Py € .. € Pay- - (8)
Thus Py is tho smallost column entry and P,y is the largest column ontry.

Put
0= ? Py o (6)

Cloarly,
Oy+0,+... 40 =“" Py=k e (1)
The algorithm can bo bost deseribed through a numerical examplo :

Considor tho problom of two surveys roquired to bo carried out on four
villages (data as in Arthanari and Dodgo : Tablo 5.9.1).

This corresponds to the initial configuration as givon below :

TABLE 1: PROBABILITIES OF SELECTION OF
FOUR VILLAGES UNDER TWO SURVEYS

villago
survey 1 2 3 4
1 (Py)) 0.5 0.2 0.1 0.2
2 (Pyy) 0.3 ot 0.4 0.2

For k = 2, in tho j-th stop of stage 1 of tho nlgorithm, tho smallest entry
in tho j-th column of tho configuration is zorood out through an assignmont
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of probability Py to the pair (j, j). The successive configurations would
look liko«the following.

Total
0.5 0.2 0.1 0.2 1
0.3 0.1 0.4 0.2 1
| Py =03
1
0.2 0.2 0.1 0.2 0.7
0.1 0.4 0.2 0.7
l Pn=01
0.2 0.1 0.1 0.2 0.6
0.4 0.2 0.6
J’ Paa =01
0.2 0.1 0.2 0.6
0.3 0.2 0.5
l Py =02
0.2 0.1 0 0 0.3
0.3 0 0.3

In stage 2 of the algorithm, we again proceed from column 1 and notice that
its non-zero entry appears in the first row. e then scan the successive
columns of the configuration and look for a column where, for the first time,
the non-zero entry appears in the second row. Ve thus have a pair of entries
one from each row, appearing in columns 1 and j.

The smallest of the two entries is then zeroed out by sssigning a proba-
bility, equal to the smallest entry, to the pair (1,7) or (j, 1) according as the
non-null entry in column 1 appears in row 1 or row 2. If the entry in column
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1 is not zeroed out in this process we scen for an appropriate column beyond
column j and repeat this step as many times as may bo necessary, In the
given example we havo py, = 0.2.

total
0 0.1 0 0 0.1
0 0 0.1 0 0.1

In this example, wo assign further p,; = 0.1 and then both tho marginal
distributions will be fully explained. It may bo noted that in this write-up wo
have mado some smell changes in the steps of stage 2 described in Mitra and
Pathak (1984). This is in tho hope of reducing tho total number of compu-
tational steps involved in tho exccution of the algorithm. In a later section
we shall have an opportunity to compare the computational complexities of
this algorithm vis-a-vis other algorithms.

1.5. Solution for k=3: Stago 1 hero is parallel to that of the case
k= 2, in that the probability of Py, is assigned to the pont (7, 7, 7} in &, and
tho entries in the j-th column of the configuration reduced accordingly. At
tho end of stage 1, cach column of tho configuration has one zcro entry and in
the j-th column the other entries (possibly nonzero) are Pyy—Py); and
Piys—Puys-

In stago 2, the initial attompt is to zoro out.tho second minimum entry
in cach column assigning maximum possible probability to points in S,
If for examplo tho j-th column has its minimum in the first row, this is dono
by assigning & probability Piyy—Peys to the points of the typoe (z, j, j) whero
z#4. Thestrategy is to choose 2 in such & manner that the second minimum
in no column is reduced in the process. It is thus clear that for a particular
column z to qualify for inelusion in (z,j, ) it is neccssary that Py, = Py,
Further tho maximum probability that could bo assigned to (z,j,5) is the
roinimum of Pyyy—Piyg and Piyy,—Praz.  If Py~ Piny < Piyyy—Pigyy then
we look out for other columns with a similar property to mect the deficiency.

If the strategy succceds then in stages 1 and 2 wo would have assigned &
mass of;l Py =0, to 8, and o mass of’E (Payy=Puyg) = 6,—0, to S,

Jeaving & mass of 1—0; to be distributed to ;. Yor tho success of thiy
strategy it is therefore necessary that 6, < 1. It was shown in Krishnamoorthy
and Mitra (1080) that the condition 6, & 1 is sufficient as woll.
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In the beginning of stage 3, cach column of the configuration has at least
two zero entries and at most ono non-zero entry.  We start from column 1
and scan tho columns until wo reach a column with a non-zero entry, say
column ¢. If e.g. this nonzero entry occurs in tho first row we sean the sub-
sequent columns until we reach a nonzero entry in a different row. We con-
tinue further scanning until wo find a column with a nonzero entry in yet
another row. The minimuna of the three nonzero entries is now zeroed out
DLy assigning o probability equal to this minimum to (4, ja. jy). where jy, 5, 7
represent the columns with the non-zero entry in the first row, second row and
third row respoctively. If the non-zero entry in column ¢, which for the sake
of illustration wo have assumed to Lo jy, is not zcroed out in the process, then
scan the subsequent columns again until we find two columns with nonzero
entries occurring in two distinct rows other than the first. The entire
process is repeated until the nonzero entries in cach column are completely
2cerocd out.

When 0, > 1, the strategy in stage 2, will eventually fail at some step.
Assume that it fails for the first time at column 5. Without loss of generality
assume further that Py = Py, At this stage the first row contains cither
n zero entry or the sccond minimum entry of each column. In case it does
not, it will do so, once the required mass is removed from the first row of column
z to be assigned to the point (x, j,7) in &;.  In any caso this step is executed
completely in column j so that the configuration has the above mentioned
property, call it property 7. In columns 1 to j, the first row has a zero entry
and the single nonzero entry oceurs, if at all, either in row 2 orin row 3. We
now show that the balanco of the three marginal distributions, as described
in the configuration, can be fully explained by distributing the probability
mass only to points in &,. We first zero out the first nonzero entry in row 1
which occurs in some column following column j, say column k. Assumo
further that the sccond row of column X contains a zero entry. This is done
Dy assigning appropriate probability masses to the point (k, 2, k) in §; whero
 is either a column preceding column j with a nonzero entry in the second
row or a subsequent column. If a subsequent column has to be used and it
has a zero entry in the first row, then thero is no restriction on the probability
mass that can be removed from the nonzero entry.in the second row position,
othorwiso just enough mass can be removed from the second row of column
2, 80 that property # is not disturbed. This process is repeated to zero out
successively tho nonzero entries in tho first row for subsequent columns.  Sinco
this way a probability mass of 0, is assigned to 8, (which is tho maximum
mass that could bo so assigned) and tho rest of tho mass is distributed to
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8,, the suggested integration plan is clearly optimal. \Whon 6, < 1 for the
integration plan
Prob (8,) = 0,, Prob (8,) = 0,—0,, Prob (8y) = 1-0,
and E(v) = 1X0,+2%(03—=0)) 43X (1—0,) = 3—0,—0; = 0,.

We note that if §; denotes the variable which assumes the value 1, if the

jth population unit is included in the surrey and assumes the value 0
otherwise, then

v=8,+08y+...+8n. e (8)
Hence

Ep) = ‘j‘.Prob By=1)> ::.Pm’ = 0,. w {9

Since the suggested integration plan attains the lower bound 0y, it is again
clearly optimal.

For the case 0, > 1, we shall now illustrate the algorithm through a
numerical example.

Consider the initial configuration given by Table 2.

TABLE 2: PROBABILITIES OF SELECTION OF
THREE VILLAGES UNDER THREE SURVEYS

villago
survey 1 2 3
1 (Py) 0.1 0.5 04
2 (Py) 04 0.1 0.5
3 {Pyy) 0.5 0.4 0.1

Setting Py = Pas = Pas = 0.1, 2t tho end of stage 1, we are left with the
configuration,

0.3 0 0.4

0.4 03 0
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We put py, = 0.3. This leads to the following configuration with tho
property m.

0 0.1 0.3
1] 0 0.4
0.1 0.3 0

The choico of pyy, = 0.1, Py, = 0.1 and pyy, = 0.2 leads to the final configura.
tion with all zero entries.  Tho ense 0, > 1 displags certain interesting peculia-
rities which wo deseribe below.

1.6. Induced design, not necessurily oplimally inlegrated for a subset of
surveys :  Consider tho plan for optimum integration in the numerical example,
Suppressing the 2nd coordinate, wo have the following joint distribution for
X, and X, representing the first and third surveys

Pixa = Paxs = 0.1, Paxcs = 0.2, Py = 0.3, pyxy = 0.1, pay, = 0.2.

This plan assigns a probability mass of 0.4 to S, and a probability 0.6 to
3, and is thereforo not optimal, tho value of 0, Leing 0.6. llowever, from
the algorithm deseribed for the case 0, > 1, it should be clear that if it is so
desired, ono could always ensuro that the sccond minimum entry in each
column is zeroed out provided this entry as well as the maximum column entry
are confined to the sccond or third row. Upto column j this process works
smoothly. At column j, it was ensured that the confizuration has property
7. In subsequent columns the 2nd minimum entry could bo zerocd out with-
out destroying property 7 as long as it and the maximum entry were present
among the 2nd and 3rd rows. 7This would imply optimality of the induced
design for 2nd and 3rd surveys. A littlo thought will reveal that thero is
nothing sacrosant about the 2nd and 3rd rows. One could in fact enforco
the optimality of the induced design for any two predetermined surveys, of
course at the cost of lasing optimality for certain other subsets. Thus in the
numerical example, if it is desired to preserve the optimality of the induced
design for the first and third surveys, starting from tho configuration at the
end of stage 1, one could take an alternative route to the final configuration
setting in succession payy = 0.3, Py, = 0.1, Py = 0.2, and py = 0.1, We
conclude this subsection by raising the following converse problem, yet
awaiting o golutioh. Given an arbitrary optimally integrated plan, for any
two surveys s it possiblo to oxtend this plan to obtain an optimally integrated

B1-3
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plan for tho 3rd survey as well ? If tho answer turns out to bo in the aflr-
mative, a Keyfitz-liko stepwise algorithm would be available for optimally
integrating 3 survoys. Tho following counter-example shows that a atepwise
algorithm may not exist beyond 3 surveys,

1.7. The case of four surveys : R. Chandrasekaran’s counter-example : The

following example shows that tho simplo algorithm proposed by Mitra and
Pathak cannot bo extonded in a routino fashion to 4 surveys.

TABLE 3: PROBABILITIES OF SELECTION OF
FOUR VILLAGES UNDER FOUR SURVEYS

villago
survoy
1 2 3 4
1 (Py)) 113 0 13 13
2 (Pyy) 1 0 0 0
3 (Pyy) 13 13 0 13
4 (Py) 13 113 13 0

A routine extension of the algorithm of Mitra and Pathak leads to tho following
plan for integrating tho 4 surveys: pyy, = 1/3, Pyjze = 1/3, pyyyy = 1/3 with
an expected number of distinet units E(v) = 7/3. The following alternative
integration plan pyyz = 1/3, pyyis = 1/3, Py = 1/3 bas a lower expected
value of 2 for tho number of distinct units and is therefore a superior plan.
Since the valuc of 0 is also equal to 2, the expected value of the number of
distinet units in the alternative plan attains tho lower bound. The alterna-
tivo plan is thus an optimally intcgrated plan. One also faces a difficulty
of another type. Sample points in 8, are seen to have two different struc-
tures of tho type (1,1, 2, 2) or (1,2, 2,2). Instage 2 ono is thus occasionally
unable to decido which path’ to proceed elong to eliminato the 2nd smallest
entry in each column.

2. OTHER COST FUNOTIONS

2.1, Cost depends on v in a non-linear fashion : We first consider the
caso whero tho cost of tho survoy depends exclusively on vy, tho number of
distinct units, increases monotonically with » but the amount of increase is
progressively smaller as v increases. Let C(v) denote the cost of a survey
involving v distinet units. Our assumption implies C(1) < C(2) < C(8),
end C(3)—C(2) < €(2)—C(1). It was shown by Krishnamoorthy and Mitra
(1986) that tho optimal integration plan of Mitra and Pathek rotains the
optimality under such a cost function.
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Consider a point in 8, and a point in $;. Wo say that these 2 points aro
matched if they agreo in ono coordinate. Sinco the coordinates of a point
in 8, aro identical and thoso of a point in S, aro nocossarily distinet, theso
two points could ngreo ab most in ono coordinate.  As for examplo, tho point
(1,1,1) and (2,3, 1). Consider an integration plan which assigns a mass of
&to(1,1,1) and o mass of 8" t0 (2,3, 1). A mass cqual to min(3, &') could bo
romoved from the point (1,1,1) in &, and (2,3, 1) in &, and rodistributed
oqually to the points (2, 1, 1) and (1, 3, 1) both in &8,. If tho cost increnses
lincarly with v, the resulting plan retains its optimality as these manoouvres
do not affeet E(v). Howevor, alternative plans desired through tho algorithm
of Mitra and Pathak may allow for different degrees of matching.
Krishnamoorthy and Mitra (1980) have therefore suggested a strategy for
maximum matching. Consider a plan for & maximally matched optimally
integrated survoy and a plan for optimally integrated survey derived from
the samo by transferring equal masses to the maximum extent possible from
S8, and 8, to points in &,. Krishnamoorthy and Mitra (1986) have shown
that the resulting plan is cost optimal if

1 <[CE)—-CENCER)—-C) < 2. w (10)

Observe that there is zero matching now between points in &, and points in
8,. However, transfers to 8, can still tako place under slightly more
unfavourablo condition. Thus, given o mass 26 attached to the point
(4, 4, u) ¢ 8, and a mass & at the point (j, k, 1) € 8, with «, j, £, I all distinet,
a mass of & could be transferred to each of tho points (j,u,u), (u,k, u),
(z,u,1) in 8. These transfers though not profitable under (10) will turn out
to be profitable if

2 < [C(3)—C))/[C2)—C)) o {10)

We keep on making theso transfers until zero mass is left in & orin S, orin
both. Krishnamoorthy and Mitra (1986) show that the rosulting plan is cost-
optimal if [C(3)—C(2))/[C(2)—C(1)] > 2.

2.2. Lahiri's scrpenline arrangement of conliguous geographical units :
Lahiri (1954) proposed a sorpentine arrangement of the population units which
approximately ensures that thoe distanco between the geometric centres of
the j-th and j'-th units is roughly proportional to |j—;’|. The following dia-
gram angd table which we reproduco from Des Raj (1057) shows to what extont
this model helps ina particular cnso. When the cost of an integrated survey
which uses unit j for survey 1 and unit j' for survey 2 is proportional to |j—'|,
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Lahiri (1954) proposes the following plan for optimal integration of surveys
Iand 2.

GRS

D5

Figuro 1 : Map showing boundaries of ton villages
and Labhiri's serpontine arrangement

Let
L . o
! =X Py {i=12..5} - (1)
. u=l
and 3
-
Q= ZlP,,, {i’=12.,N} o (13)
u=
TABLE 4: COST MATRIX ¢y
villago survey 2
no.
barvoy 1 1 2 3 4 5 8 7 8 9 10
1 0 5 10 5 5 n 14 20 15 21
2 B 1] 7 5 8 13 13 21 13 23
3 10 7 [} [} n u 8 17 18 20
4 5 5 ] 0 L 0 9 16 13 18
L] ] 8 11 [ (] (] 1 18 12 17
[} n 13 1k} ] [ a 10 11 5 10
7 H 13 8 9 11 10 [} 9 n 12
8 20 21 17 18 18 11 9 0 ] 5
9 15 18 10 3 12 [ 0 [ 0 8
10 2 23 20 18 17 10 12 5 3 0

Chooso & number X at random in the interval [0,1]. Let 5 and j* bo respec-
tively the largost integors satisfying the incqualities X gy, X < qgpr. Wo
nelect accordingly unit j for survey 1 and unit §* for survoy 2. Des Raj (1957)
shows that Lahiri’s solution is indeed an optimal solution of tho corresponding
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LP problom, thus establishing the optimality of Lahiri's integration plan.
Before wo concludo this scetion, we wish to make the following remarks. It
can bo scen that the arguments given by Des Raj can be suitably modified
go that the optimality of Lahiri’s solution enn be established for a wider class
of cost functions o.g., cost proportional to (j—j’)* or cven for cost proportional
to f(j—j’), whero f(z) is any convex function of z.  In fact tho optimality holds
if cost i3 proportionul to a convex function of 2y—yy, where 2,, z,, ..., 2y and
Yoo Yareers YNy BTO arbitrary scts of numbers. Ifere tho unita have to bo first
arranged in increasing order of the values of z; and also in increasing order
of tho values of yp before tho probabilitics can bo cumulated. It may bo
of interest to noto that Lahiri’s solution minimises E(X,—X,)? whero X, and
X, are discrete random variables supported respectively on tho set
(21 2o 2N} B0 {1y, Yo e yn} with the corresponding probability vectors
(Pr1s Pans s Pa0} 801G {Pa1» P22 +or Pov}.  Wo thus havoe a joint distribution
of the pair of random variables X; and X; which maximizes tho covarianco
between X, and X, given the two marginal distributions (Whitt, 1976; Mitra
and Mohan, 1987). In a given concrete case, if the marginal distributions of
X, and X, aro given, we aro thus able to provide a lower and an upper bound
for cov (X;, X,) which is an improvement over the Cauchy-Schwartz inequality,

—{var (X,). var(Xp} .cov(Xy, Xy) < + (var(X,). var(Xp}h. ... (14)

3. SAMILE SIZE n > 1

3.1. Linear programming approach : So far, wo havo considered inte-
grating surveys cach of samplo sizo 1. Arthanari and Douge (1981) show how
the caso of a general n as common samplo sizo can be treated in the framework
of en LP problem. They restrict their attention to snmpling without roplace-
ment. Wo shall illustrato this methol using the data given in Table 1 and
a sample of sizo 2 drawn with replacement from this population. From stan<
dard results in the classical occupancy problems (Feller, vol. I, 1850, p. 52)
it follows that tho total no. of distinct samples that have to bo considered

(ignoring order) is 8 = (N-l;:z—l) = ('H-;_l) =10. Tho ten possiblo
samples for survey 1 are listed along the rows of Tablo 5 whilo thoso for survey
2 are listed along tho columng. The probabilities of selection for the various
types of samples worked out from tho original probabilities of scloction
assigned to the four villages under the assumption of independent draws aro
given on the respectivo marginals,
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TABLE 5. THE COST MATRIX FOR INTEGRATING TWO
SAMPLES OF SIZE TWO EACH

survey 2

survey 1 1,1 2.2 33 44 1.2 13 14 23 24 34  Prob

_—_

1 1 o 3 2 2 2 2 3 3 3 0.09
09
1 2 2 2 3 3 2 2 3 0.01

2,2 2 o1

33 2 o 1 2 3 2 3 2 3 2 0.18
- 15 0l

44 2 2 2 1 3 3 2 3 2 2 0.04
' .04

T2 2 2 3 3 2 3 3 3 3 4 0.06
! .00

13 2 3 2 3 3 2 3 3 4 3 0.24

.01 A3 .10
1.4 2 3 3 2 3 3 2 4 3 3 0.12
12
2,3 3 2 2 3 3 3 4 2 3 3 0.03
.04 04
2,4 3 2 3 2 3 4 3 3 2 3 0.0¢
04
3,4 3 3 2 2 4 3 3 3 3 2 0.18
.08 04 .04

Prob 0.25 0.04 0.00 0.0 0.20 0.10 0.20 0.04 0.08 0.04

In the top left hand corner of the (j,;*) cell of the table, we record the
number of distinct units in the combined sample, one of typo j for survey 1
with ono of type j' for survey 2. This will provide the cost matrix for the
LP problem. To guard against mistake in writing out the cost matrix, one
can apply the following simple checks.

(1) Tor the j-th row, tho row total of these entries in the table must

bo equal to
N4n— Vtn—
N (A +a 2) N (A-l—n 2) _r
% n—1

where m denotes the number of distinct units appearing in the j-th sample.
(2) The grand total of all the s? entries is equal to

2 1
I [(N+n—l) _ (N+n—2) :l 18
n n

Both theso formulac are duo to Balasubramanian (sco Appendix).
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Tho tublo also shows an optimum solution to tho LI problem. Yor the
cells which receive a non-zero probability mass, the probability values are
noted in the bottom right hand corner of the respeetive cells,

1t is scen that tho size of the LD problem is fairly large oven for moderate
values of N and . Krishnamoorthy and Mitra (1087) therefore looked for an
optimum solution in a narrow class of integration plans.

3.2. An alternative approach : Krishnamoorthy and Mitra (1087) con-
sider a plan ® for integration of k surveys for the spccial case of a sample
size one for each survey and n independent repetitions of # so as to ensure
a sample sizo n for each survey. They restrict their attention only to the
plans of this typo which they denote by #n. They have shown that if
k=2 and is obtained through the Mitra-Pathak algorithm, then # is indced
optimal in the sonso that it minimizes the expected number of distinet units
in the integratod survey. The same isalso true fork = 3 and 0, < 1. Let p4
be probability of inclusion of the j-th unit under the integration plan 2. If
the plan X is independently repeated n times then tho probability of inclusion
of the j-th unit is given by 1—[1—pj]n. Hence

Ep) = ;‘3(1—(1-—171)"]- w (17)

Under the Mitra-Pathak algorithm if cither A = 2 or k =3 and 0, < 1 for
each j, p attains its lower bound. Thereforo for any such plan #, % inherits
the optimality property. When 0; > 1 however, the same is no longer true
for an arbitrary plan # derived through the Mitra-Pathak rlgorithm and the
optimal plan of the type #» has to bo separately worked out,

To minimize the expression (17) ono has to mako the pys as small as
possiblo. However this cannot bo arbitrarily done. e have scen that
1 > Piyyg for cach j. Further onco tho assignment is mado as in stage 1
of Mitra-Pathak algorithm, wo have pj € P+ Prayy—Pyyyy-  If one restricts
one's attention to optimal integration plans , the incquality can be sharpened
further to

Py € p5 € Paytdy o (18)

where Ay = min {Piyyy—Piyys 0;—1}.  Consider tho plan X, which is defined
as follows, Let
Pmb. = m‘in {Pas)- e (19)
Wo first fix
Py = P, o (20)
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This will require assigning a mass Py, —P,), to points in 8, with two
coordinates equal to b,. Ono would like to scan tho remaining columns for
the next smallest value of Py and fix tho py value accordingly. This however
may not be possible if the corresponding valuo of Pyy—Py,) is large. Since
tho maximum mass that could be assigned to 8, is 1—0; tho possibility of
the following is ruled out,

Payp,— Py, +Piayy—Puyy > 10,

Accordingly, let
P mo,+P mo,‘P(uog_"“i“ (Pmu,_p g 1=O— (P mb,-P mo,))

= _';Jbibﬂ [P+ Puayy—Pryg—min {Ping—Puyyg, 1=0,—(Pygyp — Py ).
JFN

We sot
Py, =P gt (m:-P (= Min (P“)bg_P iy 1 01— (P mo,_Ph)n,))--- (2
This process is continued until p; is fixed for all 5.

Consider another plan #; whero we try to preserve the values of p; from
the top. Thus let Py, +A, = max {Py+A44 We fix
]

2y, = P(:)I..’I'At,.' e (29
Let .
Pml,,_,"‘m"‘ (Puu._,'—Pﬂu,i_,’ ot_l—(Pl._Pm:A))

= '}1:"‘ [Piays+min {Piyyy—Pryys, 01—1—(1-’;,,_}’(;):,)}]-

Set
Prpy = Py, tmin (P —Ppyy, s 0—1—(p, — P, o 3

This process is continued till p;is fixed for all 5.

Krishnamoorthy and Mitra show that the plans #, and 2 can b
derived using tho Mitra-Pathak algorithm. Thoy further show that if thes
two plans had identical vectors of inclusion probabilities, that is, if
(Po,' Pog ens ) = (Ph' Bygr ooos pl.)’ then #} is an optimal integration plas
irrespective of tho value of # and so is #}. It is casily scen that otherwix
9 is cost-optimal for sufficiently large samplo sizo n. They show through an
examplo that ionally independent planning of the two surveys could
show better results at least for somo samplo size » compared to an arbitrars
Mitra-Pathak plan. Wo reproduce the following example from Krishns:
moorthy and Mitra (1987) to illustrato a situation where X, and %, ort
different,.
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Consider the data in Tablo 6.

TABLE 6. VALUES OF Py

\“ 1 2 3 ‘ 5 ] 7 8 5
i

1 .10 0.0 13 0.0 .20 .20 0.0 .05 .30 6, =0.0
2 .10 .10 0.0 .20 .18 0.0 .18 .30 0.0 0, = 1.15
3 0.0 .12 .16 W16 0.0 .21 .27 0.0 10 0y = 1.85
Plan P :
B, = 00,8, =127, =157, = .2,
B, = 20,8, =21, F, = 20,7, =35 P, =40

whore by =4, j=12,..09

Plan 7, :
B, =10, 8, = 12,8, = .15 P, = .20, | = .20,
#, =217, =308, =230,7 =42

where ¢y =g, forj=1,2,...,6,6,=8,t, =9, and f, =T,

Let v, denote the number of distinct units in the combined sample of
sizo 3n. e compute the value E(v,) for tho plans P, and %, for n=2,3,...,10
and present in the following table.

TABLE 7. VALUES OF Ey,

n Plan 2, Plan 2,
2 3.4736 3.4720
3 4.5787 4.5113
4 5.4214 5.4201
13 6.0730 0.0732
¢ 8.5802 6.6803
7 6.9935 8.0042
8 7.3208 7.3221
9 7.5805 7.5881

10 7.8040 7.8057

The above table values shows that E(y,) of the plan #, ia greater than
that of the plan ; for 2 < n € 5 and less than that of the plan # for n > 6.
Also note that the absolute difference between them is numerically insignifi-
cant for all » > 2. Ono should not rush to tho conclusion that if © and #;

nl-4
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are different, 7 is better than 7 for small sample size.  Another numerical
examplo in the samo paper shows that this may not always be the case.

3.3, Sampling with probability proportional lo folal size : Roychoudhury
(1956) proposes the following plan for selection of samples of size n, one for
survey 1 and another for survey 2, which cnsurcs that at east n—1 units
overlap in tho two samples and the probability of sclection of any one parti-
cular sample is proportional to sum of the probabilities of the constituent
units,

Step 1 ¢ Select one unit at random for survey 1 assigning a probability
Pytounitj, j=1, ... Y. Let tho unit u be sclected this way.

Step 2: Sclect one unit at random for survey 2 assigning a probability
Py to unit j, j=1,..., N. Let the unit u’ be selected this way.

Step 3: If u =, from the remaining N—1 units select n—1 units at
random with equal probability and without replacement. These n—1 units
along with unit (= «’) are common for both the surveys.

Step 4: If uw £ u' form o composite unit (u, ') which along with the
remaining N—2 units constitute a collection of N—1 units. From these N—1
units draw o sample of n—1 units at random with equal probability and with-
out replacement,

Step 6: If the composite unit gets selected in this process, then unit u'
is also included for survey 1 and = for survey 2. Units u, »’ along with the
other sclected n—2 units are thus common for both the surveys,

Step 6: If the composito unit is rejected, then unit » along with the
selected n—1 units is a sample for survey 1 and unit 4’ along with the selected
n—1 units is o samplo for survey 2.

One notices a certain lack of clarity in the deseription of the plan as given
in Roychoudhury (1956) which also persists in Murthy’s presentation (Murthy,
1967). This may have led Arthanari and Dodge (1981) to interpret the plan
in their own way and conclude that the Roychoudhury plan ensures
tho correct probability of sclection for survey 1 but not for survey 2.

With the Roychoudhury plan the number of common units between
the two samples i3 n—1 or # and the expected number of common units is
cqual to n—1+n whero # is tho probability of having all the # units common.
Here

NYN—
=% [‘;'((A{—_g zr,,+l] . (23)
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1 1 1
Ty = < S (p __)(p .__')_
and =y g Uy LS

Roychoudhury (1950) states that the above algorithm for integrating
two surveys could bo extended to provide integration of k surveys, requiring
no moro than (n+k—1) distinct units and ensuring that the individual proba-
bility requirements of each survey bo satisfied. No further details are given.
Wo present below ono such extension.

The first k steps are similar to steps 1 and 2 of the provious algorithm.
Thus in step i {1 € § € k] we sclect o unit from the population assigning
probabitities Py, Py, ..., Piy to the N population units,

1,2, .., N,

Let tho unit %' bo so selected for survey . Let tho units u™, 4, .., u'®
consist of precisely d distinet units which we denote by uf}, 412, .., ul9)
where ul!) = uth,

Thero are now N—d units left in tho population. Wo add to theso N—d
units d—1 artificial units a,, a,, ..., a4,

From the collection of (N—d)+(d—1) = N—1 units so constructed, wo
draw a samplo of 2—) units at random with equal probability and without
replaccment.

Let tho samplo so selected include e artificial units and n—e—1 original
units.

These n—e—1 original units arc common units for the k surveys. Other
units are chosen for the various surveys using the following Latin square.

TABLE 8. Adxd LATIN SQUARE AND ITS USE IN INTEGRATING
k MIDZUNO-SEN TYTE SURVEYS

ay a e @ay
1 1 !
o m . Ja
ul!l u(l) .‘(ll u“l
Ja Je-n

Each artificial unit corresponds to ono particular colunm of this Latin
squares. Thus a, corresponds to tho sccond column, &, to tho third column
and s0 on.

Wo strike out from this Latin square all columns that correspond to
artificial units which are absent in the solected sample.
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If 0 ==2uf41 tho units to be included for the i-th survey arc now read out
from tho Z-th row of the Latin square, after deleting tho delinquent columns.

Thus if e = 2 and &, and &, are tho only artificial units to appear in the
sclected samplo, then survey 1 will cover the units !, a2 413 in addition
to the n—3 original units, alrcady sclected which are common to all the L
survoys. We noto that in Table 8 ono could have used any dxd Latin square
in whose first column /11, «/? .., appear in the natural order.

Let &= (i) i3 ..o in} e & subsct of §. We shall now calculate the

probability that units with serial numbers as in § constitute the chosen sample
for survey 1. Let Z bo a subset of &* with the first coordinate, restricted to
8. Other coordinates are unrestricted in 8.

Clearly for S to bo & chosen samplo for survey 1, it is necessary that vector
(u®, u®, .., u¥} gssume values only in 2. Further any such choice of the
vector {uth), w®, ..., ut¥)} corresponds uniquely to the set of distinct units
!, w2, ., utd) and in turn to artificial units @, e,, ... ag_;. They also
correspond to a uniquo sample of sizo n—1 containing possibly some artificial
units 8o as to lead to & as tho chosen samplo for survey 1, via the Latin square

in Table 8. Tho probability that units in $ constitute o samplo for survey
1 is theroforo given by

(P|1,+Puz+'“+P"") “rfll ( é)Pul )/ ( i:: )
= (P111+Pllg+"'+P”n)/ (1:::; ) .

Tho argument is similar for other surveys.

The probability of all the » units being common to all the k surveys is
similarly secn to be equal to

L3 N-—1

s Hl(P“l+Pu,2+...+P“,")/( . )

whore the summation extends over all the ( ﬁ ) ways of choosing (iy, fa, ..., 1,)

g s N—1
out of §. The probability is thus n—1

pression when the Midzuno-Sen procedure (Murthy, 1067, p. 218) is indepen-
dently applied to all the k survoys.

k-1
) times the corresponding ex-

The Roychoudhury plan is not necessarily cost optimal. This is best seen
in the special caso k = 2, n = N—1. Here if (i, iy, ..., f,), §; < ip < ... <y
bo the sample selected for survey 1 and (ji, ja .o Ja) J1 <Ja < oo <Ja
the one sclected for survey 2 and if (i), ..., #,) = (1, Ja --s Ju) then the
number of distinct units 1n the combincd samplo is n. “If (i), iy ooy 1a) #
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(1 Jer -+ Jn) it is equal to 241, The cost function is thus, apart from a shift,
samo a3 that considered by Keyfitz (1951) and by Mitra and Pathak (198).
The Roychoudhuri plan assigns & probability

(P + Pyt Py ) Py + Py Py )
N—1
(n—-l )
to the event that (iy, i, ..., i,) is tho common samplo for both surveys 1 and 2
and this is loss than
(Pyy 4 Pyt Py ) (P..,+P,.,+..-+P,,,,)l

(f__ll ) ’ (N— 1 ) J

n—1

min

unless either max (P,,1+P,,2+...+P""), (P,,,-I—PH‘+...+P"“} =1, or
min {(P"|+P“2+...+I’""). (Pyy+ Pyt 4Py )} = 0, when the cquality
holds. If tho equality is to hold for all possible samples (iy, iy, ..., 1,) a8 is
necessary for tho cost optimality of the Roychoudhury plan, it is scen that
only one of the following two conditions are possible. Either

(i) atleast one of two probability distributions on thoe sct of integers
1, 2, ..., N as specificd for surveys 1 or 2 is a degenerato distribution, or

(ii) tho two probability distributions have disjoint supports.

Barring theso situations the Roychoudhury plan is not cost optimal in
the special case,

Howover atloast for large 7 tho Roychoudhury plan is nearly cost optimal
in the scnso that
lim M =1
n—e n
while tho coroparablo expressions for tho caso of k surveys, cach surcey inde-
pendontly planned aro

1—(1—f)%
T B

nda N [
whoro f = lim n/N and
° T e
lim ) M where f = fim n/N.
"y e n neo

These oxpressions are equal to k if for f are respectively equal to 0 (sco
Appendix IT).
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4. OTHER STRONGLY POLYNOMIAL ALGORITHMS

A ‘strongly polynomial algorithm’, according to Grotschel, Lovasz and
Schrijver (1081), is one which (1) involves only the four basic arithmetic Opera-
tions : addition, comparison, multiplication and division and (2) the number
of such steps is polynomial bounded in the dimension of the input, that is
in the number of data items in the input and (3) when the algorithm is applied
to rational inputs, then the size of the numbers occuring during the algorithm
is polynomially bounded in the dimension of the input and the size of intput
numbers, Kabadi, Chandrasckaran and Nair (1987) point out that for the
problem of optimal integration of surveys, if the number of surveys, &, is
held fixed and NV is regarded as a variable parameter then a strongly polyno-
mial algorithm can be constructed for its solution following the approach
suggested by Tardos (1986). However when £ is also regarded as a variable
parameter the problem is NP-hard.

Tardos considers a lincar programmo

max cx
st. Az=b z20. . (25)

where A i3 a mXn integer matrix. Let A(4) denote an integer greater
than or equal to
max {det B|B is a submatrix of A}. o (26)

Also let (4, b) denote the number of arithmetic steps used by the subrouting
of the basic algorithm when used to find

max ¢z
sbtAz=0>b,2>0,zy=0forie K - (27)

for an integer vector ¢ with |ic]l, < 7% A and a subset K of the indices.

She proves that the number of arithmetic operations in the basic algo-
rithms is to o(nf+n? log A+nS(4,3)) and that all numbers by which the
algorithm divides or multiplics havo size polynomial in the size of matrix A.
In our context m is k. ¥ and a is N¥. We emphasizo tho fact that the Mitra-
Pathak algorithm is not only a strongly polynomial algorithm but also a
considerably simpler algorithm requiring a number of steps of arithmetic
oporations (subtraction and comparison) which is essentially lincar in X\
Kabadi, Chandrasckaran and Nair (1087) point out that the fact that tho vari-
ablo £ problem is NP-hard, may bo an indication that the Mitra-Pathak typo
simplo algorithm may not exist for larger values of X,
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Appendix 1
DERIVATION OF EXPRESSIONS (15) AND (16)
By K. BALASUBRAMANIAN
Indian Statistical Institute

Lomme 1 : {8) Number of non-decreasing n-sequences S(n, r) over (1, 2,..., 1}
using each of these atleast once is |S(n,r)| = (::1 .

(b) Number of mon-decreasing n-sequences S(n, 1) over {1,2,...1}
without restriction on number of times any symbol is lo be used ia (n+;—l).

Proof : (a) Let ny, ny, ..., ny bo the number of times 1, 2, ..., r respectively
occurs in an element of S(n,r). Then ny+n,... +n, =72 and n > 1 for
i=1,2,..,r. Hence |S(n,r)| is the coefficient of 27 in (z+4224 ..)

=2 (1—2)7 =2" £ (’+3—1):'. Thus
1-0 8

186,91 = (27))-

(b) Clearly |S(n, )} is the coefficient of 27 in (14+z4224...)".

—1
Thus Stn, < 1)l = ntr )
n
Sin, € N) is precisely the sample space in sampling with replacement for &
samplo of size » from a population of size N, if order is ignored, and the
number of sample points, hence, is (N+:—l).

This typo of sampling is considered in Section 3.1,

Nolation : If ze S(n, r), let d(x) represent the number of distinct elements
in z considered as & set. d(zJ ), d(x () y) bave obvious interpretations when
z,y¢ 8(n, ).

Lemma 2: Number of z¢ S(n,  N) with dlz)=m s

I\'+n—2)-

( f’vl)( 77::1:! )and z d(z) = N( n—2

zESM & N)
Proof : Suppose z ¢ S(n, € &) and d(z) = m. Clearly such an clement
n—1

n_m) times.

ean oceur (::) |8(n, m)| times i‘a.(:\n,)
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dz) = z":,m(N)( 'l) -NZ (‘v_l )EN(N“"‘")
m n—m, m=1 \ B—m n—-1

z
2¢Sn, € N) mel

32

[Noto that Eno (:) (nir) (a+b) by Vandermonde

convolution formula VCF].

Main result: Suppose z e S(n, € N) and d(z) =
with d(z (N y) = », then, the number of such #’s is

m m N—m
it (r) (d(y) r) |5t dl.
_(m E' N—m) n—1
- r /] te0 ¢ n—i—r
_ (m) (N+n—m—l) by VCF.
r n—r
Thus
_ . m N+n—m—1
e ENV =27 ( r) ( n—r )
n (m—l) (N+n—m—l)
=mZ
re1 \r—1 n—r

=m (N 1”‘_2) by VCF.

m. If ye Sy

N —1

Hence

d=Uy) = s m(d(x) +d@)—dlz N y)

P>
ves(n, & N)
= m|Sn, < N)|4+N (N+” ) —m (N:_’:Q)
—m (N+n—l ) (N+n—2) (N+n—2
n
=N N+4n—2 N+n— )
- n—1

(s’ T‘) (" )- ()
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This proves (15).

N+4n—2 Nin—2
hfs(..t‘md(zUy)=“w§‘n{t\'( n—1 )+‘I(I)( n )}
N+n—2 N4n—1
=N( n—1 )( % )
N4n—2 N4n—2
() ()
N+n—l N4n—1 _ N+n—2
n
N+n—2 N4n—1 1\'+n—2
+( )[( -]
N+n—l Ntn—2\?
n '

=N

This proves (16).

Appendix II

ON THE EXPECTATION OF TIIE NUMBER OF DISTINCT UNITS
1IN & INDEPENDEXNT REPETITIONS OF MIDZUNO-SEN
SAMPLING S8CHEME
By S. K. MrTrA AND K. BALASUBRAMANIAN
Indian Statistical Inslitute

Suppose Z; = 1 if j-th population unit is in one of the X samples and 0
otherwise, Then

, (N—Q o,
P(zy=0)= 11 (1—Py) (j{.‘_ ’,) = (4=%) 1 a-ry
n—1

N
= I Zjis clearly tho number of distinet units in the pooled sample.
j=1

By =3 EZ)= £ 1=P =0 = N— {2\ £ T ap
W= E E7)= & (1-P(% = 0)] = (7= S Ia-ry
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here —N—(N—;n )t(N+:k)
¥ = N=1

N k

Ntep =2 11 (1—Py).
4=1¢=1
t €pr s ir P opocht(F o

Cloarly[er] < 2 s “+l.<ix!-‘ iyt g )t =21

Writing g— =f, wo got

g -(EE) (e

b A R,

n

and for large » this behaves like

P

R.H.S. is a monotonic docreasing function of f in [0,1]. Thus

i E0) _ 1=0=]

1 “Lf.)k= 1;(}__nk =:§‘,:(1_fy.

—_ T 7
and .
T B _ 1=0=
ame f
where f=1lim fandf= lim f.
n—o - e

A partition of a positive integer L is o representation of £ as tho sum of
positive integer oach ono of which is called o part or a summand. The order
of the summands is unimportant.

Tho number of each partitions of k is given by the well known-Euler’s
partition function p(k). An explicit expression for p(k) in terms of k was
given by Hardy and Ramanuajan (sco G. H. Hardy, 1940 : Ramanujan,
Cambridgo University Press, Cambridge).

Consider the units sclocted as tho first sample unit in the k independent
repetitions of tho Midzuno-Sen sampling schemo, and let f; denoto the fro-
quency with which the j-th population unit is so sclected. If ono ignores the
zero frequencics the rest of tho frequencies constitute a partition of k. Let
@, denote tho ovent (collection of samplo points) which corresponds to the
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v-th partition of k, v=1,2,...,p(k). Customarily the partitions are listed
a3 follows.

) *), @ {(k=1,1}, (3) {k—2,2}... (p(k)) (L1, .., 1)
\Ve denoto by Ay tho probability of observing @,. fy depends on the initial
probabilitics of selection of the ' population units as specified by the & separato
surveys. 1f v, denotes the number of distinet units appearing in the combined
sample, it is scen that for an integer r, n € r < min {nk, N}

k)
Py, =)= X fug(n, N, K, r)
o-1

whero g,(n, X, k, 1) is » function. depending on the partition » as well as on
n, N, kand r. Noto that g.(n, N, k, r) is the conditional probability of Va=Tr
given that the first stage sample units for the k scparate surveys belong to
@,. Since the sccond step selection for cach survey is done at random with
equal probability and without replacement, g,(n, N, &, ) docs not depend
on tho initial probabilities of sclection specified for the k surveys.

Let d be the number of distinet units in tho first sclection of £ units. For
the sccond stage we have to select (r—1) more units from (N'—1) independently
for k sclections, If », = r, then we need r—4 more units from N-d units and
this can bo done in( ‘:y__:)wnys. For any ono such choico wo consider
the r units of the population as columns and the & sclections as rows of an
ineidenco matrix of order kX r whose (i, j)-th entry is 1 if j-th populations unit
appears in tho sample for the i-th survey and 0 otherwise. The first d columns
of such a matrix correspond to tho units sclected in tho first stage. Then it
N—dy Win, r,k,d)
r—d ) (N -1 )"

a—1
number of ways of filling (n—1) more 1's in ench row (noto that in the first
d columns each row has one 1 corresponding to tho first stagoe selection initially)
in such a way that no column is empty (without a 1)—clearly, number of
ways in which somo particular ¢ columns among tho last r—d columns will

is cloar that P(v, =r) =( where W(n, r, k, d) is the

cor=l—=by . qr—d
bo empty ls( el ) and ¢ columns can bo chosen m( ' )\vnya.
Hence, using the principlo of inclusion—exclusion we get
r—1\* [r—d r—2\ % r—d\ /r—3
Vin,r, k, d) = - -
rerko= () =(7) () (V) (2)

[Note that wo define (n. ) a8 zoro if n < r or r < 0]
4
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et (1) - (7) (02 + (31 ()

Using shift operator £ and the differenco operator A = E—1 we can write

r—d r—d z—1\*
3 i -_— §=1 -2 ...
tho expression ns{l ( 1 )b +( s )l" }(n—l)
k k
— (B¢ z—1 - Ar-d z—r+d—1
n—1 n—1 :

Ja—. d—l k _ k
Ienco I'(n, r, &, d) = Ar-d ("” r+ ) L — A,_d(x+d 1 )
n—1 n—1
oy -

Thus o atde—1 \k
0 Needy A d'( - ) ..
Py, =1r)= vé'l (‘r—d: ) (17\:’”:})1: ® By

for n € r € min {kn, N} and dp = number of summands jn the partitin
corresponding to f;. Thus P(v, = r) depends on B, only through dp and ot
on the actual partitions. A special case of this formula namely n =1 and
Py = 1/N ¥ 1i,j has been extensively studied in literature. See for exampl,
[Feller, 1950, pago 92] and [D. Basu, 1958 : On sampling with and without
replacoment, Sankhya, 20, 287-204). Note that n in expressions given by
Basu would correspond to k in our formulae. Explicit expressions for the caz
% = 2 aro given below: We have here

P("n =r= gl(n» N,2, r)ﬂ1+gg(n, N,2, ')pl
N
where fy= £ 1 Pyand f, = 1—,.
=1 (=1

Cloarly we can write P(v,=2r—r)=a(n,N, r)+-b(n, N, r)f; where a(n, X,1i

’ 1

and b(n, N,7) aro independent of initial probabiliites. Suppose Py=
14,5, Then g, = 317- and Midzuno-Sen scheme reduces-to SRSWOR.

wnamsswon, s (1) (171 ) (37) /()
- (=) 6)
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a hypergeometric probability = (N, n, n ; r).
a\ (N—a
2) s
)
n

l: Wo writo as{N,a,n; z):| .

Thus
N, n,n;r) = a(n, N, r)4+b(n, N, r) v o (D)

Suppose Py = Py =1 and other Py’s are zero.  Clearly in this caso f, =1
and tho samples contain unit 1 and thoso coming from two SRSWOR samples
of size n—1 from N—1 units. Hence

Pr,=2n—r)=hk(N—1,n—=1, n—1;r—1)=a(n, N, ) rb(n, N, 7). ... (I})

Solving (I) and (II) wo get

Plv, = 2n—r) = A(l ﬁ’ (N, n,n; r)+‘ ﬂ‘ lh(l\!—l n—1,n—1;r~1)

or

Plo,=r)= ““

ﬂ‘ h(N, n,n; Zn—n)+5 /l h(l\'—l n—1, n—1; 2n-r-1).

N(l ﬂ.) 1\191

Noto that —l and henco this expression looks like & mixturo

of two hypcrgcomctno probnblliﬁes. But it is not quite so as N§,—1 can bo
negativo for small values of f,. Novertheless it is easy to verify that the
entire expression is non-negative for g, ¢[0, 1].

REFERENCES

Axtaaxany, T. S. and Dovog, Y. (1081): Marh ical Prog ing in istics, Wiloy, Now
York.

Cavsey, B. D, Cox, L. I, and Erxsr, L. R. (1085): Applications of tranaportation thcory
to etatistical probloms. J, Amer. Statist. Aasoc, 80, 003-909.

Ferrer, W, (1050) :  An Introduction to Probability Theory and Its A pplications, Wiloy, Now York.

Goopuay, R, 8nd Kisg, L. (1050) : Controlled solection—a technique in  probabili pli
J. Amer. Statist. Awoc., 45, 350—372.

GROTSCHEL, l( Lovuz..! and Sr.-nm.vvzn.A (IDBI) The ollipacid mothod and its conscquencos
in 1 of binatorica, 1 (2), 169-107.

EKapapy, 8. N., CEANDRASERARAN, R. and Narm, K. P. K. (1087) 1 Optimal integration of sovora
eurvoys. Sankhyd Sor. B., To Appoar in 50 B(1).

Kevrrrz, N. (1051): Sampling with probability p ional to size : adj foc changos
in probabilitiss. J. Amer, Statist. Aseoc., 48, 105.100.




38 SUJIT KUMAR MITRA

Krisaxasoortuy, K. and Mitra, 8. K. (1080) 1 Cost robusinesa of an slgorithem for. opti.
mal integration of survoys. Sankhyd, Ser. B. 48, 233-245.

(1987): Optimal integration of two or throo PPS eurvoys with common samplo siza
n> 1. Sankhya Sor. B, 49, 283.-300.

Lanme, D. B. (1954) ¢ Tochnical paper on smne aspocta of tho development of the samply
dosign. Sankhya, 14, 201-316.

Maozvysks, M. J. ond PATAAx, P, K. (1080): Integration of surveys. Scond. J. Statiat., 7,
130-138.

Mitra, S. K. and Patuax, P. K. (1084): Algorithins for optimal Integration of two or three
surveys. Scand. J. Statiet,, 11, 257-203.

MitRa, S. K. and Momay, §. R. (1087):  On tho optimality of the northweat cornor solution in
somo applications of tho tranxportation theory. Technical Reporf No. 8712, Indian
Statistical Instituto, Delhi Centro.

Morruy, M. N. (1067):  Sampling Theory and Methods, Statistical Publishing Society, Caleutta.
Ras, D. (1057): On the mothod of overlapping maps in samplo survoy. Sankhya, 17, 8998,
Rovcroopuony, D. K. (1938) : Integration of sovoral PPS survoys. Science and Culfure, 22,
119-120.
Taroos, E. (1086) : A strongly poly ial algorithm to solve binatorial lincar
Opcrations Rescarch, 84, 250-256. o

Warrr, \V (1076):  Bivariato distributions with given inals, Ann. Statist.,, 4, 1280-1280.



	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030

