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1. INTRODUCTION

In the issue of Biomelrics (Vol. 20, part 2) dedicated to the memory of
Ronald Aylmer Fisher I reviewed the contributions by Fisher and some of
the salient features of research work done in multivariate analysis up to
1964. Fisher’s contributions as well as the related methodology developed
by Wilks ([1932; 1946]—likelihood ratio criteria for testing multivariate
hypotheses), Bartlett ([1947; 1951]—decomposition of Wilks’s criteria for
testing different aspects of a null hypothesis), Rao ([1946; 1948]—analysis of
dispersion® as a generalization of the univariate analysis of variance, and
tests for additional information supplied by a subset or functions of measure-
ments), and Williams ([1952a; 1959]—residual canonical correlations in testing
goodness of fit of specified discriminants) may be described as a study of
association between two sets of variables. One set is called predictor and
another set, criterion variables. Some of the variables may be hypothetical
(unobservable), and others may have values on a2 dummy or interval scale.
I have indicated in Rao [1960] how various multivariate methods such as
regression, cenonical correlations, analysis of dispersion and canonical
analysis, discriminant function, factor and latent structure analyses, treat-
ment of contingency tables ete., can be classified by the nature of predictor
and criterion variables. However, the classification provides only a suitable
framework for the discussion of different problems but does not imply that
the statistical methods appropriate for one problem can be simply deduced
from those of another.

Since 1964 considerable progress has been made in several directions
of the work initiated by Fisher. Exact distributions have been found of
several likelihood ratiorcriteria and of roots of determinantal equations
involving random matrices which arise in multivariate statistical analysis
and in some problems of physics. Further progress has been made in testing
goodness of fit of assigned discriminant functions. The theory and con-
struction of discriminant functions for deciding between composite hypoth-
eses (involving nuisance parameters) has been developed. A satisfactory

1The term Analysis of Dispersion (AD) to denote \\ of i and wae chosen in
:::nlulnﬁnn with Fisher and is the forerunner of MANOVA. The word dispersion implies acatter in all direa-
opa.
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approach has been made available for statistical analysis of growth data
and prediction of growth.

Some new lines of research work, not directly related to Fisherian concepts
and contributions and free from muitivariate normality assumption, have
been established during the last ten years. One is the problem of ‘Seriation’
in archaeology first considered by Flinders Petrie [1899] seventy years ago,
viz., the determination of sequences of prehistoric events by paired com-
parison of characteristics associated with them—events closer in time would
presumably have a larger number of common characteristics. Another is
‘Multidimensional Scaling’ which seeks to determine the configuration of
a set of points using information about interpoint distances—the information
may be of & meagre type giving only ‘greater or less than relationship’ among
the distances. A systematic theory of cluster analysis is being developed
and new applications made. The last decade also saw a rapid development
of nonparametric and graphical methods in the analysis of multivariate data.

A new Journal of Multivariale Analysis has been started to meet the
increasing demands of research workers and to provide a forum for discussion
of current problems.

The object of the present survey is to discuss some of the new multi-
variate methods which seem to be of immediate value to practical workers
in a wide variety of fields, and to review briefly some of the more theoretical
developments. A recent paper by Dempster [1971], ‘An overview of multi-
variate analysis,’ covers gimilar ground. There has been considerable work
on time series and inference problems on stochastic processes which are
somewhat specialized and which are not considered in this article.

Computers have revolutionised research in science (Rao [1970]); more
go in statistics, especially in the area of multivariate analysis where most
of the new techniques are computer-tied. There seems to be less emphasis
on research on choice of variables and refinements of techniques which
received considerable attention in the days of desk calculators. What is lost
by the use of an inefficient technique is sought to be made up by inereasing
the number of measurements, often employing the computer itself. A greater
danger to scientific research appears to be the much publicised package
programs for multivariate methods which have misled and are still likely to
mislead applied workers.

2. DISCRIMINANT ANALYSIS

2.1. Applications

The discriminant function was suggested by Fisher for identifying an
observed specimen as belonging to one of two specified populations. In the
previous review (Rao [1964]) I have discussed different aspects of the dis-
criminant function when the measurements are continuous—examining the
adequacy of a given function, testing for given ratios of the coefficients of
some variables in a discriminant function, providing for the possibility of
an observed specimen belonging to & third unknown group (see Rao [1965a]
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chapter 8). The practical applications of the discriminant function have
not been many due to inadequacy of information about the distributions
of the measurements and prior probabilities of the alternative populations.
However, some important applications have been made in pattern recognition
by Gnanadesikan and his collaborators at the Bell Telephone Laboratories
and in medical diagnosis (e.g. Truett, Cornfield, and Kannel [1967]).

There are additional difficulties due to some of the measurements being
binary in nature. A recent paper by Cox [1971] summarises the work of
Bahadur, Lazarsfeld, and others in this direction and recommends the use
of a logistic model for the estimation of probabilities.

2.2. Discrimination belween composite hypotheses

A new line of research in discriminant analysis was started by a problem
posed by Burnaby [1966], where a fossil had to be identified as belonging
to one of two populations—each population being a composite one consisting
of individuals belonging to one species but presumably fossilized at different
ages. Given the measurements on a specimen of an unspecified age, how
does one identify it as belonging to one of two species? The problem is that
of constructing a diseriminant function which does not distinguish between
individuals of the same species with different ages but is sensitive to dif-
ferences between species for any given age. The theory of estimation and
the construction of a discriminant function in such cases are discussed by
Rao [1966].

2.3. Direction and collinearity tests

In discriminant analysis, the problems of examining the dimensionality
of the configuration of the mean characteristics of the various groups and
of testing the adequacy of assigned discriminant functions are of some
importance.

Fisher (see also Bartlett [1938]) developed a test for examining whether
an assigned discriminant function is adequate for discriminating between
two alternative populations. Rao [1946; 1948] extended this test to examine
whether a given subset (or functions) of measurements is adequate to ex-
plain differences between means of correlated variables in & given population
and differences in means of variables between two or more populations.
In the case of several populations, if A stands for Wilks’s criterion for judging
differences between k groups in all p variables and A, for the s assigned
diseriminant functions, then the appropriate Wilks criterion A’ for testing
their adequacy for diserimination is obtained from the formula due to Bartlett

A’A, = A (2.3.1)

Tlustrations of tests based on A’ are given in Bartlett [1947; 1951] and Rao
[1948].

The decomposition (2.3.1) is the starting point of Williams’ work which
is admirably reviewed in his 1967 paper. Williams [1952a] observed that A’
contains two types of deviations, one due to the number (‘dimensionality’)
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of specified disoriminants being wrong and another due to the specification
of the functions (‘direction’) being wrong although their number is adequate,
He developed exact tests for this purpose when p = 2 and & = 1 for any
% using the concept of residual canonical correlations. Bartlett [1951] ob-
tained the corresponding tests for general p and s = 1, by considering two
kinds of decompositions of A’, which waa later extended by Williams (1961]
for 8 > 1. Kshirsagar [1964] gave an analysis of variance type break-up,
expressed these factors of A’ in simpler forms, and gave an analytical deriva-
tion of their distributions.

Williams [1959] provided a similar analysis in a more general aituation
for testing the adequacy of a specified linear structure for mean values of
different populations, as in examining whether ‘time’ alone can be a good
diseriminator from Barnard’s data on Egyptian skulls. The overall criterion
in Barnard’s problem was given earlier by Rao [1948], which differed some-
what from that given by Bartlett (1947). Kshirsagar [1862; 1971] provided
an appropriate theory for Williams' type of analysis.

Williams [1952b] and Bartlett [1951] also considered similar tests for
examining association between attributes in contingency tables.

The goodness-of-fit test of a single discriminant function was carried
into the area of principal component analysis by Kshirsagar [1961].

3. EXACT DISTRIBUTION OF MULTIVARIATE TEST CRITERIA

A pumber of likelihood ratio criteria for testing various multivariate
hypotheses have been introduced following the early work of Wilks [1932].
One may refer to books by Anderson [1958], Dempster [1969], and Rao {1952;
1965a). Till recently only asymptotic expansions of the distributions of these
statistics and fairly good approximations in terma of x* and F distributions
(Bartlett [1938; 1947), Rao [1948], Radcliffe [1966]) were known, except in
some special cases. During the last 10 years considerable progress has been
made in obtaining exact distributions in the null and non-null cases and
also in obtaining exact percentage points by suitable computer programs.

Similar advances took place in the distribution of roots of determinantal
equations introduced by Fisher to infer on the dimensionality of the con-
figuration of true mean values of given set of populations.

The principal contributors to exact distributions of test criteria are James
(1964] and Constantine [1983] who achieved a breakthrough in deriving
exact non-null distributions with the help of zonal polynomials, Mathai
[1970], by himself and in collaboration with Rathie and Saxena who used
Meijer's G-function and H-function, Krishnaiah and his collaborators, Chang
and Waikar (Krishnaiah and Chang [1970; 1971}, Krishnaiah and Waikar
[1971]) who used inverse Laplace transforms and methods developed by
Wigner [1967] and Mehta [1987), Pillai and his collaborators (Xhbhatri and
Pillai (1968]; Pillai, Al-Ani Sabri, and Jouris [1969]), Khatri (1967], Khatri
and Srivestava [1871] and others. (Mathai {1970] lists a large number of
references on the subjeat.)
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Exact distributions in apecial cases were, however, obtained earlier by
a number of authors including Bagai [1965], Consul [1969], Davis [1970),
Sugiyama [1970], to give a few references.

The distribution of eigenvalues of a random matrix has also received
the attention of physicists (see, e.g., Wigner [1967], Mehta [1967], Porter
[1985]). The random matrix they consider is not, however, the Wishart
type but has as its (Z, j) element an independent normal variable with zero
mean and variance equal to 2 when ¢ = j and equal to 1 when § < j.

4. ANALYBIB OF GROWTH DATA

4.1. Early work of Wishart

The forerunner of all research dealing with the statistical analysis of
growth data is the classical work of Wishart [1938]. As a first step in the
analysis, Wishart fitted orthogonal polynomials to individual growth data
and replaced the large number of observations on each individual by a few
of the fitted coefficients of the first, second, . . . , degree terms. These are
used in subsequent analysis for comparison of different treatments etc.
The general approach in recent applications has been essentially the same
but several improvements have been made. For our discussion we shall
consider different situations.

4.2. Analysis of comparative experiments

It has been pointed out that Wishart’s approach can be made more
efficient by (a) transforming the response variables (such as log for weight
as in Rao and Rao [1966]) and (b) a suitable choice of time metameter with
respect to which the average growth curve assumes a simpler form. Rao
[1958]) gave & method of constructing such a transformation of the time
variable using the data under analysis itself and showed that the Wishart
type of analysis remains valid when polynomials in terms of estimated time
metameter are fitted. It was shown in an example that comparison between
treatments could be essentially reduced to examining differences in linear
growth rate with respect to transformed time, whereas higher order terms
were needed otherwise.

4.3. Estimalion of average growth curve over a short ttme period

‘When the average curve is of the polynomial type, Rao discussed methods
for: (a) testing the adequacy of a polynomial of a given degree (Rao [1959]),
(b) estimating a polynomial of a given degree using suitable functions of
observations for covariance adjustment (Rao [1965b; 1967]), and (c) providing
& confidence band for the average growth curve (Rao [1959]).

4.4, A multivariate growth model

The usual generalization of the Gauss~Markoff model to the multivariate
casg is of the form



8 BIOMETRICS, MARCH 1972

Y=X3+e E(k =0 (4.4.1)

where Y is an n )X p matrix of random variables, X is a given n X m matrix
of coefficients and § is an m X p matrix of unknown parameters. The rows
of the random variable Y are independently distributed while the com-
ponents in each row may be correlated. If the column vectors of § have no
restrictions, then we have the usual extension of analysis of variance to
analysis of dispersion (Rao [1948], [1963a) p. 459).

As a generalization of the univariate model with concomitant variables,
Rao [1965b] considered the multivariate model

E¥)= X g ,E@2Z) =0 (4.4.2)
such that
EZ|2) = X6 + 2o = & 2)(%) 443

In terms of conditional expectation, the model (4.4.3) is of the same form
a8 (4.4.1) with unknown parameters ¢ and g so that no new problems arise
in drawing inferences on B. However, the appropriate multivariate technique
for tests of hypotheses on § may be described as analysis of dispersion with
adjustment for concomitant variables Z (see Rao [1965b]).

If the columns of @ in (4.4.1) are related in such a way that 8 can be
written as B = XA, where £ is the new m X k matrix of unknown parameters
and A is a given k X p matrix, then the model (4.4.1) becomes

E(Y) = XtA (4.4.4)
as considered by Potthoff and Roy [1964]. Let H = (H, : Hy) bea p X p
nonsingular matrix such that AH, = 0 and the columns of H, form a basis

of the vector space generated by the rows of A. Then multiplying both sides
of (4.4.4) by H we have

E(, = YH,) = XtAH, = Xn, E(Y, = YH;) =0, (4.4.5)

introducing the new parameter matrix n without any restrictions on its
columns. The model (4.4.5) is then of the type (4.4.2) with Y, as concomitant
variables. We consider the conditional model

E(Y,|Y:) = Xn 4 Yo (4.4.6)

which is of the same type as (4.4.3). Thus the model (4.4.4) can be reduced
to & model appropriate for analysis of dispersion with adjustment for con-
comitant variation, and no new problem arises. However, Khatri [1966]
tried to derive test criteria, etc., afresh by using the likelihood principle
starting from the multivariate normal density function of Y.

When the rank of A is p we may choogse H, = G™'A’ (AG'A")~', where
G is any p.d. matrix, in which case

E(Y,) = X¢, E(Y,) =0 (4.4.7)
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Potthoff and Roy [1964] suggested using only the first part of the model
E(Y,) = XX ignoring Y, , while Rao [1959] suggested the full use of all the
concomitants. Later Rao [1965b; 1967] discussed the possibility of using only
some of the concomitants to achieve maximum possible efficiency in estima~
tion. Rao [1967] also showed that the concomitant variable Y, does not
provide any information on n in (4.4.7) when the dispersion matrix of the
variables in any row of Y is of the form

H,G,H! + H,G.H; + ¢, (4.4.8)

where G, , G, and the scalar o” are arbitrary. Some applications of these
techniques are given by Grizzle and Allen [1969].

4.5. Prediction of individual growth

Knowing the weights of a growing child at some time points in the past,
how do we predict the weight at a future time point? This problem has
been approached from a Bayesian point of view by Geisser [1971] using the
information supplied by complete records of weights on a sample of children
observed over the entire growth period. The problem raises some fundamental
issues. What aspects of the information provided by complete records of
growth observed on some children would be of use in predicting the future
growth of a new child from his past observations? A simple-minded regres-
sion formula for future weight on previous measurements constructed from
complete records does not seem to provide a satisfactory approach. Perhaps
a study of an individual’s growth process from complete records would provide
a better basis for prediction. Further research in this direction is needed.

4.8. Estimation of age-specific norms from survey dala

Rao and Rao {1966] introduced what is called a Linked Cross Sectional
(LCS) approach in collecting data for estimating age-specific norms, growth
rates, differential growth rates etc., over a given period of growth. The study
consists in taking a sample of individuals at age ¢, and observing them over
a specified number 8 of years, another sample at age {; < s + ¢, and ob-
serving them over 8 years, ete. The survey which can be completed in s years’
time provides estimates of average growth curves in the overlaping time
intervala (¢, , ¢ + 8), (ta, ta + 8), -+, (&, &a + s). The different segments
are then pieced together to obtain the average growth curve over the entire
period (t; , t, + 8). The value of s is chosen to be small compared to ¢ — & .
The L.CS approach is likely to be of use in many other situations.

5. ARCHAEOLOGICAL SERIATION

This problem was formulated 70 years ago by the archaeologist, Flinders
Petrie [1899], and the interest in the problem was revived by D. G. Kendall
[1963] who built up an active school of research in this area. There is already
congiderable literature on the subject due to Kendall, Sibson, Wilkinson,
Hole, Shaw, Kaluscha, and others; much of this is contained in and probably
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all is referred to in the Mamaia Proosedinga volume edited by Hodson,
Kendsll, and Tautu [1971].

Petrie was confronted with some 900 pre-dynastic Egyptian graves
containing representatives of about 800 varieties of pottery and the problem
was to infer from the ‘incidence matrix’ of ‘graves-versus-varieties of pottery’
(the (5, 7} element is 1 if ¢-th grave contained j-th variety of pottery aad 0
otherwise) the sequential ordering of the graves in time and to determine
the ordinal intervals during which the different varieties of pottery flourished.
The basic Petrie principle, without which seriation is hardly possible is as
follows: {wo graves are the more likely to contain varielies of a similar type
the closer logether they are tn the true time order. Under this principle it should
be possible, by a suitable row-rearrangement, to exhibit the incidence matrix
A such that all 1's are strung together in each column. Such a matrix is
called a Petrie malriz. The problem then is one of pefrifying A, i.e. of con-
verting A into the Petrie form by a rearrangement of the rows. The sequential
ordering of the graves is provided by the order of the corresponding rows
in the transformed matrix. In practice such a rearrangement may not be
strictly possible. In an early study, Kendall {1963] tried to find a rearrange-
ment of rows by a suitable search method which minimises 3 n, log r, ,
where j runs through various types, n, is the total number of representatives
of the j-th type, and r, is the ‘range’ of that type when the graves are given
the tested reordering. Later, KXendall [1970] suggested the computation of
a similarity matrix 8 = (S,,) for the graves and an application of multi-
dimensional scaling technique to provide an ordering of the graves aver
time. The matrix S is chosen to be AA’, when A is the incidence matrix,
and S,; = 2. min (au , ;) when A = (a,,) is the abundance matrix.

Fulkerson and Gross [1965] examine the conditions under which a matrix
A ig petrifiable. They provide a graph-theoretic algorithm to identify row-
permutations of Petrie matrices using the matrix V = A’A. Kendall [1969]
has shown that, when V is such that A is petrifiable the row-permutations
which petrify A are exactly those which, when applied to the rows and columns
of S simultaneously, give to that square matrix the Robinson form. Further
results in this direction and generalizations are found in Wilkinson {1971].

A square matrix is said to be in Robinson form when its components
never decrease as one progresses along a row towards the main diagonal
and never increase as one continues to progress along that row beyond the
main diagonal. Such matrices play a prominent role in a geological problem
of seriation considered by Robinson [1951]. Instead of the incidence matrix
he had a matrix B giving in it8 (z, /) component the percentage composition
of the ¢-th deposit which was attributed to the ‘object’ j. From B, a similarity
matrix was constructed, and then Robinson’s idea was simultaneously to
permute the rows and columns of the similarity matrix until it assumed the
Robinson form (as nearly as could be managed).

The seriation methods have been used successfully in other aress, classical
philology (chronological ordering of written works of Plato), reconstruction
of maps by using indices of similarity between places, eto.
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6. MULTIDIMENSIONAL S8CALING

Multidimensional scaling (MDS) is a technique of data analysis in which
a configuration of points is determined using information about the inter-
point distances. The information about the interpoint distances may take
many forms: direct estimates; rank order information; pairwise comparisons;
and others. Naturally, random error is assumed present regardless of form.

The term ‘multidimensional scaling’ was invented by Torgerson in 1952
(see also [1958]). The current surge of interest was largely initiated by Shepard
[1962a, b) whose ideas were further refined and developed by Kruskal
[1964a, b). Parallel developments of theory and computer programs are
due to Guttman and Lingoes, and to Young. Subsequent work was done by
Roskam, McGee, and others. References to papers by these authors and
others mentioned in this section can be found in a recent paper by Carrol
[1971]. MDS as developed by Shepard and Kruskal has beea applied in
various fields, study of origin of languages, seriation in archaeology, ordering
of an author’s works in time, construction of geographical maps from odd bits
of information ete. (see the papers in the Mamai proceedings edited by Hodson
et al. [1971]).

A very striking advance in scaling has occurred recently with the de-
velopment of ‘individual differences scaling’ by Carrol and Chaog (and
independently by Harshman). This method requires several dyadic matrices
(pertaining to the same objects) as input. It yields o positive diagonal ‘weight’
matrix for each input matrix, and o single common configuration. For each
dyadic input matrix, the entries correspond to the interpoint distances in
a modification of the common configuration. The modification is formed by
rescaling the common configuration, using the appropriate weight matrix.
This technique of data analysis turns out to be very powerful, as has been
demonstrated by many applications.

Meanwhile, ordinary MDS is just starting to undergo development
from a data analysis technique into a statistical technique. Several distri-
butional studies have been published (so far, 2ll using Monte Carlo methods)
pertaining to significance levels, estimation of dimensionality and standard
deviation of error, and the accuracy with which the true underlying con-
figuration has been recovered. The main publications so far are by IKlahr,
Wagenaar and Padenos, Young, and Stenson and Knoll.

Another advance is the method of scaling invented by Roskam for data
of triadic comparisons type. It illustrates concretely an idea that any reason-
able form of data can be utilized directly for scaling (if the analysis technique
is suitably modified), and that such direct use may well provide advantages
over pre-processing the data to fit existing methods of scaling. In this case,
one advantage is greater accuracy in estimating the true dimensionality,
which results from partitioning the squared stress (just as variance is par=-
titioned in analysis of variance).

An advance in a different direction is a method of looking for clusters
(and other structures) in configurations in many dimensions, which was
invented by Sammon (and also by Thompson and Woodbury). The general
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idea is to use the distances in many dimensions as input to scaling in two
dimensions. This provides a nonlinear mapping into two dimensions, which
can be visually examined, just like the first two principal components.

An imaginative new use of scaling utilizes a pre-existing configuration
(due to Henley), based on direct human similarity judgments of 30 animals
(tiger, mouse, elephant, etc.). Rumelhart asked subjects to supply the best
possible answer to questions of the form: ‘Elephant is to liger, as goat is to
what?’ He found that by forming a parallelogram with three corners at the
given animals, and calculating how far each animal is from the fourth corger,
he was able to predict the answer frequencies quite well.

Meanwhile, a substantial quantity of more routine applications continue
to be made, particularly in psychology and in marketing. A textbook by
Green and Carmone [1970] has recently been published, and another by
Green and Rao is in press.

While MDS is likely to figure for some time as a useful research tool in
diverse fields of application, there is also a potential danger of indiscriminate
use leading to wrong and/or over interpretation of data as has happened with
the technique of factor analysis when it was first introduced.

7. CHARACTERIZATION OF THE MULTIVARIATE
NORMAL DISTRIBUTION

There is a good deal of literature about the characterizations of a uni-
variate normal variable but the corresponding results in the multivariate
case have not been fully worked out.

A theorem due to Darmois—Skitovich asserts that if X, , --- , X, are
independent one-dimensional variables, then the independence of two linear
functions

Yiy=aX 4+ - +aX., Vo=0bX,+ - + bX., (7.1)

where a.b, # O for any 7, implies that each X, is univariate normal. Ghurye
and Olkin [1962] proved the corresponding result when X, is a p-vector
variable.

‘When all X, are identically distributed, Linnik [1953] characterized the
common law of X, under the condition that ¥, and ¥, in (7.1) have identical
distributions, but the corresponding result in the multivariate case is not
known. Ramachandran and Rao [1968] have characterized the law of X,
when E(Y, | Ys) = 0. The extension of this result to the multivariate case
has been made only in some special cases.

Recently there has been some interest in multivariate exponential type
distribution with the density function

f(x, 8) = h(x) exp [x'6 — g(0)] (7.2)

where x is a p-vector random variable and 8 is & p-vector parameter
(Dempster [1971]). Bildikar and Patil [1968] examined the conditions under
which (7.2) reduces to a multivariate normal distribution.
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A p-vector variable X is said to have a linear structure if X = A%, where
Ais a p X m matrix of structural coefficients and ¥ is an m-vector of in-
dependent hypothetical (structural) varigbles. Two structural representa-
tions X = A and X = Bn are said to be equivalent if each column of A is
a multiple of some column of B and vice versa. X is said to bave a unique
structure if all alternative representations are equivalent. Rao (see Rao
{1969] and other references listed therein) examined the consequences of
X admitting two alternative structures X = A¥ and X = Bn and proved the
following results:

(i) If the i-th column of A is not a multiple of any column of B, then
£, , the i-th component of §, is univariate normal.

(ii) If £, is non-normal, then the i-th column of A must be a multiple
of some column of B.

(iii) If no column of A is a multiple of any column of B, then X is p-
variate normal, i.e., a multivariate normal variable has an arbitrary structure.

(iv) X has a unique structure if no linear combination of the hypothetical
variables ¥ has a normal component.

(v) X can be written as X, + X, , where X, and X; are independent,
X, has a unique structure and is therefore non-normal, and X, is multivariate
normal. However, the decomposition may not be unique.

These results generalize the earlier work of Reiersgl [1950] and are rele-
vant in the discussion of structural models used by psychologists, economists,
geneticists, and so on. Related statistical problems on the estimation of
structural and functional relationships are discussed in a review paper by
Moran [1971].

Rao [1971c] investigated the extent to which the structural variable E
is identifiable knowing the distribution of X = Af for given A. A surprising
result is that for a suitable choice of A, the joint distribution of p linear
functions of }p(p + 1) independent variables determines the distributions
of each of the 3p(p + 1) variables apart from a change of a location.

In a recent paper Khatri and Rao {1971] solved a general functional
equation in vector variables and obtained several characterizations of the
multivariate normal distribution generalizing all earlier work on the subject.

8. ADVANCES IN OTHER AREAS

8.1. Nonparamelric methods

A recent book by Puri and Sen [1971] contains most of the generalizations
of univariate nonparametric methods to the multivariate case. This book
together with Techniques in Nonparamelric Slatistical Inference edited by
Puri [1970] cover practically all important work done in this area. There is
considerable literature on the subject and all the references can be found
in the two volumes mentioned above.
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8.2. Incomplele multiresponse data

Most of the multivariate techniques are developed for situations in which
all the responses or characteristics under study are measured on each sample
unit. However, in a large number of cases it is physically impossible, un-
economio, or inadvisable on account of unequal importance, to measure all
the responses on each unit. There is very little work done on estimation of
parameters and testing of hypotheses when data are incomplete either by
design or due to missing observations. Lord [1955], Trawinski and Bargmann
[1964], Afifi and Elashoff [1966; 1967; 1969)] considered some inference prob-
lems in such cases. Rao [1956] discussed an analysis of dispersion test when
the observations are incomplete only on one of the characteristics. Srivastava
[1966; 1968] examined problems of design for collection of data and their
analysis when it is desired to measure only a subset of the characteristics
on each unit. An early work on estimation of parameters when data are in-
complete is due to Matthai [1951].

The Linked Cross Sectional (LCS) study of Rao and Rao [1966] described
in section 5 of this article is an example of a multiresponse design with in-
complete observations on units.

Sometimes a unit may be such that it does not naturally admit all measure-
ments. If we are studying a population of ancient skulls which are in a
fragmentary condition, different types of fragments admit different sets
of measurements; however, two types of f[ragments may admit some common
measurements. In such a case it was pointed out by Rao ([1952] p. 111) that
the conditional distribution of a particular measurement given the type of
fragment may depend on the latter. Thus the dimensions of a well-preserved
skull may be smaller than those that are broken and admit fewer measure-
ments. If so, estimation of mean characteristics of a population from a
sample which may consist of some broken and some well-preserved skulls
poses a difficult problem.

8.3. Complex mullivariate normal distribulion
A p-vector complex random variable z = x + 7y is said to have a complex
multivariate normal distribution, CN (u, ), where u = y, + iy, and =
is hermitian positive definite, if the joint density of x and y is of the form
* |E|™ exp [—tr 7'z — W)z — )], 83.0)
which is the same as the density of a 2p-variate normal variable (x’ : ¥')
with a covariance structure of the form

E‘ "] , (8.3.2)
;X

where £, = D(x) = D(y) and cov (x, y) = £, = [cov (¥, X))’ is skew sym-
metric.

From independent samples drawn from populations with densities of
the form (8.3.1) one can construct statistics similar to those in the real cass,
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such as 8 Wishart matrix, roots of determinantal equations, etc., and derive
their sampling distributions by following exactly similar methods. Such
programs have been carried out by a number of authors (Wooding [1956],
Goodman [1963], Khatri [1970], James [1964], and Pillai and Jouris [1971],
to mention a few names).

8.4. Singular multivariate normal distribulion

When the dispersion matrix £ of a p-vector normal variable X is singular,
the density function of X with respect to Lebesgue measure in R” does not
exist. In sBuch a case the density-free approach followed in Rao ((1965a]
chapter 8) might be useful. However, when X is singular, the vector X is
confined to a hyperplane in R® and the density of X on such a hyperplane
can be expressed in the form

@0 (- M)V exp [4(X — w)'ET(X — W), (8.4.1)

where r = R(E), \,, -+, )\, are the non-zero eigenvalues of £, £~ is any
g-inverse of £, and g is location parameter (see Rao and Mitra [1971a] for
definition of g-inverse). The hyperplane on which the density is defined is
N’X = N’y, where N is a matrix of rank p — 7 such that NS = 0. Khatri
[1968] obtained maximum likelihood estimates of y and X, based on the
density funetion (8.4.1) and also studied some distribution problems. Rao
and Mitra [1971a, b] used the density function (8.4.1) in constructing a
discriminant function between two alternative normal populations with
singular dispersion matrices. It would be of interest to explore further uses
of the density function (8.4.1).

8.5. Variance and covariance components
Consider a linear model
Y=X3+U0&+ - +UL&+Win+ .- +Wpn,, (8.5.1)

where X, U; , W, are known matrices, @ is & vector of unknown parameters,
and ¥, , n, are vectors of hypothetical variables such that

D(E¢)=}: ;‘=1,...,k,

D) =oll; §=1,--,r
cov (& ,%,) = 0, cov (E;, m;) = 0, cov (n;,w) =0, (8.5.2)
where E and o} are unknown. In such a case
DY) =UXU! + -+ + U0} + AW, W + --- + o'W, W, . (8.5.3)

There has been no satisfactory method of simultaneously estimating @,
XE,and o}, -- - , o} in the general case. Rao [1971a, b] has developed a method
called Mmque (Minimum Norm Quadratic Unbiased Estimation) for the
estimation of the variance and covariance components (of and £) and sug-
gested the use of estimated D(Y) to obtain the least squares estimate of §.
J. N. K Rao and Subrahmaniam [1971] applied such a method with Minqum
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estimates of o7 in the regression problem with heteroscedastic errors and
established some properties of regression estimators. Hartley [1971) used a
different approach to the problem and the relative merits of J. N. K. Rao's
and Hartley’s estimators have not yet been assessed.

8.6. Multivariate discrete models

A Dictionary and Bibliography of Discrete Distribulions by Patil and
Joshi (1968) contains a description of a number of multivariate discrete
distributions and references to literature on the subject. Most of them are
exhibited as sampling distributions of functions of observations from uni-
variate discrete distributions or as formal mathematical extensions of uni-
variate distributions.

8.7. Graphical techniques in mullivariate analysis

Guoanadesikan and Wilk [1969] mention that ‘Man is a geometrical animal
and seems to need and want pictures for parsimony and to stimulate insight.’
Indeed graphical devices are extremely useful in understanding the nature
of data, in detecting unanticipated peculiarities, in the choice of models
for statistical analysis, and in the presentation of final results. In a series
of papers Wilk and Goanadesikan (see their 1969 paper for other references)
and Gnanadesikan and Lee [1970] have developed systematic graphical aids
in the analysis of multivariate data.

8.8. Least squares theory with a possibly singular dispersion maliriz

Let Y = X8 + e be the Gauss-Markoff linear model with D(e) = ¢°V,
where V is possibly singular (p.s.d.). Rao and Mitra [1971b] have given &
unified theory of estimation and tests of hypotheses as follows.

(i) Whether V s singular or not, obtain § which minimises

(Y — XB)'(V + cXX)"(Y — X@), (8.8.1)
where ¢ is any constant and (V + ¢ XX’)” is any generalized inverse of
vV 4 ¢ XX).

(i) The BLUE's of estimable functions p’g and q'g are p'8 and q'§, and
V'd) = o IpX(V + ¢ XX)"X]p — cp'pl, (8.8.9)
and
cov (p'8, a'B) = P (X'(V + ¢ XX)"X]q — ¢ P'al. (8.8.3)
(iii) An unbinsed estimate of &” is
Ry = n‘:’in (Y — XB)'(V + cXX") (Y — X@), (8.8.4)

where f = R(V | X) — R(X), R(X) denoting the rank of X.
(iv) To test a set of k linear hypotheses pi3 = d,, % = 1, - -, k, compute
u:, = pi — d. and the dispersion matrix ¢’ D of u’ = (4, " , %) by using
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the formulae (8.8.2) and (8.8.3). Compute the two statistics
T,=u'D u and 7T, =DDu—u, (8.8.5)

where D~ is any g-inverse of D. The hypothesis is rejected if T’ is nonnull
or the statistic
r - 2
L ’%, where R(D) = (8.8.6)
as a variance ratio on h and f p.F. exceeds some chosen critical value.

Rao (1971d] showed that the most general form of the inverse matrix
to use in (8.8.1) is (V + XUX’)” in place of (V + ¢XX’), where U is arbitrary,
subject to the condition that the space generated by the columns of V + XUX’
contain the columns of V and X. Rao [1971d] also gave another unified ap-
proach which reduces the problem of linear estimation in the general case
to a numerical computation of the inverse of a certain partitioned matrix.
A case has also been made for obtaining a BLE (best linear estimator) drop-
ping the condition of unbiasedness.

8.9. Cluster Analysts

A recent book by Jardine and Sibson [1971] and the Mamai proceedings
volume edited by Hodson et al. [1971] contain the recent trends of research
in cluster analysis.

The first step in cluster analysis is the construction of a similarity or
dissimilarity matrix between units to be classified (Mahalanobis, Majumdar,
and Rao [1949] and Majumdar and Rao [1958]). This depends on the char-
acteristics (variables) measured on the units and the measure of similarity
chosen. However, there is no adequate discussion in the literature on the
choices of variables and measures of similarity in relalion to objectives of
classification.

The second step is to build a hierarchical system which connects units
at various levels of similarity. A number of methods have been suggested
for this purpose which allow for non-overlapping and overlapping eclusters.
Attempts are also made to impose a tree structure and estimate the time
points at which branching took place (Cavalli-Sforza and Edwards [1964;
1967], Edwards [1970]). The subject is still in its initial stages of development
and the relevant problems are not always clearly defined.

8.10. Whither likelihood principle?

Godambe (see Godambe and Sprott [1971]) brought to the notice of
statisticians through s simple example in sample surveys the need to review
the likelihood principle. Let there be » units in a finite population, numbered
1, .-+, N with variate values X, , --- , X, . When a unit is chosen for study
we have a bivariate observation (y, z), ¥ standing for the number of the unit
and z for the variate value. The object is to estimate the parameter, 7' =
X, + -+ + X, , on the basis of observations 8 = (., ), -+ , (¥, Za)
on a sample of n different units chosen according to some design. Let 3 =
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(2, --- , z.) be the set of observations when y, , - -- , y. are ignored. Now
the likelihood of T given S, L(T | S) is independent of T while L(T | 2
depends on T showing that the likelihood does not carry information on T
unless the variable y i3 ignored (at least partly). Till now no satisfactory
method is known for an effective utilization of the variable y in addition
to z (except for dogmatic suggestions to ignore y).

In quite a different context, it was shown that a test based on two variables
using Hotelling’s T? is less efficient than Student’s ¢ based on one of the
variables, which is a paradoxical situation, since logicnlly speaking two
variables contain more information than one of them (see Rao [1952] p. 252).

These situations only serve to prove that the statistical tools which make
an effective use of multiple measurements are yet to be forged.
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