ON GENERALIZED INVERSES OF PARTITIONED MATRICES

By P. BHIMASANKARAM

Indian Statistical Institute

SUMMARY. The object of this note is to prove the following theorem:

.

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

and A be a g-invorce of A. Let

$$F = D - CA^-B \text{ and } G = \begin{pmatrix} A^- + A^-B F^-C A^- & -A^-B F^- \\ -F^-C A^- & F^- \end{pmatrix}$$

where F is some g-inverse F. Then G is a g-inverse of M if and only if

(i)
$$\mathcal{M}(C(I-A^-A)) \subset \mathcal{M}(F)$$

(ii)
$$\mathcal{M}((I-AA^-)B)') \subset \mathcal{M}(F')$$
 and

(iii)
$$(I-AA^{-})BF^{-}C(I-A^{-}A) = 0$$
.

If A- and F- in F and O are replaced by A, and F, then M is a g-inverse of G.

Some interesting special cases are deduced which include the results of Rohde (1965).

0. INTRODUCTION

Robde (1965) proved the following result on generalized inverses of partitioned matrices.

Lot

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = (X_1 : X_2)^{\bullet}(X_1 : X_2)$$

and

$$G = \begin{pmatrix} A^- + A^- B F^- C A^- - A^- B F^- \\ -F^- C A^- & F^- \end{pmatrix}$$

where $F = D - CA^-B$. Then G is a g-inverse of M. If A^- and F^- in G are replaced by A_F^- and F_T , then G is a reflexive g-inverse of M. Further if F is nonsingular and A^- and F^- in G are replaced by A^+ and F^- 1, then G (considered above) is indeed M^+

The purpose of this note is to prove the following:

Theorem 1: Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ and A-be a g-inverse of A. Let F = D - CA-B

and

$$G = \begin{pmatrix} A^- + A^- B F^- C A^- & -A^- B F^- \\ -F^- C A^- & F^- \end{pmatrix}$$

Then the following hold.

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

- (a) G is a g-inverse of M if and only if
 - (i) J((C(I−A⁻A)) ⊂ J((F)
 - (ii) $\mathcal{A}\mathcal{C}((I-AA^-)B)') \subset \mathcal{A}(F')$
- and (iii) $(I-AA^{-})BF^{-}C(I-A^{-}A) = 0$.
- (b) If A and F in the expressions for F and G are replaced by A7 and F7, then M is always (no further conditions being reguired) a g-inverse of G.

We shall also give some interesting special cases which include the result of Rolide.

1. NOTATIONS

In this paper we consider matrices over the field of complex numbers. Matrices are denoted by bold face capital letters such as A, B, C, X, Y etc. Null matrix is denoted by 0. For a matrix A.

A* denotes complex conjugate transpose,

A' denotes transpose,

R(A) denotes the rank,

M(A) denotes the column space,

and A-, Ar, Ar, Ar and A+ denote a g-inverse, a reflexive g-inverse, a least squares g-inverse, a minimum norm g-inverse and Moore Penrose inverse respectively. (See Rao (1967)).

2. Proof of theorem 1

Matrix multiplication shows that

$$MGM = \begin{pmatrix} P & Q \\ R & D \end{pmatrix}$$

where

$$P = A + AA^-BF^-CA^-A - BF^-CA^-A - A^-ABF^-C + BF^-C,$$

 $Q = AA^-B - AA^-BF^-F + BF^-F$
 $R = CA^-A - FF^-CA^-A + FF^-C$

Thus MGM = M if and only if

(i)
$$AA^-B - AA^-BF^-F + BF^-F = B \iff (I - AA^-)B = (I - AA^-)BF^-F \iff \mathcal{A}(((I - AA^-)B)^*) \subset \mathcal{A}(F^*)$$

(ii)
$$CA^-A - FF^-CA^-A + FF^-C = C \iff \mathcal{M}(C(I - A^-A)) \subseteq \mathcal{M}(F)$$
.

and

(iii)
$$AA^-BF^-CA^-A - BF^-CA^-A - AA^-BF^-C + BF^-C = 0$$

 $\iff (I - AA^-)BF^-C(I - A^-A) = 0.$

GENERALIZED INVERSES OF PARTITIONED MATRICES

This completes the proof of (a). Proof of (b) follows by straightforward verification.

Note: In the presence of conditions (i) and (ii), if the condition (iii) holds for some choice of F-, then it holds for every choice of F-.

3. SPECIAL CASES

In this section we give a few interesting special cases where the conditions of Theorem I indeed hold. We prove

Theorem 2: Let
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where $\mathcal{M}(G') \subset \mathcal{M}(A')$ and $\mathcal{M}(B) \subset \mathcal{M}(A)$ and consider F and G as defined in Theorem 1. Then (i) F is invariant under the choices of g-inverse of A and (ii) G is a g-inverse of M.

Proof: (i) follows trivially.

To prove (ii), observe that

$$\mathcal{M}(C') \subset \mathcal{M}(A') \iff C = CA^{-}A$$
, for any choice of g-inverse A^{-} of A .
 $\iff (C - CA^{-}A) = 0$

and
$$\mathcal{M}(B) \subset \mathcal{M}(A) \iff (I - AA^{-})B = 0$$
, for any choice of g-inverse A- of A.

Thus if $\mathcal{M}(B) \subset \mathcal{M}(A)$ and $\mathcal{M}(C) \subset \mathcal{M}(A')$, the conditions of Theorem 1 are satisfied. Hence G is a g-inverse of M.

The following corollaries are casy to deduce.

Corollary 2.1: If

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
$$= (X_1 : X_2)^* (Y_1 : Y_2)$$

where $R(X_1^*|Y_1) = R(X_1) = R(Y_1)$, then G as defined in Theorem 1 is a g-inverse of M.

Corollary 2.2: (Rohde): If

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
$$= (X_1 : X_2)^* (X_1 : X_3)$$

then G as defined in Theorem 1 is a g-inverse of M.

Theorem 3: Let M be as defined in Theorem 2 and G be as defined in Theorem 1.

- (a) If in G, A- and F- are replaced by A; and F; then G is M; if and only if
 M(CA) C M(F).
- (b) If in G, A- and F- are replaced by A= then G = M= if and only if M(A=B)') C M(F').
- (c) If in the expression for G, A⁻ and F⁻ are replaced by A⁺ and F⁺, G = M⁺ if and ony if M(C A⁺) ⊂ M(F) and M((A⁺B)') ⊂ M(F').

Proof of Theorem 3 is straightforward and we omit.

SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS: SERIES A

ACKNOWLEDGEMENT

The author is highly grateful to Professor Sujit Kumar Mitra for suggesting the problem and for his many valuable comments.

REFERENCE

RAO, C. R. (1967): Calculus of generalized inverses of matrices Part I. General Theory. Sankhyā, Saries A, 29, 317-342.

ROEDE, C. A. (1965): Generalized inverses of partitioned matrices. J. SIAM., 13, 1033-1035.