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SUMMARY 1 'The paper oexaminos in somo dotail the naturo of tho probability distribution of the

p and D istributod random varisblos (i1d.r.v.'s) Xy, Xy ., which possces tho

proporty E{a, Xy +83Xa+.. . 18,Xy+8:X5 +...) = 0 a. 5. Both the casos of inile and infinile pumbor of

varisblos are consideced. Tho distribution doponds on the mature of the coofBoionts ay, &;, and their
rolationshipe,

1. InTRODUCTION
In Ramachandran and Rao (1068)—abbroviated hereafter as R-R (1968)—
lutions of the reg quati

Ea,X,+...4+0aXn |5, X;+... 4 bmXm} =0 a5, m > 2 w (D
where tho X; are independent and identically distributed random varinbles (i.i.d.r.v.'s)
with EX, = 0, wero considered under various conditions on tho cocflicients ay, by (by o
solution, we mean an identification or deseription of tho distribution of X,). Under
certain conditions on theso cooflicionts, tho characteristio function (e.f.) of X, itself
or the c.f. of X,;~X, (i.c., tho squared modulus of tho former) was found to bo non-

vanishing throughout the real lino and to satisfy an equation of the form

f(t)=-l§U(ﬂ/)]".,l'jIU(—ﬂ,m" for ll ¢ )

wheren 1,0 p < n, 0< fy<1and y,> 0 for all j. Al c.f's f satisfying (2)
—not mercly thoss correaponding to d.f.'s with finito first moment —wero studied in
our cartier work (R-R, 1968, Theoroms 3.1 and 3.2) and it was cstablished that fis an
infinitely divisiblo (i.d.) c.f., and ignoring tho trivial caso of degencrato laws as solu-
tions, if A bo tho unique rea] numbor such that £ y, 8} = 1, then wo must have 0 < A
< 2; further (i) fis normal iff A = 2; (ii) if 0 < A < 2, then f corresponds to a distri-
bution which is absolutely i , and has absolut ts of all orders <A
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but not of order A, Sinco overy stablo Jaw is a solution of (2) undor suitable conditions
on the fly and ¥, (cf. Scction 1 and tho statementa of Theoroms 3 and 6 below) and sinco
tho abovo propertics aro strongly rominiscont of tho stablo laws, tho class of c.f’s
satislying (2) wus called in our carlier work & cluss of ‘gencralized stablo laws’, and A
tho erponent of such a law, Wo also merely noted thero tho fact that if Lix, o, 3, N)
bo tho Lovy represcntation for log f, where M and N aro reapectively tho negative and
tho positivo Poisson spectral functions, which we shall without loss of generality take
to bo respectively left-and right i thon M and N satisfy tho relations

Nt = Sy Muigy ~ £ yat—uif) for u>0

1) = Sttty - E vid¥—uipyfor w <. @

If wo writo g{u) = —N(e*) and k() = 3/(—¢"), wo havo for all real u the relations
(B; = —log Al

glu) = g 79+ B)+ ,\-.EIYAI'(“"'B/)

) . . 4)
i) = £ phtut B+ £ yygtut B
»
whero g and A are both gati i ing and right i i
on tho real line with y(+m)-—-h(+w)=0
Studying, per s¢ and i dently of such iderati aa the above,

c.f.’s f satisfying the cquation
= !’l ](/i'l),l:ll/(—ﬂ,l) for all ¢ 5

wlhero 0 < f; < 1 for all j—in which easo tho non-vanishing nature of f follows from
{5), and the infinite divisibility of f is easily cstablished—R. Shimizu (1968) obtained
tho explicit forms of tho Levy functions M and N in tho representation for log f in tho
various possiblo cases, Ilisanalysis generalizes readily to tho moro general equation (2).
Wo shall howover present below 8 much simpler and transparent proof which also
has tho ndvantage that it carries over Lo cases whero an infinite number of factors are
present in the R.ILS. of (2), i.0., where wo havo a relation of tho form

=N pEolr forant )
[l
with | 8| <1 and y,; > 0 for all j.
In Seetion 1, wo briefly consider tho enso n = 1 and obtain a characterization
of tho Cauchy law, In Scction 2, wo discuss tho completo solution of (2) for n > 1,

In Scction 3, wo dikcuss solutions of (8). In Scction 4, wo deal with applications of the

results of tho carlicr scctions to regression probloms, and finally in Scction 5 with
characterizations of certain stochastie processcs,

Tt is convenient to uso tho term ‘non-trivinl o.f.” to donoto a o.f. not pertain-
ing to o degencrato distribution.
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FUNCTIONAL EQUATIONS AND CHARACTERIZATION OP CAUCHY LAW
2. THE CASE n =1, AND A CHARACTEBRIZATION OF THE CAUCMY LAW
In this case, (2) takes one of two forms:
JO=upr e (T8)
0 =tr-pr e (7B}

where 0 < £ < 1,7 > 0. The infinite divisibility of f in cither case is casy to estab-
lish—in fact, both are ‘semi-stable lawa’ in the sense of Paul Levy—and, f being
assumed non-trivial, if A be the unique real number such that yf* = 1,then 0 < A < 2,
and fis a normal ¢f. if A =2. For 0 <A <2, 0 =0in the Levy rcpresentation
Ky, o, M, N), and the Levy functions JI and N satisfy the relations

B(w) = yM(ulf), N(u)=yN(u/f) if (7a) holds
and Mu) = yN(—ujf), N(u)= —y(—u/p) if (7b) holds,
It is immediate that the solutiona in theso two cases are reapectively

® zl(u)=“"[’ﬁ||“’ and Ny = —2iogw) - (82)

where £ and 7 aro non-negative right-continuous functions on the real line with period

= ~log #; andl
®  Mu= ‘_"‘ﬁ_ll;‘ﬂ and Ny = —E0BLHE) - (8))
where £ is a gative, right J funetion on R, with period 2B,

Of courso, in either case [(7a) or (7b)], f satiafies tho relation f(f) = [f(8N)"
and thus is a ‘semi-stablo law'. It is known from R-R (1968) that the d.f. of [ is
bsolutel, i and haa absolut. ts of all orders < A but not of order A,

"y

Some of the above obscrvations imply the following characterization of the
Cauchy law. It is well-known that if X, ..., X, are i.L.d.rv.'s with a Cauchy distei-
bution, then X, and Xi,,, the arithmetic moan of the n r.v.’s, have the samo distribution.
e hevo the following strong of this propositi A similar th , under
the extra assumption that tho r.v.’s aro symmetrie, appears in Eaton (1966).

Theorem 1: Let Xy, ..., X, beiidrv's. If X, and X,., have the same dis-
tribulion for lwo values m, and n, of n such that log n,log ny is irrational, then X, follows
a Canchy law,

Proof : If f be the e.f. of X,, then

1O =fujr) for all 1. — (9
3
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If this is truo for n = n, and n = n,, then (8a) holds with A e 1 in cither caso, with
£ and g having two perioda p, = log n, and py = log ny. If p,/p, Is irrational, then
tho sct

{mypy+mapy : my and my integers)

ia everywlhiero denso on tho real lino, and £(m,p,+myn,) = §(0) and tho right-continvity
of ¢ then imply that ¢ = £0) and eimilarly 7 =2 9{0). Thus

Mu) = ¢,f|u]| and N{u) == —cyfu,

whero ¢, 2 0, ¢y > 0 and ¢;4¢, > 0. Henco {cf. Lukacs, 1960, p. 102), for somo
¢>0, and b real {|8] < 1),

log 1) = ipt—elt] {1-+(2nlib l_:f fog {1} for ¢ 0

and on substituting in (0) with n = n, or ny, woget b=10 and f ia therefore & Cauchy
of.

2. TnEoasEn> 1

As stated in tho Introduction, our reaulta and proofa in this scetion are res-
pectively suitably modified (to cover Lhe more goneral caso wo aro dealing with), and
considerably simpler, versions of Shimizu (1868). We havo invoked results from that
paper as well as from tho pioncering work of Yu. V. Linnik (1933) wherover necessary;
wo have however preaented tho proofs of thia scction in soma detail for two reasons
thero aro many points of differenco between Shimizu (1968) and the present section,
which mako cross-references to tho former inconveniont; more importantly, since our
approach hero ia alao applicd In Seetion 3 to the ‘infinite caso’, tho details are given
Yero and reduced to a minimum thero.

Wo introduco some nolation (cf. Shimizu, 1968) : Lot A, be tho act of all
vectors B = (B, ..., B,) with all clementa positive, and conaider tho following aubsets
of A, whero 0 pgm:

A,{0) : nt least ono pair of tho By aro mutually incommensurablo,
Ap): the By aro mutually commenaurablo, and p > 0 is such that my =
Bylp, j = 1,2, ..., », aro positivo integors with their grealest common

fuctor = 1, (Tho m; aro deacribed by ight as ' lly prime’
in Shimizu, 1008).

Bip):

the subsct of A (p) such that at least ono of m,, ..., m, is odd andjor
at least ono of my,,, ..., m, is oven.

CZ(p) : the subset of A (p) such that m,, ..., my are all even and m,,,, ..., m
aro all odd.

Noto that Ip) = A.(p) and C3(p) is empty, by the definition of p, and that
any micinber of A, munt belong cither to 4,{0), or, fue some p > 0, to BXp) or to C2p).
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FUNCTIONAL EQUATIONS AND CHARACTERIZATION OF CAUCHY LAW

The following result is tho extended version, applicablo to our situation, of
the basic auxiliary result of Shimizu (1908).

Theorem 2: Let g and h be non-negative, f ing and right
Junctions defined on the veal line, with g{+0) = h(+c0) = 0 and satisfying the relations
(4) for some ¥ and B in A,. Then

@) g=h=0i{nt.+7.<L
1) If it ya> 1, let X > 0 be the unigue solution of ?7‘;‘1‘= 1
Then we have
(a) if B¢ A(0), then
glu) = £ e and h(u) =y e oo (10a)
where £ and 9 are non-negative real constants (with £+9 > 0), and =7 if p<n;
(b) if BeB2 (p), then

g(u) = fu)e™™ and () = y(u) e~ o (10b)
where ¢ and 3 are galive, right. i and periodic with period p; furiher,
f=nifp<m

(¢) if BeC3p), so that p < n, then
glu) = () +y(w)le= " and  h(n) = [§(u)—7lu))e" - (10¢)

where £ and 7 are right-continuous, § is periodic with period p and 1 has the properly :
wut+p) = —u{n) for all v,
Proof: 1ot B,=min Bj, B =max B, and k=g+h, so that

Hu) = 2: vyk(uBy).

O] ll‘};‘. 75 € 1, we havo from tho above that Xu) & Mu+B,) since k ia

non-increasing, and, for the same reason, tho roverso incquality holds as well. Hence
Hu) = Hu+-B,) for all u, so that k{u) = k{+00) =0. Henco 0 < g, & < k implics
that g=Ah = 0.

(ii) Tho basic idea of our proof in this caso is simple. We firat prove that
tho Laplaco transform of g {or of &) is defined and analytic in Rez > —A and coincides
thers with a function analytic everywhero except possibly for simple poles at a lattice
of points lying on the vertical line Rez = —A. We then use the standard technique
of Linnik (1953) and Shimizu (1968), of applying the complex inversion formula for
the Laplnco form and tho t} of residues to obtain tho form of g.

Let then y,+...+y,=148,8> 0. Wo have

HO) > (14+8) KB 3 (143)1 H2B") > ...
5
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which is easily scen to imply, sinco & is non-increasing, that
Ku) ¢, exp(—cyu) forall u > 0
where ¢, > 0 and ¢, = flog (14+8)}/8° > 0. This shows that f&-uyn oxists for all

#, and tho aamo is obviously truo of g or A in placo of k. Let then

') = [ gttt and M) = § MO, . (1)

g° and 4* aro a pair of gati i ing functions with g°(+00) = A*(+m)
= 0, and satisfying the relations (4). in addition l,o theso propertics which they have
in common with tho pair (g, 4), they are also i Now it is § diate that
if the pair (g%, A°) is shown to have ono of the forma (10a){10¢), then tho pair (g, A}
also haa correspondingly the same form. Thus wo need and ahall prove our theorem
only under the further assumption that g and A (and lenco k) are continuous. Wo
then havo

Lemma 1 fe" Huls < o0 for z < A, s0 that  Xglz) = ‘j: e™ gluklu and
°

X )= I.c"" hu)dn are defined and analylic for Rez > —A,
v

Y
Proof :  Let k{u) = r{u) =%, A being defined by E y,e “=1{so that A > 0).
1

-
r is continuous, and r{u) = 2- pyriu+By), where py=y,e r, E.p,= 1, 30 that, by
1 )

the intermedinte value theorem, r{n) = r{u+B(x)), where B, { B(u) { B*. Thus,
a sequence {by}—» 00 a8 m— o0, with by = 0, oxists such that r(bm) = {0} = c; (say),

or kibm) = c,e-»", whero B, & bmsy—dm < B® and bm » mB, obviously, for all m.
Henee, for 0 2 < A and for allm > 0,
by 5
[ e Huldu ¢ ™4 kibm) (bmyy —m)
'-

< 63B° oxp(—Abim+abayy]
& €3B° exp [rB°—(A—7)bm)
< ¢z} exp [-(A—a}mB,)

where ¢,(z) is a constant dependent on z but not on m. Henco
- « bmyy
ferludu=2 [ <ooifz<a, whenco the lemma.
o LELIN

Lemma 2: There exisl entire funclions ofz) and Kfz), given by the relations
(15) and (16) below, such that
Xolz) = —Kyfe)o(z) for Rez> —A.. . (12)
L]
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Remark : Our definitions and proceduro in the proof below aro the samoe as
in Shimizu (1968)—cxcept that the validity of (12) is claimed thero only for Rez > 0,
whilo our stronger claim, mado possiblo by Lemma 1, ia precisoly what makes our proof
much simpler,

Proof: Taking tho Laplace transforms over [0, ) of both sides of cach of
the relations (4), wo have, by Lemma 1, for Roz > —2,

X,(z)(l—%.! 7 e") —Xx(z)( ’%l‘y,e"')+b',(z) =0

-2y )X ) (1= E e PF) Ly = 0
Xt (= £ v ) +X @ (1-Z e )4 Eut) (13)
where
L B, * 2 Ag 5
Efs) =Sy f ervglaput B ye™ [ esuh(updy,
1 ° ¥ L]
E\(z) = the dual of the RHS abovo with g and & interchanged. ... (14)
If therefore
o) = 1-S P
1
ofz) = l—}?:y,e"’+ p 'y,e"'il‘ p<n e (15)
1 Pl
and
{ ayfz) fp=n
z) =
aylz)ods) fp<n

then, climinating Xp from the relations (13), we have for both the cases p = u and
p<m,

olz)xelz)+ Koz} = 0 for Roz > —A
where
Ez) ifp=n
K= » "
( - ‘y,e"')E,(z)+( b y,c"')E.(z) if p<n. «(16)
1 PHL
Sinco yp is analytic in Rez > —A, wo obtain (12) at once from the above relation,

Wo now noto soveral facts of importanco :
(A) For 8= 1,2, |afz+iy)] > l—% 7,e"'> 0 if z < —2, y real, 5o that
o4z) # 0 and honeo ofz) 5 0 if Roz < —A, Thus tho only singularitics of Ky f:)fofz)
7
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aro poles at zeros of a(z) lying on the lino Roz = —A, in view of tho above fact and
rolation (12). Also,
lotz)] >efy) if Roz  —y < —A, e ()

(B) For any fixed real 6, | Kfz)| < ee) for Roz . e {18)

This follows at onco from (14) and (16).

(C) ofz) has tho following properties (noted by Linnik, 1053 and Shimizu,
1063) ¢

(i) the number of zeros of ofz} in any closed rectangle of the form
{a < Roz b, y < Imz  y+1), is bounded by a number N(a, b) which is not
dependent on y.

(ii) for any given 8> 0, if z, is any point whatover such that ita distance
from every zero of ofz) is > 8, thon |ofs,)| > ¢){8), a positivo constant independent of
tho particular point z, satisfying tho abovo distanco restriction.

The above two properties aro consequences of the fuct that of) is an entiro
almost periodic function : cf. Lovin (1964), Chaptor 0, Scction 2, Lemmas 1 and 2,
[ofz) also has tho cnsily-verificd property that all its zeros are located in somo strip
—A € Roz < p(A as dofined above), but we shall not need this fact.] For a proof
from first principles of theso propertics of o(z), ono may refer to Linnik (1953, Scetions
9 and 10).

C(i) implics tho existenco of some &> 0 Indepondent of m and a scquence
{Ta}—» 0 a8 m=> 0, with m < T <m+1, such that all the zeros of of:) in
{—7 K Roz ¢, m & T < m+l} lie at a (vertical) distanco > & from tho line
Imz=Tr, 80 that [o(z)| > ¢, for all m if Imz =Ty, in view of C(ii} above
and (17). Clearly, tho samo is truo of Imz = —Tu a8 well, for all m. Thus wo
finally havo

lotz)] > ¢ for all m if ] Imz| = T, e (19)

Wo now invoke a simple Jemma concerning tho zeros of ofz) on Rez= —2
(cf. Shimizu, 1088):

Lemma 3: The zcros of ofz) on Rez = —A are all simple.

Further,

(8) if Bed(0), then —2A is the only such zero;

(b) if BeBip), p&mn, then the st of such zcros of o) s
{—A+(2mnifp), m integer), while oz} has no vuch zero; and

() if BeCip), 2o that p <m, lhen the sct of such zcros of ofz) is
{ A+ ﬂ, m mlcgcr} and of o:) is { /\+(2m+”'" m mlrycr}
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Proof : Since o,(—A) = 0, wo have

a(—A+iy) =0 iff 1—cos By =0 for 1 {j<n - (20)
o{—A+iy) =0 ilf l—cos By = 0 for 1 <J'<P»} ;
. (20)
and 14coa By =0 for p<j<n.

Henoo o, and o, cannot vanish simultancously at any point —A+iy, Also, if, for
8 =1 or 2, o{—A+iy) = 0, then, for that y,

ol—Atiy) = —27,13;6 " <o,
in view of (20) and (21). Henco tho assertion that tho zeros of ¢(z) on Rez = —A
aro simple, Assertions (a)-(c) follow from (20) and (21).

Lot now G(z) = — Kyfz)/o(z), so that @ is analytio everywhere except possibly
at tho zeros of ofz) on Roz = —A, and G =y, for Roz> —A. By tho complex
inversion formula for the Laplaco transform (Widder, 1946, p. 73), for ¢ > 0,

L “4iT ewx'(z)

¢ i )
{g(u)du: rh_l:u“ o e_Iﬂ' 2 dz forany ¢>0
1 o4y
= lim = Hz, ¢ . (22
Jl_r:l. T a—{T,, (z, )z 22)

where Ji{z, 1) = 4Glz)Jz, and {T'w} is & sequenco chosen to satisfy (19). I Sm(t) de-
notes the sum of the residues of —JI(z, ) at the zcros of of2) lying in tho interval
{Rez= —A, |Imz| < T}, thon, noting that the residue of /I(z,#) at tho origin is
%40), we have for any R > A, by the residuo theorem,

1 T 1 “+iTgy ~iTm  =R#{Tpy
Ty M= g [ £ = 1T e ] a0

.. (23)
~RHTpy

it ie casily checked that, ns R— co, for fixed m, n | Iz, )d:—0 in view of {17)
BT

and (18). Henee the RIIS abovo is

=0.(1)—Su(‘)+X¢(°) . (24)
r,, oiTpy
where () = T [ e, _-j’ - Iz, l)dz].

It is again casy to check that, a8 m—» 00, #x(t)— 0, in view of (18) and (19), so that we
havo from (22}, (23) and (24), and noting that y,(0) = fg(l)dl, tho fundamental relation
o

I otuld = lim_ Safo). . (25)

To provo tho theorom, we need only computo tho oxpression on tho RHS of (25) in
tho differont cascs.

9
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By ‘relevant zero® below, we mean a zero of ofz) lying on Roz = —2,
(u) Let Bed (0). Then, —A is tho only rclovant zero, and, for ¢ > 0, (2. 5)
gives s

.FF(")"“ =M, £, a constant,
i

or, differentiating with respect to ¢ {y is continuous by assumption),
A1) = ge, similurly At} = ye-M. o (20)
The validity of (26) for all ¢ (and not merely for all ¢ > 0) follows then from tho fact
that, to study g and A in (—4, c0), wo nced only consider the functions galt) = g(i— 1)
and A4{t) = h{t—A)in (0, co), and since g4 and Ak, satisfy (4), our abovo analysis applies
to them.
Also, il p << n, substituting from (20) in (4), wo sco that § = 7 in such a case,
(b) Let BeBlip), p < n. Tho relovant zeros aro
ax = —A+(2knifp), k integer,

and from (25), we have for § > 0,

jg(u)du = lim .c""“'} eu @)

e {llmnl <Ta
= Ll)e™

whers §, is periodic with period p. Tho LHS above is differentiable, hence £, exists

and we may differentinle both sides of (37} to obtain for ¢ >> 0

glt) = £(e™, similacly A(t) = ity e (28)
where ¢ and 3 are periodic with period p, and are also non-negative and right-conti-
nuous since g and & aro so. Tho validity of (28) in intervals (~mp, ), m positive

integer, is argued out as in caso (a), 5o that (28) holds for all £.  Also, if p < n, then
substituting from (28) in (4), wo obtain £() = y(t) in that caso.

() If BeCZip), 50 that p < n, the relovant zcros aro
ay = —A+{knifp), &k integer,
and from (26), we havo for ¢ > 0,
Totudu = lim [ealt)m(]e~ e (20)
1 npe

where £,((4+p) = {alt) and ym{i+p) = —ynll). Writing (¢4p) in place of ¢ in the
above, we havo therefors for ¢ > 0

T otudu = lim_ [Eal)—gmltlle 27, - (30)
4o LX)

10
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It follows that £m(f) and ya{f) converge separately as m—» oo, so that
J gt = (£ v - (31)
where &t+p) = &(1) and 9,{t+p) = —74!), 50 that again
T atexin = (4= ndeoen. . (3
(31) and (32) imply that & and 7, are (individually) differentinble and we immediately
obtain, for ¢ > 0, the representationa

o) = [ +m0]e™; () = [&x0)+neft)le™. . (33)

The validity of (33) for all ¢ ia argued out as before. Substituting from (33) in (4)
and remembering that, in our present case, my, ..., 1, are all oven and mp,,, ..., my
are all odd, we find that

Stm={—n and b—7 = £+
whence £1= £2 = {(3ny) and 3, = —n, = y(say),
yielding the representation (10c).
In conclusion, we recall that the above argument has assumed the continuity

of g and &, and that, as remarked immediately preceding Lemina 1, Lhe general case
follows from this. Thus Theorem 2 stands proved.

As an almost immedinte consequence of Theorem 2 and of our earlier work,
R-R (1968), we have :

Theorem 3: Lel [ be a non-vanishing and non-lrivial c.f., satiafying for all
real U the relation (2}, Then (f is i.d. and), A being the uniyue real number auck that

% ‘)’//’l‘ =1
i o<Age
(ii) fizanormalef. iff A=2,

(iii) &f 0 <A<, lhen, in the Levy representation Ly, o, M, N) for log f,
we havec = 0, and M and N have the following representations depending on the
nature of the veclor B = (B,, ..., B,), where By = ~log fiy.

(a) If BecA,(0), then
Mu) = ¢|u| -, N(u) = —gu—> o (34)

where ¢ and 1 are non-negalive constanls with {++n> 0, Further, =9 p <n,
orif A =1 (whether p <norp=n), 0 that, for a suilable real ¢, f(1)e* is the

11
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¢.J. of & symmetric etable law with exponent A; 3 p < n and A 3 1, then [ is a (general)
slable law with exponent A.

() If BeBR), p <, then

M) = ‘L“l’-H‘Jl and N{u) = 'JSLL"’ . (35)
where £ and y are non-negative, right funclions on R, with period p; further,

ifp < n,then £ =1 Of course, here and in (o) below, ¢ and y mual also be such that
M and N are non-decreasing.

() 1f BeClp) 20 that p < m, then

i = S0 101 g g o —blg il

where £ and 7 are right-continuous functions on R, such that §z+p) = §(z) and n(z+p)
= —y(z) for all z. £ is also mon-negative.

Proof : (i) and (ii) follow from R-R (1968). (iii) follows from Theorem 2
except for the assertion in (a) that A = 1 yiclds & Cauchy law whether p <norp=n,
If p < n, this is covered Ly Theorem 2. If p = 5, then wo uso the explicit formula
for log f na in the proof of Theorem 1 to concludo that fis the c.f. of a Cauchy distri-
bution.

Remarke : (1} In R-R (1068}, it has been proved further that if 0 <A < 2,
then tho ponding d.f. hins absolut of all orders < A but not of order

A, These assertions also follow from (34)-(36) above in view of the fact that the
absolute moment of order & cxista iff

[ le]t dM{m)+ | wfdN@u) <o
(==, =1 Lw
(s00 Ramachandran, 1969, Theorom 9). It was alao established in R-R (1968) that
the distributions in all theso casea aro absolutely continuous,

{(2) Supposo the samo c.f. f satisfica (2) for two sets of constants (n,, B, Y), 2,)
and (ng, By Y 7). Then, both must give riso to tho samo A (Theorem 1 gives
ue such an examplo, whers A = 1). If ono of the vectors 3, and By belong to 4,,0)

or to 4,(0) respectively, or if Bicdalpr) and Pyed, (py) where pylp, is irrational

thon it follows that £ must bo a stablo law (in the socond case, wo proceed as in tho
proof of Theorem 1). In special cascs of auch a situation, it may be possible to go
further and state that f is & symmetric stablo Jaw excopt possibly for a location para-
meter (as In Theorom 1).

12
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4. TUNCTIONAL EQUATIONS INVOLVING INFINITE PRODUCTS

Tn this section, we consider solutions of equations of the form
- i
S0 = UG A - (37)

wheroe f is a non-vanishing, non-trivial e.f, 0 < f; < land y;> 0 for all j. Wo may
remark that if the y; are all positive integers, then the RIS above may be well-defined
even if f vanishes; if in such a cnso, relation (37) holds, then we can prove that f is
indeed non-vanishing; tho proof is not quite trivial, however. We may first note
(as in the proof of Theorem 4 below) that Ey,f} < o, 80 that fy— 0 as j— o (sinco

vy » 1 for all j), and then usothe fact that the convergence of the scquence{l':l [j(ip,p)]"}

of c.{.’8 to the c.f. f is necessarily uniform on compact intervals to arrive at a contra-
diction to the assumption that f has zeros on the real line : cf. our proofs in Section 5,

Wo shall first establish (Theorem 4) & necessary and sufficient condition on the
v’s and #'s for f to be normal without imposing any further condition on the #’s than
those stated following relation (37). Then wo prove (Theorem 5) the infinite divisibility
of £ if it satisfies (37) under the further restriction that £— 0 as j— co (which is satis-
fied if the ¥, are bounded awny from zero, and in particular if they are all positive

integers). This reatriction is satisfied in tho regression problem of Section 4 to which
we apply Theorems 4-6, Finally we obtain sufficient conditions (Theorem 6) on the
A's and ¥'s under which t logous to T} 2 and 3 can be made.

Theorem 4 :  Lel f be a non-rivial c.f. salisfying, in some inlerval around the
origin where il does nol vanish, the relation

so = 1 ifanr”

where 0 < fiy < 1 and yy> 0 for all 5. Then
0 Zyfr<,
and (ii) [ is @ normal c.f. iff Ey,/?,’ =1,
Nole: In the interval concerned, [j(/l,l)]" is of ocourso defined ns

oxp [y; log f(A1)] whero log f denotes that branch of tho logarithm which is continuous
thero and vanishes at the origin.

Proof : Tho convergenco of I y,4} is known in the caso whero the 7 are all
=1, In certain presentations of that result, however, unnccessary restrictions
such as tho finiteness of tho variance of the corresponding d.f. aro made. In tho inter-
csts of clarity therefore, wo present below tho (short) proof as needed in our ease,

1ot g =|f|* and @ bo the d.f. corresponding to g. Then (37) gives :
70} =llfl A, |1l <. . (38)

13
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a
Since F and @ aro non-degeneraie, thero exista an A > 0 auch that | 2%G(x) > 0.
A

Fixing auch an A, sctling #, = /A (A can be no chosen that /g lics in he interval
concerned), noting that

gty = 1—-2 [ ain¥z/2WG(x) < exp[—2 [ sin¥{tz[2MdG(z)]
and the well-known inequality : (1 ) sin 8/ 3 2/r if 0 0 < #/2, we have from
(38) for any positive integer n,

—toggtt) > 2 £, [ inkfyt, /22iCkz)
- A
>2iy ] nY(fyt, z/2)dGlz)

L A
> eirt 8} 1 d6te)

whenco the convergence of £ 7,6} follows,
1
The non-degeneracy of F and @ then implies that the relation Zy6% > 1
cannot hold, For, suppose it does, and let # be chosen and fixed such that b b7
1

=148 8> 0. Then, letting (1) = —log gl)i2, § # 0, we have for [ > 0
v > £ e = 0-+8)000) - (19)

by the intermedinte value theorem, where min f; < () € max f;. Thus, thero
1€56n 16560

exists a sequence {by} -0, depending on the fixed n, such that

Yibm) S (181 m=1,2,...
80 that Y{bw) —» 0 ns :m — c0, Thia Implies that @ and F are degenerato (R-R,
1968, Theorem 2.3d), coutrary to assumption. llence the nssertion (i).

(i) Let Yy} =1. We shall prove that f is a normal c.f. (The converse
in obvious). Thi ia proved for the enso : ¥y = 1 for all j, by Laha and Lukacs (1965)—
also ree Lukacs (1968), pp.116-122, by first estallishing the infinite divisibility of f and
then examining ita Levy-Khinchin representation. 3 being defined as above, we have
for 130, 8] < 8,
¥ = Zp,0(f) whero py=Zyf}, Tpy =1,

which wo rewrito in the form

Ip-¥EN =0, 0< ] <4 e 0)
(40) implies (by contradiction) that, for any (8>)¢ > 0, thero exists at least onn
£y, § = jlt), such that (i) > P{ft). Fix 4,> 0, and let

Sitey = {0 <t < to[ ) < Yit)).

8(t,) is non-cmpty; let 7 = inf S(f,), 80 that 7 > 0. Wae clnim that 7 = 0. For, sup-
pose £ > 0. Then the continuity of y implica that () > P{r). Also, there exists s

14



FUNCTIONAL EQUATIONS AND CUARACTERIZATION OF CAUCHY LAW
& = kr) such that @(7) > P(far), s0 that Yite) > Yifr), i fersSite), contrary to
tho definition of 7. Honeo 7 = 0 and therefore thoroe exists n sequenco {f,} — 0 such
that {te) € ¥(f) for all n, so that, by R-R (1968), Theorem 2.3¢, € has finite variance.
This in turn implics that lim (?) exists; denoting it by y(0), wo have y(f,) > y(0).
t—0

Aguin, (40) implics tho existonco of { = {f) for any (6>)¢> 0 such that y{1)
< YA This fact, on procecding as abovo, yiclds tho relation y(f,) < p(v) for
any f in (0,8). Thus  is constant in [#] <3, whenco it follows that g js normal;
then, by the Levy-Cramer Theorem, [ is also normal.

Wo pass to the examination of tho solutions of (37) where Xyff < 1. Our
analysis hero is not as completo as in tho finito case, but wo singlo out cases where
an analysis similar to that in Scction 2 can bo mado,

Wo begin with an analogue of Theorem 2, for which wo rename the #'s above
as follows. Let ay, ay, ... bo the sequenco of A's occurring in the above product with
tho positive sign (if any), and &y, by, ..., bo the sequence of £ occurring thero with the
negativo sign (if any). Let tho oxponents y corresponding to apby Lo renamed as
&, g respectively. Let Agj=—logay, By= —logl;. Weo consider tho following
classification of tho infinite-vector-pairs (A, B):

Ap) i thero exists a p > 0 such that Ay = kylp, B; = ljjp whero the kyand I

arc all positivo integers and further their greatest common factor = 1,

V) : thero exists no such p,

B(p) : the subsct of Ap) where at least one of tho &y is odd andjor at least

one 1 is oven,

@(p) : the subsct of Mp) where all the kj arc even, and all the [ are odd.

Note that if tho sct of §'s is empty, then 8(p) = A(p) und ) is emply,
by the definition of p.

Theorem 5 : Let g and h be non-neyutive, non-increasing right-continuous functions
defined on Ry, with g{-+00) == h{+00) = 0, and saliafying for ull reul u the relutions :

o) = £ bgtu+- A+ ¢y hu+ B)
(1)
M) = £ 8y Mo+ A9+ eygtu+-By)

where the 8's and ¢'s are all positive, and the A's and B’s are all posilive and bounded
away from zero as well. Then

(i) g=~h=0ifZ8+X¢ < 1 (this holds even if the Ay, By are merely positive
and not necessarily bounded away from zero);

(i) if Z8+Zes converges to a sum > 1, lek A be the unique posilive number
such that T8 ‘-A;x 43¢ ¢-.“ = 1. Then the assertions of Theorem 2 hold, with the
phrase if p < n’ being replaced by : “if the sct of B's is non-emply’, and with R0), 8(p)
and @p) in pluce of A4,(0), Bi(p) and Cp) respectively ;

15
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(iii) if L&+Zes diverges, suppose however that for some v( > 0), Ed,e—“'
+E(,c-." converges lo @ sum > 1, and let then A( > v) be the unique positive number such

that za,g-"l.*.z(,g—m = 1. Then again, the asscriions of Theorem 2, with the modi-
fications in (ii) above, hold,

Note: As an oxamplo of caso {ii) above, wo may cito: &) = ¢ =1 for all
§v Ay = 2je, By = (2j+1)o for somo ¢ > 0.
Proof: (i) Let k= g4k, eo that

Hu) = E&Hut+ AN +E i{ut By). . (42

If now £84+2Xg < 1, then E&{k(u)—Mu+ A Lelk{u)—k{u+ By)] < 0 from  the
above, whereas, on tho other hand, cach torm of the abovo sum is » 0 sinco k is non-
increasing,  Honco overy torm of tho abovo sum niust bo zero wheneo wo casily soo
that & = 0 and consequontly, 80 are g and A.

(ii) and (jii) : In both theso cases, in (ii) nccessarily and in (iii) by assump-
tion, thero exists a » > 0 auch that Ene—"' converges to a sum > 1 and A( > v) is the
uniquo real number satisfying }:y,c-"l =1, Chooso and fix an N such that
gy, =148 &>0 If cpy=max{g:1<j< N}, then, as in Scction?,
;10)> (14+8)"{nCy) for all positive integers », whenco

ku) € Dyexp(—Dyu) for all n >0
where D, > 0 and D, = (log (148)}/Cy > 0. 1lence ZK-(I}«'I oxists for all real u,

and the samo is true obviously thon of g or A in placo of &, As in Scction 2, ono conse-
quence of this fact is that it suflices to prove our theorem in the case whero 7 and &
aro Loth continuous, in addition to their other propertics agsumed in the etatement
of tho theorem; wo shall henceforth assume that they are so, conscquently & is also
continuous.

Lemma 4 : jc’“k(u)du < for x <A o that xofz) = f e™ glu)du and
o
nk) = g- €™ I{u)du are defined and analylic in Rez > —A.

Proof :  Sclting Mu) = r{u)e*", so that r is alvo contlinuous, wo have from
(42) that

) =S¢ " it O) = Epy a0y, sy,
whero Zp; =1, For any fixed N,
N‘ N
1) > Xy tut Gy = £ 1)t Ctu)

16
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whero C  Clu) € C) = max (G, ..., Cx), by tho int diato valuo t} , 80
that, for o scquenco {bm} depending on N, we havo r(bs) < 7(0). ¢3®, whoro gy =

}‘:' s, whonce, as in Scction 2, ‘j"-c"k(l)dl < oo for z such that CQA—2)+loggy > 0.
3

Since N is arbitrary, qv — 1 as N = w, and C is independent of N, our
follows.

c,
cz |
Lemma 5: The series Syse i { =% Mu)u converges for all real z < —y,
so0 that

A
£ 4" [ eoptupd
L)

B,
and Xy c"' ‘[’ €% glu)du,

and the correspording formal sums with b in place of g, are all dfined and analytic in
Rez < —v. Further all these funclions are bounded in any half-plane z = Rez & —y
where ¥y > »,

Proof: Let 2 << —v bo fixed; chooso and fix a with0  a <A and 0> 0
such that —z#%’> v, this being possible sinco A > ». Then, if

{' ei{u)du = Dyfa) <0 (Lemma 4),
we have
" eotgomo < Dfa)
[ 3

whenco, sinco & is non-increasing, we obtain

Ku) < Dya, O)u~? oxp [—auf(14-0)] for all > 0.
We shall uso tho above cstimato for 4 > 1; for 0 & u 1, sinco & is bounded thero,
wo havo

Ku) < Dz, 0) oxp[—axf(1+0)), 0 Cu<]
80 that wo finally have

Kx) § Dda, 0) oxp [—auf(1+0)) for all u 3 0,
Romembering that 2 +«f(14-0) # 0, wo have

5 9% { aren 0| AME
Dyt | e oupdu < Do, ) Eype T [ oxp [—(s+15)%] 2
= Da, 0) :5 v [eﬂl'_,'cf/um] I(z+$’)

< cosineo z < —» and ﬁ>v.
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1lenco the main statement of tho lomma, Tho other statcmonts of the lemma are
dircet consequences thereof or of the abave estimate.

Sineo (i} yp and x, aro anslytio in Rez > —2, (ii) l—ﬂ,g‘fi):gﬁu" ure
analytio in Ro z <—v and (iii) in viow of Lemma 5, wo may proceed as in tho proof of
Lemma 2 in Scetion 2, for z such that —A < Rez <—v, defining in particular, for
Roz < —v,

o) =1- Eﬂ,zﬁf—}-ll,e""
1 1

afs) = 1— £ & e'{"+ ) (,z‘f if tho sct of B's is non-empty,
1 1
and
{v,(:) if the sot of B's ia empty
z) =

a,(:)rds)  if the set of B's iy non-cmpty,
e Azt = 520
Efe)= Lo "! e ylu)dut N e fj' eth(u)du
1 1 [
E)z) = tho dual of the RHS above with g and A interchanged
Ef2) if the sct of B's is empty

Koy = L) e B

(l—}l: 8 f) E,(:)+(1I2 (73 ") Epz} if tho sct of B8 is nonempty
1o obtain finally the fundamental relation {valid whether the sct of I's is emply or
not)

Xol2) = —Ky(z)folz) for —A < Rez<—».
Wo recall that y, is analytic in Roz > ~A while Ky and ¢ are both analytic in
Rez < —v. Applying the complex inversion formula, wo have for £ > 0

sl a
! .j f—uXL('!d: for any fixed ¢ >0

1]
{g(u)llu= :!T- Tmi 2

. 1 94T clzy (3) . . .
= ’ln_y.n- i dz+tho residuo at the origin of the integrand (this
«

residus being obviously = x,(0)),
whero —A < @ < 0, noting that x,(z) ia bounded in Roz 5 g, so that

- . 1 4T deyyl)
‘j' gludu = 1!1:.; i ‘_]'TT'rlz(—/\<u<0).

Wo may then choose and fix 6 such that —A <a < —v, and procced as beforo,
noting that o{z) being an analytic almost periodic function in Roz < —v, tho proper-
tics of o(z) quoted and used in Section 2 apply to our present ofz) also — in particular,
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thero exists o sequence {Tm}—> 0 as m—00 with the property (19). Wo havo then
an obvious analoguo of Lemma 3 for the present ease, and tho rest of the discussion
proceeds easily along the lines of Section 2. llence Theorem b atands proved.

Wo proceed to catablish the infinite divisibility of c.f.’s £ satinfying (37) in tho
caso where ;= 0 as j—00. In view of Theorem 4, this condition is satisfied if (f in
non-trivial and ) the y; aro all positivo integers; in which case, a3 wo have already
noted, the non-vanishing naturo of f follows from (37), and dora not have to ho postu-
lated as an assumption.

Theorem 6: Let [ be a non-vanishing, non-rivial ¢.f. anltisfying for all real
t the relation

Ji = ’l_-ll g - )

(for some fized sequence of positive and negalive signs), where 0 < fy <1, and y;> 0
Jorall j, and f—> 0 as j=> 0. Then [ ia infinitely divisible, Further, assertions similar
to those of Theorem 3 can be made vegarding the Levy funcltions Ml and N in the Lery
repreaentation for log [, if the f's and y's salisfy suituble conditiona (namely one of those
slated in Theorem G).

Proof ; We shall prove our assertion regarding infinito divisibility for the ense
whero the positive sign occurs thronghout; the samo argument goes through with
obvious necessary modifieations in the general case, We writo

¢ =i trnr’ . )
80 that
s =1 s 0. -
Iterating tho above relation n times, we have
S = £ yul0), sy e (46)
where
g, s (Wpers )1"',-.1,"
IXOE S ¥ (1. SO A ) L v (46a)
R
(83 31 --rda) denoting the roultinomial coefficient
nl
Y A

and

Bl = X (BAIN™ e [BBDT X o X (BB (BB
e (46D)
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so that

LIPSy Log S

)]

] [

log w0 = lim 3 5 {log S8+ E[Ziles by
U—e jonil 1=l
whero Z runs over all non-negativo integor n-tuples (ky, ..., k,) such that Zkhiar.
Wo writo
»
J = i 2 e
log ¥.{f) ‘PE. s j:" (2”'"1"“"- log f (ﬂ,;n‘,.... ."” (47)

whero

, 3
Pragn, ™ BBt .. 8"

T S T
7];.-1.... *, = —lﬁ...k—.l"’”‘l e Y

nnd, for fixed §, Iy runs through all non-negativo-integer n-tuples (k, ..., k,) with
0§ 2k n—1. We drop for convenience the individual sulfixes and rowrite (47)
simply as

'
logy ()= lim X (Z7,log/ ()] - (48)
M—y» Joptl
whero () = f(, ). In view of the facls that £;— 0 ns j— o and (consequently)
0 < max fj < 1, we see that £, 0 uniformly in e ns n—yco, so that the c.f's f,
antisfy the “uniform asymptotic negligibility” condition : for any fixed 7' > 0,
1£0-111=0. )

lim [ max
e |{|€TS

Fix a 7 > 0; lct F, denote the d.f. corresponding to f,; defino
a,= § adF,@), F)=F( 4a), f,=cfof F, e (50)
We claim that g, given by
log 1) = £ (Zynfiet+ f (e 1iFu) (61
=

in well-defined and is an i.d.c.f. which provides an “accompanying i.d. law” for ¢,;
in fact wo prove below that log i,(1) — Jog 74(1) = 0 a3 n— o uniformly in every
interval 1| < 7.

Sinco 3,—0 aa n— 0, uniformly in o, wo have tho usual central limit theorem
cstimates (Loeve, 1969, “central inequalitics™, p. 304) ¢ given any ¢ > 0, thero exists
n positive constant ¢ (T, 7) such that forall |{]| < T and M > n » N = N(T'1),

o =11 <
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and

M - T M
X Eynlfo-10<arn f{ £ S lleglfo] 1}
=881 o Hemil

T
< ATy 7) [ lloglyuln] | &

80 that

ar - - M -
Z Zy.|log/i+1-L0] < I Zg|f0)-1]*
J=mi2 I=ntl

T
<edT,7) { Jogly(n) |dr.
Now, fix T > 1 and 5 » N(T,7). Then
L Ty flog 0 +1-70)
§-a+1 E
boundedly converges for all # with |¢] < T, so that, so does the acries

Z Zpy, {logJ, (N=iat+1-0).
J=at1
Henee’ p> 2,7.(—i1_l+l—f,(l)) and consequently
-n 4l

; T . I(l—coslz)dl" (r) converge boundedly,
=41

= |

i H'"’ dF (),

- 2~
so that X Ty, [(l—cosiz) l—j‘i dd (x) converges for all 2, Integrating termwise
Jant)

botween 0 and 1, wo have

3 Zo, J(1- %2 EE ‘+” dU(x) <

fentl

8o that, (l—'ﬂ:—:f) _l%x_’

being bounded away from zero for all 2, wo have

£ Ep0(+w) <co.
-n41
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Defining I (x) = z }:,y,i'/,(:). we havo
J=an1

S Epyflog fan+1-740)
f=nil

= ,j:n Sy flog L4t —iz i+ J(1 — v 1iF ()}

- . i ot~
= & Syllogf-ite 40— f (=1 pis | H e

x

where 0, = f H_—z,d'l'”.(z), 80 that, from the convergenco of the LHS, it follows that

g: Epy,(2,+0,) converges; eall the sum of the serics C,, so that for ull » > N(T, 1)
Jmatl
and 1] < T,

. iz ) 1tat T )
g =i = (ere=1~ 355 ) SR dnr ) < .0, 7). f Yogl ] |at

. {52)
Lewriting (40a) as log £,() = Z y,log /,(1), & finite sum depeniling on », and
adopting definitions gimilar to (50), we obtain, for || < T, n > N’ = N(T\71),
-~ T
|log £&al)—il(Z y,2,)~Z [ (eHs—1)F (u)| < 5. (T, 1){ |log|&ath)| |2 ... (53)

s0 that, for # > max(¥, N') and |¢] & T, we have tho sum of the R1IS' of (62) amd
(63} is < ¢.e(T, 7). :I|log |/ |2, Thia shows that thero is a suitablo ‘accompany-
ing i.d. law® for tho product £y, i, 80 that fis i.d. Ilenco tho theorem.

If then L{g, @, M, N} be tho Lovy ropresentation for log f, then {a.} being the

sequence of positive f's (if any) and (b,} being tho soquenco of negative £'s {if any),
and {8,} and {¢,} being the corresponding subsequences of tho y's,we have the relations:

oY1~Zyf) = 0

M) =T &M (ail) —Et,N(—i‘l-) for u <0,

Nu) =3 a,N(nll)-): o) (—b!l) for >0,

M and N being assumed (without loss of gencrality) to be respectively left-and right-
continuous on {—o,0) and (0, c0). Sotting glu) = —N(ev¥) and h(x) = M(—e¥),
A, = —log 4, By = —log b, wo havo tho relations (41); since f;—» 0, max | 8| exiats
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and is < 1, so that the condition that the Ay and B, bo bounded away from zcro,
in addition to being positive, iv satisficd. Ilenco Theorom 5 can bo applicd to our
situation to yicld further information (analogous to Theorem 3) regnrding the Lovy
functions X and N. We omit tho formal statement which bears the same relation-
ship to Theorem 3 as Theorem & does to Theorem 2.

5. APPLICATION TO REGRESSION PRODLENS

In this soction, wo point out cases whero our discussion in the preceding
scotions can bo applied to obtain solutions of tho regression equation

E (}‘. a,.\',|}‘.bl.\’,) =0 aa, . (59)

whero tho X; are i.id.rv.'s with EX; = 0.

Theorem 7: Let Xy, Xy, ... be an infinile sequence of non-degenerate iid.rv.’s
with EX, = 0. Suppose they suliafy (54) where {n)) and {by} are sequences of real constants
such that L)aj) < o and £b;Xy converges almost surcly lo a r.v., and suppose further
that

B m#0 Iyl < |6l foralj<1,
and  (ii) a,fad; <O for all j > 1 for which afy # 0.

Then X, Jollows an infinitcly divisible law, More precise slatemenls aboul the Levy
functions in the Levy rep: ton of the log c.f. of thal ‘generalized sfuble luw® can be
kad if the ay, by salisfy the conditions postulated in any one of the Theorems 4 to 6. In

o
particular, X, is normally distribuled under the above conditions iff S aby = 0.
1

Proof : Since I|ay] < coand E]|X,] < o0 by assumption, E E|aX;| <0
and hence Za;Xj converges a.s, (sco, for instance; Rao, 1965, p. 91 or Lukacs, 1968,
p.72). Also, for tho same reasons,

0= EZayXye ")
= SEXe"
= Zaf'b4). glf(bl‘)l .n (55)

whero f is the of. of X,.

Sineo X bXy converges'a.s. to a r.v., 11 f(by!) represents a o.f., so v,lm'._l-z‘j(btl)
— 1 as »—» 0, in fact uniformly in overy compact {-interval, so that I:I.j(b.l) =0is
possiblo only if f(bg!) = 0 for some k. Now, if I: |¢] <& bo tho largest interval

around tho origin in which f docs not vanish, wo may then divido through by ]:I Jibt)
in cquation (55) to obtain

S 7
2]’.11, Toh =0, lsl.

23
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SANKHYA : THE INDIAN JOURNAL OF STATISTICS i Senies A

In any compact sub-interval of 1, f(by) is bounded away from zero uniformly for all
Gyand 1SN < E|X,] whilo £]as] < o by assumption, s0 that wo may integrate
tho LIIS of (56) term by term over any nterval [0, 2], |¢] < 8, to get

P ‘%L log /() = constant = 0, lef,
¢
tho summation running aver all j such that a)b; # 0. We rewrito tho abovo as
- Y
10 =110 ! 1t . (57

where |f] < 1 and y; > 0 for all §, (85 = byb,).

o now claim that f is non-vanishing for all ¢ and that (57) holds for all 2.
Supposo in tho abovo that & < , s0 that f{£8) = 0. Now, by assumption, f is non-
trivial and b;X; converges a.s., and theso imply, by Theorem 4, that 5} < o,
i.0., £45 < o0, 50 that, in particular, §y-» 0 na j— co. Wo may therefore speak of
max |f;| and assumo without loss of generality that || = max 18] and It
8, == 8/|Ail, 50 that

J(A) + 0 for any j provided [¢] <9, v (08)

Let now g = |f|? eo that g{t) = I:l [y(ﬂ,l)].” for {t] < 8. Wenoto thatg is
real-valued, with g(—1) = ¢{t), and henece, in pardicular, satisfies tho clementary
incquality valid for such c.f.’s

1-g(2) < A[1-gt)). e (50)

Lenuna 6: Jf l-‘l (y(/l,l)]y' c.onvcmu uniformly for |8]| & € and g{fiyf) 3 0 for

|4]  2€ Jor all j, then I:I W,l)]v' converges uniformly for || 2.

Proof : Since 0 § —log (1—0} for 0 & 0 < 1, and rclation {69) holds, tho
uniform convergonco of yjlog g(Ag) for |¢| < s implies that of Sy {L1—g(24)] for ||
& ¢, Also sinco g{2851) # 0 for |¢] < ¢, log g{2A) is defined for such ¢ {with tho usual
choico of tho logarithm) and sinco f;— 0 as j— oo, g{2f1) > 1/2 for all sulliciontly largo
j uniformly for all such ¢, i.o., thero oxists J(¢) such that this rolation is true for |¢|
& eif § > J(e). For such j and ¢, wo have

—toggt2) < “=IZEN oy giap

o2A)
50 that Zyylog g(2fy) converges uniformly for [¢] < ¢, 80 that the sum-function is
k]
continuoas there, Thus T g(8p)) * yos uniformly to & conti function in
1t € 2e.

24
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- 7,
Now the fact that IT [5(5;1)] ’oonvorgcs to the continuous function g¢) in [¢] < &
1

implics that the convergenco is uniform in any compact subinterval |¢] € e thercof;
this is a consequertco of the fact that for a series of {real and) non-negative functions
of a real variable defined on a compact interval, uniform convergenco is equivalent to
tho inuity of the function (sco, for inst. Titch h, 1939, p. 13). This
fact together with relation (58) and Lomma 6 implies that

= = li = 1 ¥
0 =g{d) }};;1 0] }ltn: T {g(A)]

=A™ #o.

This contradiction shows that g, and henco £, cannot vanish at any point of the real
line. Then, as we have already proved, relation (57) holds at all points and our theo-
rem stands proved. The particular asscrtion about conditions for the normality of
[ follows from Theorem 4.

A well-known theorem of Marcinkiewicz (seo for instanco Lukacs, 1068, pp.
112-118) connocts the identity of distribution of two linear forms in a sequenco of
i.ld.r.v.’s with the normality of those r.v.’s. An extension thereof enables us to state
sufficient conditions under which relation (54) would imply the normality of the X|.

Theorem 8: Let X, Xy, ... be a sequence of non-degenerale iid.r.v.'s having
momenls of all orders, with EX, = 0. Suppose they satisfy (64) where the {as} and {b))
are sequences of real constants salisfying the following conditions :

i) Zle] <w;
(i) TbyX, converges almosl surely lo a r.v.,

and (i) if {B), {B}} be the subsequences of (b5} for which respectively ay > 0 and
agby < 0 then {1 44|} and {15}]} are not permutations of each olker.

Then the Xyare normal.

Remark : The Xjnced not bo normal if tho moments of all orders do not exist,
even if all tho other conditions above aro satisfied, as pointed out by Linnik (1953)
in respoct of Marcinkiowicz's theorom.

Proof : Procceding as in the proof of Theorom 7, wo arrive at tho relation
Elaty) log fibd) = 0, ¢ I

I being any interval around tho origin whero tho o.f. IT f(b,¢) does not vanish, the sum-
mation running over all j such that ap; 3£ 0. We thus have

Zyslog f(Be) = Zyjlog f(6j1), 161 e (60)

where the y's aro all positive,
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Wo noto that (sinco tho convergenco a.s. of ZbyX; implies that ¥ b < )y
and p;-»o 08 j~» o0, 80 that wo may speak of max || and max 1571, Asin the
proof of Theorem 4, it follows from the convergenco of the two members of relation
(60) that Yy;ff < and ¥ y,’(/?,‘)' < 0j since Sy and S7 — 0, tho above implics the
convergenco of Ly A} and Syj(f)s for all posilive integers 8; it further follows
then that

lim (Syffpm = max |fyl.
e ]

Proceeding then along the lines of the prool of Marcinkiewicz's theorem, we obtain
our assertion.

6. CHARACTERIZATIONS OF THE WIENER PROCESS WITH LINEAR MEAN
VALUE PUNCTION DEFINED ON A COMPACT REAL INTERVAL

e assume familiarity with all the concepta involved in the phrases : ‘a conti-
nuous (in-probability) homogencous stochastic process with independent increments
defined on a compact interval (4, B)' and ‘a Wicner process with linear mean value
function {m.v.f.) defined on {4, B]'. W also assumo familiarity with the basic con-
occpts nssociated with second order random processcs. For all these we may refer
tho reader, for instance, to Lukacs (1048, Soctions 8.1 and 5.2, pp. 100-108).

We state below four resulte characterizing the Wiener process with lincar
m.v.f., all of them being straightforward extensions of known resulls, these extensions
being in keeping with the spirit of the earlier sections of this paper. We omit the proofs
of three of them, since they may be obtained by proceeding along the lines of Lukacs
(1968); our proof of tho remaining proposition (Theorem 11) follows along those of
our proof of Theorem 4 (ii) of tho present paper.

Let a(:) bo a non-constant, non-decreasing right-continuous function defined
on a compact real interval [a, b], with a{a) = 4, a{b) = B, and let X{f) be a continuous
homogoncous process with independent increments defined on [d, B]. Let then

Ju, 1) = Eoxpliu[X({t+7)—-X(0)}, At <i4+7< B
and J) = [flu, V7, Hu) = log f(u).
Let g and B below denote functions continuous on [a, 8], Tho random
varinblo
]
Yo=[ gtdX(a@))
is well-defined in tho scnse of

B 8 gl Xl ) Xtat )

where Afhy=a <t <. <ty =b}
20
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is an arbitrary sub-division of [a, b], JJAll = max{t,,;—1r), and 7eefty, tr,,).  The c.f.

¥ of Y is given by
[
log Yoln) ={ Pluglt)Mlalr)
and the c.f. yya of ¥y and Y, is given by

12
log ¥g,Mu, v) = .I BHuglt)+er)Kdale).

For tho proofs of tho abovo statements, which run along lines similar to thoso
for the caso a(f) = {, wo may refer to Lukacs (1068), Scction 5.2. Also given there
are sufficient conditions under which

14
Y= { gl)dX{a(h)]

is well-defined in tho sense of a limit in quadratic mean when X{!) is o second-order
random process, and under which the above expressions for the c.f.’s Y, and Voa
are valid : these are proved there for the case aft) = ¢ and are casily carried over to
the case of general «.

We shall refer to the finite measure induced by the point-function a on the
Borel subsets of [a, b) as the a-measure thereon,

Theorem 9 (Characterization by independ of two stochastic integrals) :
Let X{1) be a continuous homogencons process with independent increments defined on
[4. B) and g and h be continnous functiona on (a, d] such that each of them is non-vanishing
on a sel of positive a-measure there (nol necessarily the same for both), and at leas one of
them vanishes nowchere on {a,b). Yy und Yy are independent iff

(i) X(1) 18 @ Wiener process with linear m.v.f.
»
and (i) [ghdz =0 in case X(1) ia nol degenerafe.
H
Theorem 10 (Identical distribution of two stochastie integrals): Let
X(1) be a continwous homogeneous process with independent incremenls on (A, B).

Suppose g and h are conlinuous funclions on [a, b) with max|g{t)| # max |h(t}[ there.
Yg and Yy are identically distributed then iff

(ii) X(1) is a Wiener process with linear m.v.f.,

i) foda = | hdax if the mvf. w0,
13 »
and  (iii) fg%da = [ h¥da,

27
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For the proof, we note that the identical distribution of Y, and Y is equi-
valent to the relation

{ lugtOMat) = JouHOMa() for ol eal w,
a L]
and that, k running through positive integral values,
» Iy
lim {Iw(l)]"da(l)} existe and = max |g{!)| on [a,d),
tHw g

roferring the reader for the rest of the argument to Lukaca (1908).

Theorom 11 (Idontical distribution of a stochastic integral and a r.v.):
Let X(t) be a conlinuous homogeneous process with independent sncrements on (4, B),
and g @ continuous function on[a, b) satisfying one or other of the following conditions :

@) |oW0)] <1Jforalltin[a,b] and g has at most a finite number of zeros there;
or (i) lolt)] > 1 for all ¢ in [a,b): this implies that g is of constant aign.

Suppose for some (and hence for every) potitive inleger n 2 1{(B—A) the distribulionof Y,
is the same as the n-th convolution of the d.f. of X (H'Tl{) X A<t < :+% <B.

(If B—A > 1, this condition simplifies into : ¥, and X(t+1)—X(), A < 1<t+1< B,
have the same distribution.) Then X(t) is a Wiener process with linear m.v f. iff

Sy =1. o)
Further, in that case, f gi)dx(t) = 0 or the mw.f. {8 = 0. e (62)

Proof: The ‘only if* part and (62) follow from the fact that the identical
distribution of the above r.v.'s is equivalent to the relation

f#[ug(l)}da(l) = ¢{u) for all real u. e (63)

As for the ‘if” part, suppose now that (63) and (61) hold. If 0(x) = ${u)+¢(—u),
we obtain from (63) the relation

fo[uy(l)]dz(l) = O(u) for all real u, e (64)
(61) then implics, with off) == |g()[, F(u, t) = Ofuc(t)]—[c(N]*0w),
} Flu, t)dafl) = 0, e (08)
-
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We now consider g satisflying condition (i). Let u 3£ 0 be fixed. If (s = a,<)
a, < a; < ... <a,( € 8,y = b) bo the points whero g vanishes, then F(u, a,) = 0 for
1 < r € n, 30 that (65) may be rewritten as

| Flu,tdaft) =0, e (08)
Lad G|
In the above sum, we can ignore thoso r for which [ da(t) = 0, 20 that (66) implies
[."'0

the existence of some r,  depending on %, 0  r < n, such that
§ o ds>0 [ Fu0da>o.

[*r*rs1) Crfres)
F being continuous in ¢, the above implics the impossibility of F(u, ) being strictly
negative on [ar, ar,,), 80 that thero exists some fy thero, withc{ty) > 0, such that Fu,t,)
> 0. Similarly there exists a 17 in [a, b] such that ¢(f}) > 0 and F(u, ;) < 0. Thus,
for every u % 0, there correspond £y = uc{fu) and £2 = ue(ll)—s0 that 0 < l€a] < |u],
o<l < |w]—euch that, if y{u) = Ou)/u® for « # 0, then
7(x) > 7(6a) and 7(u) < €.

1t then follows as in the proof of Theorem 4(ii) that » is constant so that O(u) = —cu?
and, by the Levy-Cramer theorem, f is a normal ¢.f. (63) then yields (62),

Considering now g satisfying (ii), g is of constant sign and |g| is bounded Lelow
by a oonstant 148 > 1 8a woll as bounded. We then obtain etraightaway from (85)
in this case the existence, for any fixed u 3 0, of y and f; in[a, 8] such that F(u,t,)>0,
Flu, 1) < 0, where of courso c{t,) > 149, ¢(l) > 149. Thus, for every fixed
u > 0, there exists a sequence u = 1y < 4; < ¥y < ...~ 0 such that yuy,)) B> 7luy)
for all %, and a sequence u = uy <t < t3 < ...—> o0 such that 7{u},;) < 3(x}). But
fbeing anid.cf., if y be the Gaussian constant in the Lovy representation for ¢ = log j,
then hm 1,(u) exists and = —2y. Thus we have from the above that z(u) < —

y(u) for all > 0, 0 that O(x) = —2yut. It follows from the Levy-Cramer theorem
then that [ is & normal e.f, and then, as before, (83) yields (62).

Wo proceed to our final result.

3

Theorem 12 (Linearity and h icity of the regression of ono stoch
tic integral on another) : Let X(t) be a continuous homogeneous process with inde-
pendent increments defined on (A, B). Assume furiher that it is & second-order process
with its m.v.f. and covariance funclion both of bounded variation on [A, B). Letgand A
be two continuous funclions on [a, b), and let there be a compact sub-interval of [a, b] in

which (i) gh # 0 and (ii) g is not proportional to . Let Yqr= I‘v(l)d‘\'[a(l)] and T)

= f MadX[x(!)), taken fo be in the sense of limils in quadralic mean. Then the process

X(t) i2 a Wiener process with linear m.v.f. iff Y, has linear regression and constant
scatler on Y (the regression of Y4 on Y is linear and homoscedastic).
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