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SUMMARY. In tho framowork of tho tonsor produot of an initial Hilbert spaco with the
boson Fock speco over L, (Ri) o quu\mm random walk is constructod and its convergonco to &
diffusion limit is oxhibi

1. INTRODUOTION

An approach to the passage from random walk to a diffusion limit in
the Schrodinger picture of quantum probability was outlined in Parthasarathy
(1987). Such an approach leads to a limit theorem for unitary operator
valued adepted processes in a scquence of varying Hilbert spaces (Partha-
sarathy, 1987 ; Accardi and Bach). To be more in tune with the classical
approach of formulating limit theorems in a single sample space of right
continuous paths with left limits we now reformulate the notion of a quantum
random walk int he algebraic language of Accardi, Frigerio and Lewis (1982) by
making the elementary observation that a classical Markov chain can
always be constructed by first choosing a sequence of independent random
maps on the state space into itself and making successive compositions. Such
a reformulation enables us to examine the passage to quantum diffusion
bwits in the Heisenberg picture in a single Hilbert space at least in one
toresting example.

2. A QUANTUM RANDOM WALK
We begin with the description of a classical Markov chain in algebraic
terms and then formulate the notion of a quantum random walk by analogy.
To this end consider a Markov chain with a finite or countable state space
8={1, 2,..} and stationary transition probability matrix P = ((py)).
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Denote by M(S) the set of all maps from § into itself and by & the smallest
o-algebra generated by all subsets of M(S) of the form {f:f(i) =j}, i,je s,
Undor the composition operation o the set M(S) becomes & measurable semj.
group with identity and acting on 8.
Proposition 2.1: There exisls a probability messure g on (M(S), &
such that
Mf: Oy =3)=py foralli,je8. 2

Proof : Let py denote the probability distribution p;, e, ... on the
set 9 for each i€ S. Define g = pyXpyX..., the cartesian product of ™
Jy ... 1f we look at z 28 & measure on (M(S), &) it is clear from definitions
that u satisfies (2.1). [J

Remark 1 : Suppose we choose z,¢ S according to a distribution A,
indepondent and identically distributed random elements g¢,, g,, ... from
M(S) with distribution x as in Proposition 2.1 and put z, = g, 09, ,0... 0 9
(z,) for n =1, 2, ... then {z,),5, is & Markov chain with initial distribution A
and stationary transition probability matrix P.

Remark 2: If Pis a doubly stochastic matrix in the sense that T py=1
for cach j and £ pyy = 1 for each i in §, and if S is finite, then the semigroup
]

M(S) in Proposition 2.1 can be replaced by the group G(S) of all bijective maps
of S onto itself. This follows from Birkhoff's theorem that every doubly
stochastic matrix is a convex combination of permutation matrices (Berman
and Plemmons, 1979, page 50.)

Remark 3 : If the state space S is the real line or, more generally, an un-
countable Polish space and the transition probability P is described by
P(z, E) which is measurable in z for fixed E and a probability measure on
the Borel o-algebra of S for fixed 2 then Proposition 2.1 holds with A/(S)
being the somigroup of all Borel measurable maps of § into itself, & the
smallest o-algebra generated by all subsets of the form (f: f(x) ¢ B}, x¢ 8, E
a Borel subset of S and (2.1) being replaced by the relation

MS : f(2) € B} = P(z, E).

Indeed, assume without loss of generality that S is the real line and denote
by Glz, ¢), z¢ R, te[0, 1] the left continuous nondecreasing inverse of tho
distribution function of the measure P(z,.). Then @ is measurable in (z, {).
Chooge i.i.d. random variables Ey, E,, ... with uniform distribution in [0, 1] aad
put Gy(z) = G(z, &;). Then z, Gy(2),Gy0G\(z), ..., G, 0, 10...0G(z),...i88
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Markov ssquence with initial state z and transition probebility P(-,.). This
shows once again that Markov chains with an arbitrary initiel distribution A
on § and transition probability P(.,:) can be generated sccording to the
recipo in Remark 1.

We shall now impart & more algebraic character to the Markov chain
deseribed in Remark 1. For any Borel space Q let B (Q) denote the algebra
of all complex valued bounded Borel functions on Q. Let

Q= SxXH(S)x M(S)...

p=AXpXEX...
where A, 4 are aa in Remark 1. Lét B, = B{Sx M(8)x M(8)x ... x M(8))
where M(S) appears n-fold in the cartesien product. Then B, is an increasing
sequence of subalgebras of B(Q). Define the sequence {J,} of homomorphisma
from B(S) into B(Q) by putting

=6 (18 @ fi for ) =BUfp0 S0 0 fila)) .. (22)

for n=1, 2,.... The sequence {J,} is adapted to {B,)} in the sense that
J,$eB,, % nand $eB(S). Furthermore

PTaB) = [ (I $)dp = [ (P$) (2)A(dz)
where (P§)(z) = E pzy ()

is the transition operator of the Markov chain. Thus the quadruple (B(Q),
{Buhs {J,}, p) describes the Markov chein in the algebraic sense of Accardi,
Frigerio and Lewis (1982). In view of (2.2) the dynamics of the chain is
determined by the measure p and the one step homomorphism J;.

We are now ready to introduce a special class of qusntum random walks
in analogy with the description of classical Markov chains given above. Let
hy, A be complex separable Hilbert spaces and let &, 7 bo respectively W*
ulgebras of operators acting on hy, #. We assumo that both &, 7 include
the identity operator. Furthermore we assume that 72 is a finite dimensional
vector space of dimension d. Let J: 8— S ® 72 be a W* homomorphism
preserving identity. If & and 72 are called the system and noise algebras
then J may be interpreted as a one atep random walk and compered with
the homomorphism J, in (2.2).

Choose a basis Ny, N,, ..., Ng for 72 Then there exist (structure) cons-
tonta by, cf;, ey such that

) =S b N, . (23)
]

N Ny=Scj My, o (24)
k

Nl =Zegl; . (25)
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where t denotes adjoint and 1 denotes the identity operator. Define the
maps ay : 8— 8, 1 £ j € @ by the relations

@ =,§1 (o) @ Ny e

The faot that J is & W* homomorphism implies that each &y is & linesr map
and the following identities hold :

ax(zy) ='2! hau(z) e(y), . 2]
a(z!) = F ex (2)t, e (28)
ax(l) = by, o (29)

where by stands for by times the identity. The identities (2.7)—(2.9) may
be compared with the cohomological identities derived by Hudson (198).
Congider the increasing seq {Bn» > 0 of W* algebras defined by

By=8,8, =3@N® .. @A n=12.. e {20)
n-fold
where &, is looked upon as & subelgebra of &,,, by identifying £e¢ @,
with E@ 1 in &, For sny z¢e&let

Jola) = 2, Jy(z) = J(z),
¢
Jolz) = 121 Joa (@)@ Npn=23,... oo (211
Proposition 2.2: J, is an identily preserving W* homomorphism from
8 into B, for each n > 0.

Proof : The proposition holds for » = 0, 1 by definition. We proceed
by induction starting with the assumption that the proposition holds for all
J5, j € n—1. It is clear from the linearity of the maps a; that J, is linear.
From (2.4) and (2.7) we have

In(2)oly) = ‘E’ Ja-r(@)ly)) @ Ny Ny

I

Jacs (2 oy aelonts)) ® N
1

z
%
f Iy (en(zy)) ® N
J,

w (29)-
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By & similar argument using (2.5) and (2.8) we obtain
Ja@) = Z Juy (@l(2))' @ N}
=ZJ0, (S amia)) ® Ny
] E
= 12 Ja1 (@s(2") @ Ny
= J,(=").
From (2.3) and (2.9) we have
Jal) = }E ooy (a(1)) @ N

I

Zh@® N
=1@Z uNe=1 0O
Remark 1: Let A beastatein Qandlet g}, j=1,2,...be a sequence

of states in 72. Suppose there exists a W* algebra & with & state p on it
such that |J @y is dense in & and foranyze &, yje 7y, j=1,2, ...
na0

k
@y, ® ... ®w) = Alz) /I-lx ylyy) for every k. e (2.12)

Then the quadruple (&, {G,}, {/n}, p) is & discrete time quantum stochastic
process in the sense of Accardi, Frigerio and Lewis (1882). Define the (trans-
sition) operators T',_, . on & by

d
Tora?=E Ny efz)yn=1,2, ... . (213)
-1

Then

Py %) = AToy Trge-- T n?®): . (2.14)
Wo call the process (8, {8,)) {/,}, p) & (inhomogeneous) quantum random
valk with 7,_, . 88 the (one step) transition operator from time n—1 to n.
Tach transition operator T,,_, , is & completely positive mep on & preserving
identity, in the sense that for any state A on & and finite sequences {z},
furhy r =1, 2, ..., kin & the following inequality holds.

ME #iTasalsiv 5) > 0

Indeed, this follows from Proposition 2.2, (2.13) and (2.14). If By = p for
81l j then ono obtains & homogeneous quantum random walk with transition
operator T given by

T2 = £ ;) o).
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Remark 2: Replacing W* algebra by C* algebra one obtains a paralle}
notion of & guantum random walk.
Proposition 2.3 :  Let J,, p be as sn (2.11) and (2.12) respectively and let
En, z, p) = p{J, 2). e (2.15)
Then the following difference equation holds
E(n, z, p)—E(n—1, z, p) =:IJI En(NDE(n—1, axz)—bez, p) ... (2.18)

where the conslanis by are as in (2.3).
Proof : By definitions

a
Efn, z, p) = E‘ Etn—1, exlz), p)unlN)

and
I beppa(Ne) = pp(E bpNy) = 1.
Now (2.16) follows immediately from these two equations. ]

Example 1 : Let hy, A be complex separable Hilbert spaces, dim A < o
and let @ = B(h,), 72 = &(A) where for any Hilbert space k, &(k) denotes
the algebra of all bounded operators on k. Let A be a density matrix in h,
andlet {$,}, j = 1, 2, ..., be & sequence of unit vectors in &, For any unitary
or antiunitary operator U on h, ® A define the homomorphism J from 8
into 3 @ 7 by

Jx)y=Uz®1U.
Let A = HA® HQ ... be the countable tensor product defined with res-
pect to the stabilising sequence {#;} of unit vectors. Put & = G(h, ® A=),
B = Bh,@ A® A ... @ H) where X appears n-fold in the tensor pro-
duct. There exists a state p on G such that

¥
AzRN® ... @u) = (Ir Az) ,n: <&yt >
for all ze€ G(ho). ¥1 ¢ B(A). The sequence {J,} is defined by (2.11). Thus ono
obtains a quantum random welk (&, {8, {a}, P)-
Write
R®M=hQMN® . . .OHHO...
where A denotes the j-th copy of . Consider the unitary isomorphism
o5 hy® M®- M@ o B @ HMRMO ... ® K ® A -
induced by the appropriate permutation of indices and denote
U= a';‘U ® 1oy,
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where on the right hand side U operates in h, @4 and 1 is the identity opera-
torin K ® . ® M1 @ K11 ® ... Then Uy is called the j-th ampliation
of U to the Hilbert space hy ® A=®. Then

JB)=Wx@1W,
where W, = Uy Upygooeen. U,. If we use this iteelf as the definition of Jo
then the assumption that dim # < co csn be dropped.

Example 2 : Let 8 be the algebra of all bounded complex valued mea-
surable functions on R and let 72 = 8(C*) the algebra of all 2Xx 2 complex
matrices. Let @, B, 0 be real valued measurable functions on R. For any
$e8 let

cosf(z) sinf(z)y  Plz+alz)) 0 cosf(z) —sinf(z)
J@)=) = (_Bm,,(,) wso(z))( 0 ¢(z+/?(:c)) (nine(x) coso(z))
(2.17)
If A is & probability messure on R and ® is the unit vector ( (l) ) in C*= Awe
define A= with respect to the constant sequence {®} of unit vectors. Viewing
&8 as L® (A) by going to A-equivalence classes we ses that there exists a state
pong=LNQ B(N©) satiafying

x
PO ®. @y =) I <0,y 0>.
Putting 8, = L°() ® S(42") and defining {J,} by (2.11) one obtains &
homogeneous quantum random walk (8, &, {J,}, p)-

If we write
S R N R L P

then from (2.17) it follows that

a,($) = $(z+a()) cos*B(z)+$(z+p(x)) sind(z)

() = [$lo+alz)—ga-+A(x)] sind(z) cosd(a) a1

a($) = ay($)

ay($) = p(z+a(x)) sin?b(z) +$(z+p(x)) cos*(z)
where ay, j = 1, 2, 8, 4 are tho maps on 8 determined by (2.8) when applied
to the homomorphism (2.17) from & into 8 ® & (C*).

3. PasgaGR TO DIFFUSION LIMITS

For any complex Hilbert space k let I' (k) denote the boson Fook space
over k (Hudson and Parthasarathy, 1984 ; Meyer, 1986). defined by

Pk =COkD - BBFu KD ...
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where @), denotes n-fold symmetric tensor product. Inner products < .,.>
are to be understood as conjugate linear in the first and linear in the second
variable. For any u 6k we denote by ¥ (u) the coherent vector defined by

V) =10V u@ud ... BN @D 4 ......

Let h be a fixed complex separable Hilbert space and let

H=T(LR,) ®h),

H[a, b} = T'(Ly[a, ) @ h),

8[a, b] = B(HMa, b))
where J(k) denotes the algebra of all bounded operators on any Hilbert space
k and R, =(0,00). Denote by &(a, b) the unitary isomorphism from
Ly[0, 1] ® h— Ly[a, b] @ h defined by

[6(a, B)f] (¢) = (b—a)™"2 f((b—a)™* (t—a))
where f is looked upon as an A-valued square integrable function on {0, 1].
Let Ofa, b) be the second quantization of 8(a, b) defined by
O(a, b) Y(f) = Y(bla, b)f)

on coherent vectors and extended uniquely as a unitary isomorphism from
A0, 1] onto Ma, b). Suppose that 72 C B[0, 1] is & finite dimensional W*
algebra of dimension d containing the identity operator. For any N e 7 let
N(a, b) = O(a, b) N © (g, b)™, e (30)
7ia, b] = {N(a, b), N e 73}. .. (3.2)
Choose and fix a basis N, N,, ..., Ng in the vector space 72 and fix the struc-
ture constants by, ¢fj, eys, 1 < 4, 5, k < d for 72 according to this basis es deter-
mined by (2.3)—(2.5). Forany k>0, n=1,2, .. let
B=8@ 70,1 Q@ 72(h 20 @ ... ® 7((n—1)k, nk)
CS®8[0,21C SQ 8(H) . (33)
where & is a fixed W* algebra of operators on some initial Hilbert space hy.
In identifying the various algebras Bfa, b] as subalgebras of &(A) we have
used the basic properties of boson Fock spaces a3 mentioned in Hudson and
Parthasarathy, (1984 ) and Meyer, (1986).
Suppose that for every & > 0 there is given & W* homomorphism J® :
38— 8@ 7 presorving identity. Let

9 @) = £ axlh,2) @ N 34
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Dofino homorphisms J& : 8— By, n =0, 1, 2,... inductively by putting

B@=nPa =5 aba®N 0N .. 65
3 F) —
Jf"f (z) = El =TS (cex(h, z)) @ Ni (n—1h, nh). . (3.68)

It follows from the arguments in the proof of Proposition 2.2 that J® is,
indeed, an identity preserving W* homomorphism.

For any feL, (R.)@h considered as an h-valued square integrable
function in R, and 0 € @ < b < oo let fi5,5 denote the restriction of f to
the intervel [a, b]. Let p; denote the pure state determined by the unit
vector (exp—1/2(fI)V(f) in 4. Let ps(a, b) denote the pure state deter-
mined by (6xp—1/2 ||f(a,p)li?) ¥ (fia,5)) in K[a, b). Then for any k > 0 we have

Lr=0p/0. 1) @pr (3, 2N ® ... @ pyln—1h, 2B)®... ... (8.7)
For any initial state A on 8 we obtain & quantum random walk in terms of
the quadruple (8 ® B(N), {S® S[0, nhl}, JB, A® py) for every h> 0.
Thus one obtains a family of random walks indexed by a small parameter b
i a single algebra, namely & @ .8 (A) and therefore it is natural to ask the
following question : a8 A— 0, n— oo and nh— ¢ do the homomorphisms J%
converge to limiting homomorphisms J, yielding thereby a continuous time
quantum stochastic process in the sense of Accardi, Frigerio and Lewis ?
If, in addition, such a limiting process has the property that {J,(2)} obeys a
quantum stochastic differential equation for every z in the sense of Hudson
and Parthasarathy (1984) then one may ask whether the limit is a diffusion
in the sense of Hudson (1986).
Forany f, ge L(R,)®h, h > 0,2 =0, 1, 2, ..., v ¢ S define the opera-
tors T™ (nh, z, f, g) on the initial Hilbert space h, by
< u, T (nk, z, f, g}v >
=<u@®y() IR @ v @Y (9 >, uveh, .. (3.8)
where J¥) (z) is determiced by (3.5), (3.6).
Proposition 3.1 : The operators (T (nh, z, f, g)} obey the difference
equations -
T™ (nb, z, f, g)—T™ (n—1h, 2, f, 9)

¢
= El {oxp — < frammamnp Frimingn > )
< Wultin.nm)- Ni(n—1k, M)V’(ﬂ(ﬁmn)) >

X TW(n—1h, ax(h, z)—bgz, f, g). . (3.9)
A2-2
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Proof : Leb fia denote the restriction of f to [a, c0). From (3.8) and
(3.8) and the basio properties of coherent vectors in a boson Fook space we

have
< u, T (nh, 7, f,g) v >

- :z_l < 4@ Pl T 1w (elh, 20 ® Yigommny) >
X < YUfinmn)s Neln—1h, 2B (gaminan)> < Ylfim), Yim)>
which is equivalent to
T™ (nh, =, f, g) = f‘{exP—<f(T-in.m, F=immn >}
< YlfaminmpNea— 1k, 2B (Gasian) >
X TM(n—1h, ar(h, ). f, g). - (310)
By definition 7'M (rh, 2, f, g) is linear in z.  Using the relation )‘Skax(;l—_lh.
#h)=11in G{n—1k, nk) we obtain
T (n—1h, z, f, g)
= {exp — <fr— v Gam1ann >}
<PUfmman )y EoeNsn—1h, mh)lgir= ) > T W0 =1, 2, , g)

= Z{oxp— <JSimtpmh: G >)
X <Y Uminan) Neln—1h, nab) (g5 an)>T™(n—1h, be 2. £, g).
(3.11)
Subtracting (3.11) from (3.10) we obtain (3.8). [
Remark 1 : Suppose that there exist constants 0 € ez € 1, k=1, 2,...4
sach that the limita
(1) Bilz) = lim K™Yoy (h, 2)—bya) . (312)
A0
(2) Pk(‘:f- g) = lim h_l+"<¢(f [_n:i).,n).])v Nt(mb: nhi (n—ﬂ.llh])>
A0
g ... (319)
exist for every £ > 0. Then it is significant that the difference equations
(3.9) assume the form of differential equations in the limit :

d
S Mnf = Il 0TRSO . 610
=

For each fixed h, the maps {ay(h,.)} obey the identities (2.7)—(2.9). These
may assume & limiting form for the maps {f}. We shall see in the next
section that these are the cocycle identities of Hudson (1986) at least in one
important example.
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The next two rather standard and elementary propositions are useful
in the study of convergence of quantum random welks to diffusions. We
include their proofs more for the sake of completeness than for their newness.

Proposition 8.2 : Let X be a complez Banach space and let S(X) be the
Banach space of all bounded operators on X.  Suppose that fye 8(X),1 <j €k
and fj, 1 € j < k are complex valued locally tially bounded funetions on
R,. Then the ordinary differential equation

ar L3
- = TZfy (Tted(X)t>0) ... (8.16)
5=1

with initial condition T(0) = T, has a unigue solution in S(X).
Proof : This is proved by the routine Picard’s iteration procedure after
defining the «(X)-valued continuous maps 7T,(-) through the equations

Tolt) =Ty for all ¢ > 0,
2,0 = Tk Torls) S fo)ffeNin, n = 1,2, .
and using the inequelities
I O—Tark)] & Ca § M=o M8 foral 0 1 <

where x
Ca= (max Ast) ess.sup = [fio)]
3 06150 f=1

for each fixed a > 0. [J

Proposition 8.3: Let X, &(X) be as in Proposition 3.2 Suppose
By BV e 8(X), 1 <j <k h> 0 are such that

lim (AP —gy| = 0 for each j.
A0

Let f, 1 <j <k be continuous functions on R, and let fiP, 1<k,
k> 0 be locally bounded measurable functions on R, such that

lim sup |f)—fi(t)| = 0 for every a > 0.
Ar00&tga

Define operators T'*» (t) on X by
() = T,

TW(rk) = TW(r—1h) {(14+A Z fPr—1RBM), r =1, 2...,
[
() = T,if ¢t = 0,

=T () if (r—1) h < ¢ < h.
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Let T(t) be the solution of the initial value problem (3.15). Then

lim  sup [TM()—T{)| = 0 for sll & > 0. . {3.18)
A0 ogiga

Proof : Denote by v the discrete o-finite messure with support
{0, A, 2h, ...} and rass A at each point of this set.

Then T"M(¢) obeys the integral equation
) = Tt § TO0) ( 1Py o), 4> 0

where (0, ¢) is the half open interval containing 0 but not ¢ and [0, 0) is the
empty set. Then

TMe)—7(2)
= M)(g)— v
= 4, T¥O—T} {S JPEaP) was

+ 4,70 {Bposp—zhos) wa

+ § T6) {Z £y} onlde)—ds). . (317
& N

Let
e(a, by = sup ||,
0Ltga

where S(f) denotes the sum of the last two terms on the right hand side of

(3.17). Put
w(t, ) = [T™)—T¢)|

den = mp |5 e

Then (3.17) implies that for 0 ¢ < a

wt, k)  Cla, b) (nj"" w(s, hvy(ds)+¢(a, h) .. (3.18)
We now claim that
wirk, k) < V+kC(a, B)rele, b), r=1, 2, ... . (3.19)

Indeed, since {0, A) = 0, (3.18) implies (3.19) for r = 1. Suppose (3.19)
holds for 7 € n. Then (3.18) implies

wintih, 5 < {B Cla, B il (144 Cla, »)]r—l+1} ¢(a b

= [14+h O(a, B)I" e(a, B).
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This proves the cleim (3.18). As h— 0, C(a, A) remaina bounded and c(a, h)-0.
Hence (3.16) follows from (3.18) and (3.19). O
We now go back to the h phismg J® defined by (3.5), (3.6) and
put

JP ) ==
P (2) = IR (=), 26 3, n—1h L t < nh,

B (z) = b7 {oy(h, 2)—bsz}, .. (3.20)
o (nh, £, 9) = 57 < Yz, ), Ny(n—1h, nk)lgimmy, ) >
X{exp— <fammp dran > L2 =1,2,... .. (321)
L =2 Rf9,0<t<h
=P (b f, g, n—1h <t nhn=23,.. . (322)

for f,ge L(R,) ® h.

Proposition 3.4: Let f, g € Ly(R,)®@ h be fized. Suppose that there
exist Bys B(8): 1< < k such that

lim 8P —B = O for each j.
30
Let there exist continuous functions py(t, f, g), ¢ > 0 such that
lim sup |pP(L, f, 9)—pslt, £, )| = O for each j, 2 > 0.
A0 0<t&a
Define the operators 7'M (¢, f, g) on & by the identity

<u, [T, f, gzl > = <u @ ¥(f), (=) v @ ¥lg) >

for all z¢ S, u, ve hy,. Then there exist operators T, f, g) € 8(3) satisfying
the following conditions :

(i) lim sup |TW, f, 9)—T1(¢ f, 9)l = 0 for each a > 0.
A=0 0Giga

- ar_ k
@) TO.fg)=oxp <f 9> <5 = Zpf T4

Proof : This is an i diat of Propositi 3.1-33.

Corollary :  Suppose there exist W* homomorphisms Ji: 8— 8@ &y
preserving identily and a dense domain D C Ly(R,)@h such that the operators
T, f, ) on & defined by Proposition 3.4 satisfy the identity

< [T f, 900 > = < e @ Y(f). Sz @ ¥lo) >
fordize 8,u,vehy, f, geD.
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Then
J,(z)=dthl_l"12-l")(z)]ormhzes,t> 0.

where . lim denoles strong limit.

Proof : Our argument is inspired by that of Evans (1087). First of
all let z ¢ 8 be & unitary operator on h. Then J¢ (z) and J, (z) are unitary.
Since the set {u @ Y¥(f), u € hy, f ¢ D} is lotal in hy @ A and by Proposition 3.4,

E‘n< v @ ¥ (), IV () v @Y lg) >
= <z @¥() Sz Q@ vie) >
for all u, v €hy, f, ge D it follows that J® (2) converges weakly to J; (z) and
hence strongly as A— 0. If ze &is arbitrary we can write z = % (z+2Y)

—;— (z—at) and then express any selfadjoint element y ¢ & 8a

1 . .
y = 3 lylllexp i cos~ily|* y+-exp —i cos~y|y).

In other words any z¢ 8 is a linear combination of four unitary elements
in 8. This proves the corollary. [

4. CONVERGENOR OF A SPIN RANDOM WALK

Until now our discussions have been somewhat goneral in character. We
shall now construct a spin random walk when the algebra 77 is isomorphic
to the algebra of 2x2 complex matrices and all the conditions of Proposition
3.4 and its corollary are fulfilled. To this end we put

8 = B(h). H = TR,
a = | T(R)AW) )

where R, is the reflection operator in L,(R,) defined by
—f)ift < s,

B ) (0) =
foyift>s,

I'(R,) is the unitary operator in A obtained by second quantizing R, and
the right hand side of (4.1) is the quantum stochastio integral of I'(R,) with
rospect to the annihilation process 4 in the sense of Hudson and Par-
thasarathy (1084). By the methods of Fock space stochastio caloulus in
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Hudson and Parthasarathy (1984, 1988) we lmow tlmt a extends to an element
of &[0, 1] satisfying the 1 lati
a=a"=0 as'+a'a = 1.

The four elements

Ny=aa', Ny =0a,Ny=0", N,=0a'a . (42)
constitute & vector space basis for a 4 dimensional algebra nC R8I0, 1)
which is isomorphic to the algebra of 2Xx2 complex matrices through the
correspondence

((1) gJ"Nln (2 0)—'1\7 ((l) g)—)N,,(g ?J—»N‘ e (4.3)
extended linearly. Putting
‘1=1'%=%v%=%,¢.=0. . (44)

routine computations based on the methods of Fock space stochastic calculua
show that for f, g € L,(R,) the quantities p!{ (nh, f, g),j = 1, 2, 3, 4 defined
by (3.21) are now given by

nh 1 nh _
B (ahfi0) = b ] g)fesp— I + [ fytndrids, .. (45)
n-1h a-1h ]

2(nh, f, g) = pPlnk, g, ) o (48)
b, f, g) = h-? { I F(8)9(8)exD < fzmin, mn» Bia—afiin-rn, npy > G308°
n- A-Th
@7
pAnk, f, g) = hp(nh, £, 9)+0xp < fizzmh, wrp Tia=Tr am > 48

where in tho right hand side of the third oquation fis s denotes also the
function ya sy f in L, (R), x denoting indicator.
Proposition 4.1 :  Let f, g € Ly (R,) be continuous and let
Pl S 9) =12l £ 9) = gl8)
walt, £, 9) = Jo), p. £, 9) = Fitvgte).
Lot p""(t £, g) be defined by (4.5)—(4.8) and (3.22). Then
lim - sup PGS =Pt f0)| =0
A0 0&1IG
Jor eachj =1, 2,3, 4.
Proof : Ymmediate from definitions. []
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Let V be a unitary operator in hy @ C? Define the homomorphism
Jv : 8(hy)—> &8 (hy® C') by putting
Jo(@)=V'2@1 V. o (49)
Since h, ® C* = h, @ h, we can express V as s matrix (I; g) with elements
from & (h,) and rewrite (4.9) as
_ PRtz 0y P Q@) )
JV(I)_(Q‘ S') (0 :c) (R S)_ (a,(:;) a‘(z)) ’

ay(z) = P'2P+R'%R, ayz) = P'zQ+R'z8 }
ayls) = QP+ SR, az) = Q2Q+ S8
Now let ¥ = V) depend on a small parameter & > 0 and be defined by

. (810)
where

. (el

e

P @ )= ((l—hL'L)' N RN ZehE ).

B S MLea (1—hLL')\ Ze-hst

where L, Z, H ¢ 8(hy), Z is unitery and H is selfadjoint. For all sufficiently
small A > 0, V) is a unitary operator in hy @ €% We now write ah, z) for
(z) in (4.11) when P, @, R, S, have the suffix . Using (4.2) define the ¥*
homorphisms J® : 8(hy)—> B(h,) @ 71 by

Jm (x):lél aslh, ) @ Ny, (43

These homomorphisms initiate a quantum random walk according to the
scheme described in (3.4)—(3.6) where the successive steps of the random
walk are taken at times A, 2k, 3k, ... We call it a spin random walk induced
by the parameters H, L, Z and k.

Proposition 4.2 :  Let {gf}, {ay(h, ...)} be as vn (4.4) and (4.12). Define the
maps ffPon 8 (he) by (3.20) where

by=b=1Lb=0b=0

ll;"”*“ 1| BMz)— Byl = 0 for all z 6 &2 (hy)

Then

where 1
A@) = ¥[8, zl— (La+aL L—20aL),

Bix) =L, 212, fylx) = — 2L, =), . (49)
Bz) = Z'zZ—s.
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Proof : This is immediate from the definitions in (4.11)—(4.13) and
straightforward computations. [

Remark : The faot that (4.10) defines an identity preserving W* homo-
morphism implies that the limit maps fy defined in Proposition 4.2 satisfy the
following identities :

Aixy) = By +2Ay)+Bdx)By)

Balzy) = =foy)+ B2y +L2)Buy)

Aala) = Bty e (4.15)
(AN +B49)) = 2y+Bxy).

These are special cases of cocycle identities that appear in the cohomological
approach to quantum diffusions outlined by Hudson (1986). In this context
there arises the following question. Suppose & is a W* algebra with iden-
tity and {f;,j = 1,2, 83, 4} is a quadruple of operators on & satisfying
the identities (4.15). Doea there exist a family of W* homomorphisms
JW : 8 8 ® 4G (C?) such that

_ [eulh, 2) aylh, z)
e = (a-,(h, 2 ah, z)) ’

A=) = ),h_?i, A Yey(h, z)—2),
Biz) = bm k2 o (b, 2),§ = 2, 8,
A0

By(x) = x+lim ay(k, z)
A—30
forallze gt

Proposition 4.3 : Let L, Z, H ¢ 8(h,) where Z is unitary and H is self-
adjoint and let By, j = 1, 2, 3, 4 be operalors on B(h,) defined by (4.14). Then
there exist W* homomorphisms J, : B(hg)— Blhy) @ B(T(Ly(R,))) such that the
family of operators {T(¢, f, 9), t 3 0, f, g€ Ly (R,)} on B(h,) defined by

<2 @YU) Jap @ ¥(9) > = < u, [T f, g)xlv >
Jor all z & B(hy), u, v & hy obeys the ordinary differential equations
ST Byt obu A ToB) TO o) = eap < £, >

whenever f, g are locally bounded.
A2-3
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Proof : This is essentially a restatement of the results in Section 8 of
Hudson and Parthasarathy (1984). Indeed, consider the quantum stochastic
differential equation
dU = {LdA'+(Z—1)dA—L'Z dA+-(:H— % LtLydyUu,

with initial condition U(0) = 1. This has & unique unitary solution. Putting
Ji(z) = Ulz ® 1 U, we obtain the required result.

Remark : The family of operators {Ji(z)} obeys the quantom diffusion
equations :
d Jiz) = Ji ) dA"+ I {BaNAA+ T Byl))BA+ I Br(x))dL.

Theorem 4.4: Let h, be a complex separable Hilbert space and o
H = T(Ly(R,) be the boson Fock space over LyR,). Suppose L, H, Z ¢ 8th,)
are such that H i3 selfadjoint and Z is unitary. Let Jy: S(he)— Slhy, ® A) be
homomorphisms defined by Ji(x) = Ulz @1 U, where (U} ¢ > 0 is the unique
unilary solution of the quant lochastic differential equation

av = (LdA'+(Z—l)dA—L'ZdA+(iH——% L'L))U

with the initial condition U(0) = 1. Suppose {(JB, n =0, 1,2, ..} is the spin
random walk initialed by the homomorphism

I = £ aylh, 1) @ Ny, z e Slhg)
3=1
where Ny, j = 1, 2, 3, 4 are defined by (4.1) and (4.2) and

(ax(h,z) oa(h,z))=(Pl Bl)(z o)(m qh)
o 2) b, z) QL SIV0 /Ry 8

Ph, @n, R, Sp being delermined by (4.12). Define JD = identity, JM(z)
=JR@ifn—lh<t<nbn=12... Then

st. lim J (2) = J(z) for each z ¢ S(hy), ¢ > 0,
A0

where st lim denoles strong limit in &(hy).
Proof :  'This is immediate from Corollary to Proposition 3.4 and Propo-
sition 4.1—4.3. O

We conclude with some remarks on the spin random walk when the
algebra G(h,) in Theorem 4.4 is replaced by the algebra 8 = C2(R,) of all
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bounded C*= functions on Ry. It is to be noted that g is neither a C* nor a
* algebra. To initiate the random walk we follow the equations (2.17)—
(2.10) in Example 2 of Section 2. Let g, b be real elements of & such that
ba-! € @ Define 6(h, z) by

c0s?6(h, z) = §(1+At b(z) a(z)™)
for all sufficiently small 4 > 0 and the maps o (k,.) on g by
ay(h, §) (z) = ¢ (z+ha(z)) cos? O(h, 2)+P(x—~ht a(z)) sin? O(k, 2)
ah, §) (2) = [Pla+hla(z)—z—h a(z))] sin 8(h, z) cos O(k, z)
ay(h, §) = ay(h, 4)
ay(h, §) (%) = ¢ (x+h* a(z)) sin? O(h, z)+¢(z—ht a()) cos*d(h, 2)
Then the map J* : 3— 8 @ 7 defined by

4
() = ’)3)41(% 3 ® ¥,
is & » homomorphism from & into § ® [0, 1]. We may identify g with
tho algebra of multiplication operators in hy = L,(R) (by bounded C® func-

tions). The homomorphism J™ initiates a spin random walk in
S ® B(Ty(R,)). We have the following relations

A = lim Wlenlh, §)—41 = 3 a5,
h—>o
B#) = Boig) = Lm hdefh, §) = af,
-0
£#) = Tim b, 9) = 0.
A0

A heuristic argument shows that as h— 0 the spin random walk described
ahove converges to a quantum diffusion (in the sense of Hudson) {J;} des-
cribed by the stochestic differential equations

4 Jug) = Ji (Ailg)) dt+Ju(Bile)) A A1)+ A'R)),

A being the annihilation process. Since A+A' is the classical Brownian
motion process we are tempted to conclude that the spin random walk des-

8
cribed by JB converges to a olassical diffusion with genemtor—; a? dd?+b % .

This remark aroge from conversations with K. B. Sinha.
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