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DISCRETE MULTIVARIATE DISTRIBUTIONS AND
GENERALIZED LOG-CONCAVITY
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SUMMARY, For discrote multivari istributi wo i d o notion callod gons:
ralizod log-concavity and then show that soveral etandard distributions satisfy that property.
Tho multiparamoter multinomial donsity is shown to bo gonoralized log-convave and the pmaf

doponds on resulta from tho theory of ‘Tho \{H negativo multis

donsity is d in torms of and it is shown that the multiparamoter negative

binomial density is log. Tho Al droff i lity for i8 used to show that

cortain inted with the multip Itinomial and with order statistics for
identically distributed variablea are log

1. INTBODUOTION
Let N={0,1,2,..} and lot
Nt = {k = (ky, ..., Br) : ke > 0, integers}.
A function f : N— (0, co) is said to be log-concavo if
f@) > flz—1) fle+1), 2= 1,2, ...

Such functions ariso in a number of situations, for example, in statistics
and combinatorics, and their importanco partly stems from the simple fact
that a log-concave function must be unimodal.

Several standard discrete distributions on N have log-concave densitics.
For examplo, if X has cither the binomial or tho poisson distribution, then
the density function of X can bo seen to bo log-concave. If f is a continuous
density defined on R%, # > 2, then f can bo said to be log-concave if log f
is & concave function. Thus, if X has the multivariate normal distribution,
it is easy to sce that the density of X is log-concave. However, if X has 8
discreto multivariato distribution, it is not obvious as to what should be the
appropriate notion of log-concavity and several possibilities exist.

In this paper, we first propose a certain generalization of the concopt
of log-concavity, called generalized log-concarvity (g.1.c.) for positive functions
defined on a subset of N*, r > 2. The concopt turns out to be stronger than
o generalization considered by Karlin and Rinott (1981). Then wo show
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that a certain family of discrete multivariate distributions satisfy the g.l.c.
property. The family includes the hypergeometric, tho negative hypergeo-
metric, the multinomial and tho negative multinomial densitics. The multi-
parameter multinomial density, which will be defined later, also has the g.1.c.
property.  This fact is based on certain results from tho theory of permanents.

The multipnrameter negative multinomial  density, considered  in
Section 4, is conjecturcd to have tho g.l.c. property. This conjecture is
stronger than & conjecture due to Karlin and Rinott (1981). It is shown
that the density function of the multiparameter negative multinomial dis-
tribution can be expressed in terms of permanents and this suggests that tho
theory of permanents might have a role in attacking the conjectures men-
tioned above. It is also shown that the multiparameter negative binomial
density is log-concave.

In Section 5, certain immediate consequences of the Alexandroff in-
equality for permanents are given. Theso results show that certain functons
associated with the multiparameter multinomial distribution aro log-concave
It has been observed by Vaughan and Venables (1972) that densities of order
statistics for independent variables coming from different populations, can
bo expressed in terms of a permanent. This fact, combined with the Alexan-
droff incquality shows that certain sequences associated with such order
statistics are log-concave. This will also be shown in Section 5.

2. GENEBALIZED LOG-CONOAVITY

Let ¢ denote tho i-th row of tho identity matrix, the order of which will
be clear from the contoxt.

Definition : Let SC N7, r > 2, and suppose f: 8- (0, o). We will
say that f is generalized log-concave (g.1.c.) on § if for any k ¢ N* such that

kteteeS,4,5j=12..,r;
it is true that tho symmetric, positivo r Xr matrix
((fk+eqtej))
has exactly one (simple) positive cigenvalue,

We propose to show how to construct g.l.c. functions in a simple way.
But we nced some preliminary results.

Lemma L : Let 4 = ((a)) be a positive, symmelric rXr matrix with
exaclly one positive eigenvalue and let B = ((byy)) be the r Xy matriz with by = ayy,
§#55 bu= 0w, where 0< 01, i=1, 2,..., . Then B has exaclly
one posilive eigenvalue,
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Proof : Sinco B is a positive matrix, it has at least one positive eigen.
value. Suppose B has two positivo eigenvalues A, g with x, y s the corres-
ponding cigenvectors. Here, either A 3 g or A = g, in which case it is an
cigenvalue of multiplicity greater than one. Thus wo may assume 2’y = 0.

Let a o the only positive cigenvalue of A with corresponding eigenveetor
u. Then by the Spectral Theorem, wo can write
A=au'+40,
where 2'Cz < 0 for any z satisfying 2'u = 0.
First suppose that z'u = 0. Then,

#Bz=zdzt+ T (O=1)zF < 0.
{=l

But, 2’'Bx = Ax’z > 0, which is a contradiction.

Henco we may assume that z'« as well as y'u are both nonzero, and then,
by a suitablo normalization, we assume that (z—y)u = 0.
Now

r
(2—y)B(z—y) = (x—y)'Alz—y)+ ‘El (0i—1) (z—y)* € 0,
whereas,
(x—y)'B(r—y) = 2'Bz+y'By
= Mz+py'y >0,

since 2’y = 0. This is a contradiction and the result is proved.

Corollary 2: Let B = ((by)) be an rxr malriz with by=1, i #j and
0<by<l, i=1,2,..r Then B has exactly one positive eigenvalue.

Proof: Let A be the rxs matrix with all entries equal to 1 and use
Lemma 1.

The next result justifies, to somo extent, the term “‘generalized log-
concave”,

Theorem 3: Let SCN', r> 2, and let f: S— (0, o). Suppose there
exist log-concave functions f#: N— (0, ), i =1, 2, ..., r; such that

[y = ‘I'[lj'(l:l), k=(k, ..., k)eS,
then fis g.1.c.
Proof : Fix ke Nr such that ke +eye 8, 4, jefl, 2,..., 7).

Then

o JRED) PO
Jiktet+eg) = fik) JE ) O£,
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and
Serzy =gy LOED 1 i
Let™® bo the rxr diagonal matrix with its i-th diagonal entry equal to
Sht)) o
—I'UT =12,

Then ((f(k+ei+¢)))) = DBD, whero B = ((byy)) is tho rXr matrix given by
SiR-2)f ko) ¢ e
by = T——'(L¢+l))‘ 1€igr
and by=11s#j<r
Since fi is log-concave, wo have 0 < by € 1,8 =1, 2,..,, r. It follows
by Lemma 1 that B, and henco tho matrix ((f(k+¢+e¢5))) has exactly ono posi-
tive eigenvalue,

We now give several examples to which Theorem 3 is applicable.

Ezamples (@) : Suppose X is o random variable taking values in N,
$=1,2,.., r; and suppose X,,..., X, aro idenpendent. If each Xy has
a log-concave density function, then clearly, by Theorem 3, X = (X, ..., X,)
has a density which is g.l.c.

(b) The hypergeometric distribution : Let N¢> n be positive integers,
i=1,2..,r;and let X =(X,,..., X;) have tho density

o CB-()

2Al Al EeNnTh=n.

Sy s
' (FE )

\J
Sinco (2(‘) is a log-concave function of ki, it follows that f is g.l.c.

The argument is similar in the next three examples.

(¢) The negative hypcrgeometric distribution : Let a, ..., a, bo positive
integers and let X = (Xj, ..., X,) have the density

n (k.+a4+1)

SRy o by = i=1 ke

W.kel\’n:h:n.
»

Thon £ is g.1.c.
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(d) The multinomial distribution : Let 0y, ..., 0, be positive numbers
adding to 1 and let X =(Xy, ..., X,) have tho density
t

r g
Sy oo k) = nl ‘l'_l‘ 'LL‘I ,keNr, ke =n.

Then fis g.1.c.

() The negalive multinomial distribution : Let n bo o positivo integer,
1ot Py, ..., Pp bo positive numbers adding to 1 and let X = (X, ..., X,) have
the density

(n—1+Z k!

7 o5
3 L = ~ T PL o
Sy oo k) = =11 23 Hl ok keNr

Then fis g.1.0.

The class of symmetric, positive matriccs with exactly one positive eigen-
value has several interesting propertics. It has been studied in the contest
of quasi-concave quadratic functions by Martos (1009) and by Cottle and
Ferland (1972). It is also related to the class of distanco matrices (sce, for
example, Micchelli (1986)).

Definition : If A is a real, syymetric 2 X » matrix, it i3 said to be con-
ditionally negative definite (c.n.d.) if for any 2 R with T z; = 0, we have
24z & 0.

It has been shown in Bapat (1986) that if A is a symmetric, positire
matrix with exactly ono positive cigenvalue, then the matrix ((log ay)) is
cnd. Thus, if fis defined as in Examples (b)-(e), then it follows that for
any keXNr, Tk =mn—2, the matrix

((log fik+e+-e5))

is cnd. This latter fact was proved by Karlin and Rinott (1981,
Theorem 2.2, and was implicity interpreted there as a log-concavity state-
ment for the multivariate situation.

3. THE MULTIPARAMETER MULTINOMIAL DISTRIBUTION
Considor an cxperiment which can result in any one of r possiblo out-
comes and supposo 2 trials of the experiment aro performed. Let pyy be the
probability that the experiment results in tho j-th outcomo at tho i-th trial
i=12.,n;j=1,2..r Let P denoto the nXr matrix ((py)), which.
of courso, is row-stochastio. Wo will assume throughout that tho matrix P
is positive and that n > 2, r > 2,



GENERALIZED LOG-CONCAVITY 103

Let Xy denoto the number of times the j-th outcomo is obtained in tho n
trials, j = 1, 2, ..., 7 ; and let X = (Xy, ..., Xy). In this setup wo say that X
bas the multiparameter roultinominl distribution with tho parameter matrix
P. Clearly, if tho rows of P aro all identical, then X has tho multinomial
distribution of Example (d), Section 2. For an examplo of a multiparameter
binomin), sco Feller (1966), p. 257.

The probability gencrating function of X can be shown to bo
n L4
(2 usy)- v (1)
{1 Vol

We now introduce a notation. If ke N, Lk ==, let P(k) denote the
nxn motrix obteined by taking k; copies of tho j-th column of P,
j=1 2.,

If 4 is an nXn matrix, the pcrmanent of 4, denoted by per 4,
is defined as

prd= X ﬁ Biotin
015, (=1
where S, is the sct of all permutation of 1, 2,..., n. Two comprchensive
references on permanents are Mine (1978, 1983).

It is known that tho probability generating function (1) can bo expressed
a8 & polynomial in &, ..., 8 with cocflicients given in terms of permanents
of suitablo matrices. Wo state this result as the next theorem and refer to
Bebiano (1982) for o proof. The result has also been used by Gyires (1973).
If keNr, sot kl=4kl. kel

Theorem 4 : Let P be an nxr malriz. Then
a:l...s:'

[

n r
II ( z pq&l) = z
=1 =1 LeNT, 2t en
In other words, if X = (X,,..., X;) has tho multiparameter multino-
mial distribution with the »xr parameter matrix P, then

per P(k).

1
kl

Using tho representation (2) and some recent results from the theory
of permanents, tho following result was established in Bapat (1986).

Pr(X =k)= per P(k), ke N7, Zky = n. o (2)

Theorem 5: Let X have the mulliparameler multinomial distribution
with the nXr parameler matriz P. Let ke N7, Zky = n—2. Then the malriz
((ky L Pr(X = kyy))) has exactly one positive eigenvalue, where ky = k+e4e;
Jor all i, j.
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Now wo have tho following.

Theorem 6: Let X have the multiparamecler mullinomial distribution
with the nxr parameler matriz P.  Then the density function of X is g.lc.

Proof : Let ke N7, Thi= n—2. Let D bo the rxr diagonal matrix
with its i-th diagonal ontry oqual to (k+1), 4=1,2,...,r.

Lot
A4 = ((ky ! Pr(X = ky))), B = (Pr(X = ki),
and let
1
C= A DAD.

By Theorem 5, 4, and hencs C, have cxactly one positive eigenvalue.

Obsorve that

by = ey, Y]

and
k1 .
by = &2 an,  i1=j.

It follows by Lemma 1 that B has exactly one positivo cigenvalue and
the proof is complete.

4. TOBE MULTIPARAMETER NEGATIVE MULTINOMIAL DISTRIBUTION

Suppose we have m dico, cach with r41 faces. We assumo that cach
dic has ono faco marked with an asterisk o, whereas tho remaining faces carry
1, 2,..., r spots. Suppose py > 0 is the probability of getting j spots when
tho i-th dicis rolled, + = 1, 2,...,m;j =1, 2,...,r. Let P denoto the mxr
matrix {(py)). Let pio bo tho probability of getting a« when the i-th die is
rolled, § =1, 2,..., m. Then, clearly,

y
Plo = l—'z‘pu. i=12,..,m

Tho following oxperiment is conducted. Tho first dio is rolled until it
shows a+. Then wo switch over to the sccond dio and roll it until a e is ob-
tained, whenco wo take up tho third die. Tho process is repeated and the
experiment stops when wo obtain aem times. Let X; denoto the number
of times wo get i spots in tho experiment, i =1, 2, ..., r; and let X = (X,
.- Xy). In this sctup wo say that X has the multiparameter negative multi-
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nomial distribution with tho mxr parameter martrix P. Clearly, X takes
values in N7 and tho probability generating funrction of X is known to be
(sco, for examplo, Karlin and Rinott, 1981, p. 339).

r
T (:—‘
(=1 {1 —
% 200)
Karlin and Rinott (1980), Scction 5, obtained a representation for the

density function of X in terms of a multivariate integral. Our next result
shows that tho density function of X can be expressed in terms of permanents.

Theorem 7: For any mXr malriz p,
k
PO

1 r
3 ,‘N_'iéh_” per{P(R))()).

m 1 =

_ = p)]
-1{1_ ¢ n=1keN’, Lkjemn
( ;-xP"")
Proof: We can writo formally,
n 1

n— = i E(éw,’)"}
te1 (1_ % py ‘!) (=1 lymotju1
=1

= I Fl (flpua,)”

IeN® ol \ ja1
oz A (%)

= J e (3
n=1[eN®, Tly=n (=1 ‘j=1 Py ®

For any e Nm with Il = n, let

Q' = ((gfy)
denoto tho n Xy matrix obtained by taking I copics of the i-th row of P,
i=12 .. m

An application of Theorem 4 gives

R (2pm) =1 (3 d)
(=1 Vga1 f=1 ‘ja1 £
k, b,
= aleal o oy - @
ken,iyen K1

Thoe proof is completed by substituting (4) in (3), then making & simple
rearrangoment of terms and by observing that

per Q&) = per[PR)Y (0.
Al-14



108 R. B. BAPAT

It is clear from Theorem 7 that if X has tho multiparameter negative
multinomial distribution with the mXxr parameter matrix P and if ke Nv,
then the density function of X is given by

foy="opPme  E perPUY ). - 9
L™ 1j-n

If r > 2, then it has been conjectured Ly Karlin and Rinott (1981),
conjecture 3.2, that for any k ¢ N7, the matrix ((log f(k))) is c.nd. where f
is as in (5) and, as before, kiyy = k+-ec+-¢ for all ,5. It scems reasonable to
make the following conjecture, which is stronger in view of the discussion
at tho end of Section 2.

Conjecture: Let v > 2 and let f bo as in (5). Then for bny ke A,
the matrix ((f(ky))) has exactly one positive cigenvalue,

As discussed earlicr, tho conjecture simply says that when s> 2, the
density function of X is gl.c. When r = 1, X has the multiparameter nega-
tive binomial distribution and we now show that the density function of X
is log-concave,

Suppose, then, that we havo m coins, the s-th coin showing heads with
probability p; and teils with probability ¢ = 1—p; §=1,2,...,m. We
begin by tossing the first coin until it shows heads. Then we switch over
over to the sccond coin and toss it until heads are obtained. The process
continues until m heads are shown. Let X denoto the number of tails obtained
in the experiment. Then X hes the multiparameter negative binomial dis-
tribution and the density function of X is easily seen to be

JH=PX=K=¢..qm £ pr..o" keN. .. (6)
Ugtrer b=k
Noto that tho formula for f can oithor bo dorived directly or can bo
soon as o special caso of (5) when r=1. Also, when the coins are all
identical, tho density f reduces to the usual negative binomial donsity.

It will follow from our noxt result that the function f dofined in (6) is
log-concave.

Theorem 8: Let p, $=1,2,... be positive numbers and for posilive
inlegers n, k let

gn(k) = Pt
yheehugmk
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Then for any inlegers ny 2L 522, K52
o )Nk > Ml =D+ =D )).  (D)
Proof: If ny=rmny=1and k; =k, = 2, it is casy to sco that both sides
of (7) aro cqual to 2pf. Wo then proceed by induction.
Noto that tho following recurrenco relation holds of any 2 > 1, k > 2.

g(k) = E. pugik—1) v (8)
Now for n, > 1, g 1, by > 2, ky 2 2, wo have

gk = {,% o't —1)) {é:: =)}

Mg
= X I pipyilly—1)g/ks—1)
{=1 g=1

o e
>3 Iamlilirh-idt2pk) . @)
= 3 AN =D R =D)L (10)

Step (9) follows by the induction assumption and (10) holds in view of (8).
That completes tho proof.

The Jog-cocavity of f in (6) is obtained by setting n, = n, and ky =k,
in Theorem 8.
5. ALEXANDROFEF'S INEQUALITY AND LOG-CONCAVE SEQUENCES
It was conjectured by van der Wacrden in 1926 that the permenent
achieves a minimum over tho sct of nxXn doubly stochastic matrices only at
1
the 2 X n matrix with each entry cqual to - The conjecture was proved
by Egorychev and independently by Falikman around 1979. We refer to
Minc (1983) for the proof. An important tool used in tho proof is the following
inequality proved by Aloxandroff in 1938 in a more general seting.
Theorem 9: Let A = (ay, ..., 8,) de a nonnegalive nXn matriz. Then
(per A2 D per(my, ay, ag, .\, @,) per (ay, 65, ay, ..., a,).
Therorem 9 can bo applicd to show that certain sequences are log-coneave,
For cxample, let z,y be nonncgative vectors in R" and let
3 n-k

~—
ag = Per (T, ey B Y0 Y K=0,1,..,2
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Then it is immediste from Theorem 9 that the scquence «qy, o, ety
is log-concave (i.e., af » ax_yary. k=12, ..., 2=1).

Using tho same idea we now show that certain sequences arising from the
multiparameter multinomial distribution ero log-concave.

As noted in Section 1, it is easy to sco that if X has the binomial distribo.
tion, then tho density function of X is log-coneave. QOur next result gives a
generalization of this fact to the multiparameter multinomial situation.

Theorem 10 Let X =(X,, ..., Xy) have the multiparameter mullinomial
distribtion with the nXr parameler malriz P. Let zy, ..., 2, be nonnegative
inlegers such that y =12, 4+ ... + 2, < n and let

) =PiX, =2, X, =n—y—z| Xy =25 .. Xy=2),2=0,1, e A=Y,
Then f i3 log-concave.
Proof : Let
g(x)=Pr(X, =2, Xy =n—y—2z, Xy =25, ..., X, = 7).
Then by (2),

1
g(z) = T P e i o P(z, n—y—~2z,2,, ..., 2,).

By theorem 9, z!(r—y—2)1g(z), z=0,1,..,,2—y is log-concave.
A simplo calculation shows that g(x) and hence f(z), =0, 1, ..., —y must
bo log-concave.

The next result uses the same technique.

Theorem 11 :  Suppose there are n coins, of whick, m are identical with
the same probability of heads equal lo p whereas the remaining n—m haave the
same probability of heads equal to ', Lel z be fixed, 0 & = & n, and let f{m)
denole the probability of getling = heads when the n coins are lossed. Then [
is log-concave.

Proof : By (2),

J(m) = ?l(nl——z)l per| i i

—?2 p P.p
Henco, tho result follows by Theorem 9,
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Suppose X, ..., X, aro independent, identically distributed, continuous
random variables with demsity f and distribution function F. Let
X < Xy € +-- € Xy denote the corresponding order statistics. Tho
density function of X, is well-known to be

a0 = Gy T /O FER 1-F@I5 1 < k< ()

It may easily bo verified from (11) that for any z, tho scquence ga(z),
E=1,2,..., nislog-concavo. Noto that the fact that g(x), k=1, 2,...,n
should bo unimodal is intuitively clear. Wo now show that tho log-conecavity
of gx(x), k=1, 2, ..., n holds ovon when X|, ..., X, aro independent but not
necessarily identically distributed. To prove this fact, we make use of a
representation for g in terma of permancnts given by Vaughan and Venables
(1972).

Thus, let X, ..., X, bo independent, continuovs random variables where
X, has density fi, =1, 2,..., n; and let Xy < ... € Xy, be tho corres-
ponding order atatisti Let Fy denote the distribution function of X for
each i. For any real z, consider the matrix

Th(z)  Fy2) 1—Fy(2)
z=| : :
_falz)  Fu@) 1-Fn(2)_|

If gr denotes the density of Xy, then Vaughan and Venables (1972)
have shown that

95 (@) = m por Z(1, k—1, n—F) - (12)

Theorem 12: Let X, ..., X, be independent random variables where X
has density fy and distribution function Fy. Lel gx be the density function of
Xy, k=1, 2,..., n. Then for any =z, the sequence gr(z), k=1, 2,..., n is
log-concave.

Proof : Using (12) and Theorem 9 wo sco that (k—1)1 (n—k) ! gx (z),
k=1, 2, ..., nis log-concave. It follows that gi(z), k=1, 2, ..., n is log-
concave and the proof is complete.
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