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SUMMARY. This is a scquel 10 an cerlior papor by tho suthors on the seme subject pressntod
at the Sixth Borkeloy Symposium.

In tho provious paper, the suthors have discusscd threo basio typos of g-inversce—the minimum
norm g-invera, the loast squarce g-inverso and the minimun nofm least squarcs gavorso. 1n this papor
theeo concepts are extended to more genoral silustions involving semi norms in place of porms used
earlicr.

1t is shown that a matrix (s uniquely detormined by its class of g.inversce. Further the subclass of
g-invorscs with  epecificd renk is characterized,  Pertial isometrics aro discussed in & genorsl sot-up with
roferenco 1o & pair of lincar apsces furnished with arbitrary quedratic norms.

A unifiod theory of lincar estil By using tho exp fora i semi norm
inveran,

1. INTRODUCTION

This is a scqual to an earlier paper by the authors on the subject presented at
the Sixth Berkeley Symposium in 1970. To make the discussion of the present paper
self incd, the iti pts and some basio theoronis are restated.

In the provious paper, we have discussed tho basic types of g-inverses, cons-
trained § and their applications in statistics and cleotrical network theory,

In tho present paper, we consider other types of g-inverses and partial isometry or
semiunitary transformations.

Somo of tho notations used are explained in tho text. Tho rest are standard
notations (sce e.g. Mitra and Rao, 1008).

Using the expreasion for a minimum semi norm inverso of & matrix, a general
theory of least squares is developed where there is no need to examine for singularity
or otherwise of the dispersion matrix of the obacrvations. Expressions are given for
varionces and covariances of BLUE’s and for test criteria. Thore is no need to

the internal consi of a lincar hypothesis. It is ically takon
onro of by s suitahlo test involving a g-i of a matrix.

2, GENERALIZED INVERSE OF A MATRIX
Definition 1: Lot A bo an mXn matrix of arbitrary rank. A generalized
inverss of A ia an nXm matrix A~ such that A~y is & solution of Ax = y for any y
which makes tho equation consiatont.
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Definition 23 A g-inverso of A of order mXn is a matrix A~ of ordernXm
such that

Ad-A= A, w2

Definition 3: A g-inverso of A of order m X% is & matrix A~ of order nxm
such that A~A is idompotent and R{A-A) = R(A) or alternatively AA- is idempotent
and R(AA") = R(A).

Theorom 2.1:
(a) A-exisis and R(A-) > R(A).

(b} If A~ isaspecific g-inverse of A, the class of all g-inverscs of
A g yiven by
(bl) A~+U—-A-AUAA-
where U is arditrary, or equiralently;
(b2) A~H(I—=A-A)V+W({I—AA")
where V and W are arbitrary matrices,
(c) A mairix is uniquely delermined by its class (bl) or (b2) of
g-inverses.

We prove (b2) by establishing ita equivalence with (b1), for which note that
(b1) is obtained from (b2) by choosing I = Uand ¥ = UAA- and that (b2) i obtained
from (b1} if we put U = (I—A-A)W+W(I—~AA-).

To prove (o) we show that if A and B are matrices such that BA=B = B for
every g-inverso A~ of A, and AB-A = A for overy g-inverso B~ of Il then A= B.

Obsorve that G = A-+(I—A~A}I—A-A)'D* is s g-invorse of A and

BA-B= BGB= B = B(I-A-A)= 0.
Similorly it is scen that

e (22)

(I—A4)B=0 . (23)
thus implying B = AWA for somo matsix W, for example I'= A-BA-. We noto
likowiso that A = BV B for some V. Then

AWA= B= BB~IB = AWAB-AIWWA = AWAWA
=) A= BVDB= AWAVB= AWAWAVB = AWA=D.

3. SOLUTION OF LINEAR EQUATIONS
(¢! lizod | of matricea are usoful in obtaining neat closod expressions
for goneral solutions to i linoar equnti 88 illustrated in the table below,

whore Z ond z ropresent rospoctivoly an arbitrary matrix and an arbitrary voctor of
appropriate order, and @ an arbitrary g-inverse of A.
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oquation oconaistonoy goneral solution
condition
Az =y dAy=y = Ay+{I-A-Ag or, if y0
z =Gy
AXB=C AN CBB=C X=ACB+Z-AAZBB-
AX=D, XB=E AE=DB X= A-D+EB-—A-AER-

+(I~A-N)Z(I-BD-)

The consistency conditiona for all tho threo cases and the gonera! xalutions to equations
Az =y and AXDB = C are obtained in Rao (1067).
If y+#0, chooso ¥ such that Vy=zand write @ = A~(I-A-A)V.
With such a choice of G the general solution r = A-y+(I—A4-4)s to equation
Az = yisaltornativoly expressibloas £ = Giy. Check that G is also a g-inverss of A,
That X = A~D+EB-—~A-AEB~+(I—A-A)Z(I—BB-) provides a general
solution to equations AX = D, X/ = E ia acen as follows, Clearly an X, so deter-
mined, satisfies AX = D, XB = E. Conversely, any X satisfying AX = D,XB = E
could be represonted in this form, if Z is taken as X—A-D—EB~4+ A-AEBB-,
4. Proseorioxs
Theorem 4.1:
(8) A matriz P of order mXm rep a projection iff P is idemp
(i.e. P2 = P) in which case it i2 a projection on A(P) along A(I—P).
(b) 1 for xcE™, yeE™ the inner product is defined to be 2°Ay where A is pd.,
then
(1) P rep an orthogonnl projection iff
Pt=Pand AP=P'A
(b2) the orthogonal projection operator onlo I({A) ia given by
P=AAAASAA.
Proof : (a) is proved in Rao (1867), (b1) and (b2) in Mitra and Reo {1968),
The following result is casy to prove.
Corollary : Let P* = P. Then P reg an orthogonal projection if
A= PP+{I-P)I-P).
8. g-INVERSE OF SPECIFIED RANK
Definition : @ is said to bo a refloxive g-inverss of Aif*
A= AGA and G =GAG
(i.e., @ = A~ and 4 = G~ both hold truc). A reflexive g-inverse of A is denoted by
A;. Wohave scon in Theorom 2.1{s) that R(A-) > R(A). The following theorem
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shows that the class of reflexive g-inverses of A ia identical with the class of g-inverses
with minimum permissiblo rank.

Theorem 5.1: A i2 a reflexive g-inverse of A iff any one of the following
conditions hold

(0) R(A")}= R(4)

(b) d4-=GAG
Jor some g-incerse G of A.

For a proof of Theoront 5.1 sce Mitra (1968a).

Theorom 5.2: Given g-inverses G, and G, of A, A; = G,AG, is lhe unique
reflexive g-inverse of A such that A7 A = G\ A, AL = AG,,

Proof : A;A = G A, AA] = AGy== A7 = A7AA;7 = G AA; = G, AG,.

Theorom 5.3: Let A be a matriz of order mXx s and rank r and 8 an integer,
r s minim,n). Then G is a g-inverse of A of rank 8 iff G = (A4-B); where B
is such that

R(A: B)= R(A*: ') = R(A)+R(B) = ». . (B1)

Proof of ‘if* part :  Let (5.1) bo true. Then
Ada=DNh==Aa=DRBh=0. e (5.2)
Further R(A+B) = and A} C A(A+DB) v (63)

(5.3)=(4+1) (A+DBy A=A
=) A{A+B); A—A = —B(A+B); A
= A(A+B); A-A=0
in view of (5.2). Thus the ‘if’ part is established.

Proof of ‘only if* part: Let G bo A-of rank of 8. Consider P = GA and A
as in the corollary to Theorem 4.1. Py, = G(G* A G)-G*A is the orthogonal projector
onto (G} whilo P is the orthogonal projector onto G A) C A(G). Thus Po—r
is tho orthogonal projector onto tho orthogonal complement of MG A)in H(G) of
dimension sa—r. Lot ¥ = (G*A G)yG*A—A and B =YGY.

Then GY = P,—P. Hence R(GY)=s—r. Also G} = GY == R(B) =
#—r. Observo now that G(A+B)=G(A+Y)=Pg = B(A+ B) = RAM-R(B) = .
Hence by definition 3 in Section 2, G is (A+B)-, obviously (A+B);. This com-
pletes proof of ‘only if” part.

6. TAREE DASIO TYPES OF INVERSES
In tho provious paper wo considered three basic types of g-inverses, dapending

on the nature of solution nceded of a i or an i nt eq Wo
extend theso types to more general aituations involving semi norms in tho place of
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norras used in tho carlier work. Wo consider tho scmi norm |2, = (z°Nz)¥in E»,
whero X is p.a.d., and tho seminorm [Jiflls = {y°My)** in L™ where M is ps.d. Lot A
Lo an mX» motrix.

Definition 1 : G s said to Lo semi norm g-inverse of A if for any y such that
Arx = y is consistent, £ = Gy is a solution with tho least semi norm.  Tn particular if
tho semi norin is defined by Jlr), = (2*Nz)V2 the @ inverso s represcnted by the
symbol AZx,.

Thoorem 6.1: If G is an N-semi sorm g-inverse of A, them it is necessary and
sufficient that

AGA = 4, (GA)* N = NGA. v (0.1)
Such a G exisls and one choics of G is
(N+A A L' [AN+A A AT e (0.22)
and, in particular, when AQA®) C AN), it has the form
N-A"AN- A%, o {0.2b)
A general solution is
GH+W(I—~AG)+(I-GAWV w (63)

where V¥ is arbitrary and G ia given by either (0.2a) or (0.2b) as the case may be and V
is an arbitrary solution of N(I—GAW = 0.

Proof : Conditions {6.1) are cstablished in tho saamo manner as in the proof of
tho corresponding results for N = 1, givon in Rao (1067).

To cstablish (6.2a) we obscrve that since N is n.nd., AA*) C AAN+A°A)
ie. A* = (N+AA)l* for some B. This implics

AN4A A2 = BN+ A B
= RIA(N+A"A)-A°) = RIBN+A°A)B°]
= RBIN+A*A)] = R(A).

Using definition 3 of Scction 2 it is ecen that @ as given Ly (6.2a) is indeed o g-inverso
of A. Further for this G

NGA = (N+A°H)GA—-A°AGA
= AANF Ay AT A—A4°A
) NGA = (GA)°N.

(8.2b) is obtained in a similar manner. (6.3) follows from tho expression (6.2) for a
gencral solution to a g-inverse of /A since

NI—A-)VA = V(T =A-A)°N =) N(I-A-)VA = 0.

Corollary : Some other choices of mini N- g-i) are as
Jollows -

(i) (N+eA® Ay A AN +ed' Ay A)-
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where ¢ is any positive constant, and

(i) (N+W)yA[AN+W) 4]~
where W ig a naa.d. matriz such that H(N) and H(W) are virtually digjoint and
A" C AN : W). Note that (ii) is « g-inverse of A bul (i) is not necessarily so.

Definition 2: G is said to be a semi lenst squares g-inverse of A if the minimum
of |ly—Ax|m is attained at z = Gy for any y. In partiular when ||z||, = (z"Mz),
G will be referred to as M-semi least squares g-inverse of A and is denoted by A,‘(M).

Theorem 6.2: If G be u M-semileast squares g-inverse of A then it is
necessary and sufficient that

MAGA = MA, (AG)'M = MAG. .. (6.4)
Such a G exists and a general solulion to G is
(A"MAYyA*M+[I—(A*MA)-A°MA\U .. (8.5)

where U is arbilrary.

Proof : Conditions (6.4) are vstablished in the same manner as in the proof
of the corresponding results for M == I given in Rao (1967). Proof of the rest of
Theorem 6.2 is on the same lines as in Theovem 6.1 and is theorefore omitted.

Definition 3: @ is said to be semi norm semi least squares g-inverse of 4
if € = Gy has minimum norm in the set of least squares solutions of Ax = y for any
y. In particular when the semi norms in E* and E™ are defined by p.s.d. matrices N
and M, then G is referred to as N-semi norm M-semi least squares g-inverse of A
and denoted by A%,y

Theorem 6.3 : If G i5 N-semi norm M-semi Least square inverse of A, then it
iz necessury and sufficient that
MAGA = MA NGAG = NG
(AG)’M = MAG, (GA)’N = NGA. . (6.6)

Proof : We omit the proof of Theurem 6.3 as it is similar to the proof of the
corresponding proposition for M = I, N = I given in Rao (1967).

Explicit expression for A}, are found us follows.

Tho problem is to find @ = Gy such that ®*Nxis s minimwn subjeot to
A'MAx = A°My. The equations are

Neg+A°MAL =0 .. (8.7)
A°MAx = A"My ... (8.8)
which aro obviously consistent. Let
N A*MA\ ~ C, C,)
(A'MA ) ) - (c:a al’
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Then & = Cy1*My, in which caso ono choico of G (i.0. A, y)is G = C,A°M. Obsorve
that such n matrix G is a g-inverso of A iff R(A°M.A) = R(A). Explicit oxpressions
for A}, aro givon below :

Case 1. (N is pd.): Here it is easily scon that
AYyy = NTAMAAMANAMAYAM.
This expression is unique and it does not dopend on the choics of g-inverse involved.
Case 2. (A MA)C A(N)): Hero one choico of A}, is given by
Ay = N-AMAAMAN-AMAYyA°M.
This expression is not unique 4 it may very well depond on the choice of N-.
Case 3 (goneral caso) : The genoral case can be brought under Caso 2, if
one considers instead of (6.7) and (6.8) tho oquivalont equations :
(N+A'MA)E+AMAN = ANy e (8.7)
*MAx = A°My. . (8.8)
Here ono choice of A3,y is given by
G = (N+AMAy A MA[AMAN+ A MA-ASAJA'M.
This expression is also not uniquo. In Case (2) the general solution to A%,y is
CH{I-GAWVA'M
where @ is & particular solution and ¥ is an erbitiary solution of N(I—GA)W A’ M=0,

7. PARTIAL ISOMETRY (8UDUNITARY TRANSFORMATION)
Lot us ider two finite i ional vector spaces E™ and E* furnished with
inner products (., ), (-, .)x 8nd associated norms{. [, ond |[.[ls. wo deflne the
adjoint A% of an m X n matrix A, by the conditions

(Ax, Y)a = (&, AP YA TEP yeE™, w (1)
Let A be mixm (square matrix) such that
1Y1—Yallm = Ay~ AYsllm 4y, y£ B, . (12

Then it is known that A~} = A® and convorsely. In such a caso the square matrix
A is raid to Lo a unitary matrix (or unitary transformation). We shall oxtend this
concept to linear transformations from E® to E™ dofined by an mXn matrix
Aly = Az, xcE®, yek™).

Definition' :  An mxn motrix A is said to be a partinl isomotry (subunitary
transformation) if

[y =yl = By — AL lm ¥ Ty, Tee (V) e (13)
which is equivalent to
(2, T = (Ary, Ardutay, Tees(A9) e (T4)

where A ¢ iy Lhe adjoint of A as defined in (7.1).

1A special caso of this definition waa conaldored by Erdelyi (1900}, namely, when (Z,, #;)e s
3T and (1, U)im = iy, Hewalts proved hore aro parallol {0 Lhowo obtained by Enfelyi.
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It may boe noted that _#({1#)is samo as the subspaco in E* which is orthogonal
to pull space of A (Lo, tho sot of all vectors & in £ such that Az = 0). It is clear that
a rolation such as (7.3) cannot hold for all &, x¢E® but only for a suitablo subset.
Tho concopt of partial isometry js thus a natural goneralization of a unitary trans-
furmation.

Theorom 7.1: A is a partial isometry iff

AAYAAS = A4+ e (1.6)
or equivalently A ia a Moore-Penrose inverse of A for appropriate norms in E™ and E»,
Proof : Writing &; = A%y, and @y = A'y, and using (7.3) we hnve
(A%, Aby:) = (AA%y,, AAVy)vy, by,
= (, A4y} = (y, AACAA )y, iy,
== AA* = 11%44%
which proves (7.5).
It easily follows from (7.5) that
AA* =P, and AA =P 4 e {1.6)
so that A ¢ the Moore-Penross inverso.

In particular if the innor products in E™ and E* are of the form (¢, y) = y°r,

then a n.s. condition for A to bo subunitary is
A= AF, . (1T)

Theorem 7.2 : If A is a partial isometry 1z]|y = || Axily &f and only if xeM(AY).

Proof : The ‘if puxt’ follows from tho definition of isomelry. To prove the
‘only if’ part consider the orthogonal docomposition 2 = @,y whero aye1(), the
null spreo of A and xes(A?). Then Ax = Axy end [l dr] = fdzy)l = [ixy] sinco A
is & partial isometry, But (Ax] = ]| = (Jr i+ |ra")*? then [} =0 or &, = 0.

Theovem 7.3: Let I and Q be orthoyonal projectors of the sume rank r onto
subspaces of L™ and EN respectively. Then there exisls a partial isometry X of order
mxn such that

XX¢=P, XX =0, PX=X 0X*=X* e (1.8)
Proof : Noto that P and @ aro self adjoint idempotents in which caso
P=LL* (=nRR* - {70}

whero L is an m X r matrix ond 12 is en # X r matnx, each of rank rsuch that LY, =
R°R = I,. Thenit is onsily scen that X = LR® satitfics (7.8) although tho #olution
may not bo uniquo and this is eo whatever proper norm is taken in E7 foe the dofini-
tionof L* and R*. Tndecd X* = X¥ so that X is & partisl isomolry.

Remark : With L and R as defined in (7.9) tho most goneral solutivn for the
equations
XX¥=P, X¥X=0, PX=X, QX*=X*
is given by X = LER® w (110)
where E is an arbitrary nonsingulnr matrix.
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-y malriz and suppl of a partial {someiry . A partial isometry
of full rank ia called somiunitary, Notico that if the matrix A of order mXn is somi-
unitary, then oither AA* = I or A% 4 = I, according as min (m, n) is m or n.

Thoorom 7.4: If A is a partial fsometry (subunitary malriz) of order mxn
and rank r < min (n, n), then there exists a partinl isometry of the same order such that
A+DB is semiunitary and AB* = 0 or B*A = 0 according as min (m,n) iam or n
(such a matriz is called o supplement of the partial feomeiry A).

Proof : Suppose m = min (m, n), Write P=J,,~AA%and let Q bo an
orthogonal projector of order nXn and rank n—r such that AQ = 0. Determine
B ns in Theorom 7.3 to aatisfy

BBt=PrP, DB'B=Q, PBR=DB, (QD%=pBD*
AQ=0= AB*=0 =3 (A4 DB)A+B)* = I.

Henco A+ B is somiunitary, The caso where # = min (m, n) can b proved

on similar lines.

The following theorem gives an intoresting characterization of partial i
in torms of somiunitary matrices

Theorem 7.6 : Let A be a matriz of order mxn (m < n). Then A is a partial
isomelry iff A = UQ where U is semiunilary and Q is the orthogonal proieclor onto the
range of A%,

Proof : Tho ‘if* part is trivial. To provo the ‘only if* part assume that A
is a partial isomotry, obtain B as in Theorem 7.4 and chock that
A=(A+D)A*A.
Theorom 7.6: The eigen values of a square pariiol isomeiry have absolule
magnitudes on the closed intercal [0, 1),

Proof : Let A bo o partial isometry and x an eigon veotor of A cocrosponding
to its cigon value A, thon
Nz, a) = (42, Az) = (z, 4942) = (z, P2)
= (x, P*Px) = (Px, Px)
where P = A%A is the orthogonal projeotor onto (A*).
Henco 1A] Bl = [Pz = |A] =%I<"

Theorom 7.7: Let A,z be the eigen value and the corresponding eigen veclor
of o pariial isomelry of order nxn. Then

() A=0 ¢ff xen(d)

®  A=1 i s

©) 0<A<] iff an AP
whero 7(B) donotes the null spaco of B.
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Proof: (a) is casily proved. (b) &= A%Ax = 2 &= xet(AY) = [R(A)].
(c) follows from (a), (b) and Theorem 7.6.

Corollary :  If the partial isomelry A {8 EPr and A is a nonnull eigen value of
A, then |A] =1,

Proof: Observe that the corresponding eigon veotor asfl{A) = /(AW
since A is EPr. Apply Thoorem 7.7.

Thoorem 7.8 : Let A be a partial isomelry of order mxn and P, Q be unitary
malrices of order m¥m and nXn respectively. Then B = PAQ iz a partial isometry,

Proof: Thoorora 7.8 follows from the identitios

PP*=PP =1, QQ%=Q'Q=]I,

Thoorem 7.9: Let A, B be partial {somelries of order mxn and nXp respec-

tively, then C = AD is o partial isometry iff
A*AB = B. v (111)
Proof: (1.11)==(ABz, ABx)=(Bz, A*ADx)
= (Bx, Br) = (x, x)¥zcA{C*) C AB?).
Conversely, if Bre.s({A%)
{ABx, ABx) <(Bx, Bx) = (z, Pr) = (Pz, Px)
<(xx)

where P is the orthogonal projector BYD.

8. LEAST SQUARES THEORY WITH A POSSIBLY SINOULAR
DISPERSION MATRIX
Let Y = XB+¢ whoro D{c) = oV bo a Gauss-Markoff modol with V" possibly
singular(p.s.d.). Lot p'B bo an estimable parametrie function, i.0., there exists a vector
L such that E(L'Y) == p'B or X’L = p. In order to detormine the BLUE of p'f
we need L'Y such that P(L'Y) = a’L‘ VL js o minimum subjoot to X'L = p, The

answor js indeed a mini V- lution of X'L == p.  Thus the optimum
choice of L is
L= (Xanp=Fp sy we (8.1)
and the BLUE js
pFY. . (89

In Corollary 1 to Thoorem 6,1 we have givon two ohoices of minimum F-seminorm
invorses, One choico is

(X% = (VAHoXX)-XIX(V+eX X)X} - (83)
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whoro ¢, in genoral, is any positive constant and may be zoro when A X) C V).
With such a choice as in (8.3), the BLUE is

PIX(V4eX X)X X(V4+eX XYY, v (8.4)
The form of oxpression (8.4) suggoests that the BLUE of p'p is p’ﬁ whoro f§ 3s the
M-lonst squares solution of ¥ = XB, whero
M = (V4eXX)- . (8.5
ie., ﬁ is the valuo of @ which minimises
(¥—XP)(V4eX X')-(Y-XB). o (8.6)

Tlhus we obtain a goneralization of the least squarca theory to any linear model whether
V is singular or not. It may bo noted that (I’4¢X.X')~ may not be a g-inverss of ¥,
for which we could have also chosen M as

M= (V4W)- e (87
whore IV fa s n.nd. matrix such that (V) and AAIF) aro virtually disjoint and
SAX)CAQV : W) = A(V+W). However the choice of M as in (8.5) is attractive
a8 it involves directly the given matrices ¥ and XX'. DBecauso of tho importance of
the result (8.6) we state our unified theory of least squares as follows :

() Obtain § which minimises
(Y—XB)(V+eX X (Y—X0) - (8.8)
whether V is singular or nonsingular, where ¢ can bo any positive constant and zoro
when (X) C #{(V). The normal equation leading to @ is

X'(V4eXX')XB = X (V4eXX') ¥ . (89)
giving a solution
B = [X(V4oXX)\X]-X(V+eXX)-Y. v (8.10)
() The BLUE of p'p is p'fi and
V(p'B) = oW (X' MX)-—cI]p (811
cov(p'@, a'f) = e*p X' MX)—cl]q. e (812)

(iii) An unbiased estimator of o? is
SRy - 2 m;ﬂ (Y—XPpY(V+cXX')~(¥—X8)

= Y{V+eXX)"Y—Y(V4cXX)-Xf) e (819

J=R(V: X)-R(X). w (8H)

Tt is intorosting to moo that tho computod valuos of (8.11) and (8.12) are indopendont
of ¢,

where
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, & compute

(iv) To test a set of X lincar hypotheses, piff =dy, é =1,
= p; B—d,, tho dispersion matrix 02D of u’ = (n,, ..., uy) by using the formulao
{8.11, 8.12), and the statistics

Ty=uwbDu and T,= DD u—u . (8.15)
where D= s any g-inverse of D, Lot b= R(D). The hypothesis is rojected if Ty
is nonnull or the statistic

w'Du , R}
=—
R .

as a variance ratio on A and f degrees of freedom excceds somo critical value,

(10.16)

Thus wo have a simple and unified theory of least squares without having the
need to examine whether 17 is singular or not. In the formulae (8.8) to (8.16) ono
oan have any choice of the g-inverses involved.
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