DETERMINATION OF A MATRIX BY ITS SUBCLASSES OF GENERALIZED INVERSES

By C. RADHAKRISHNA RAO, SUJIT KUMAR MITRA* and P. BHIMASANKARAM

Indian Statistical Institute

SUMMARY. The main result of the paper is : $AB^*A = A$ and $BA^*B = B \Longrightarrow A = B$, where A^* and B^* are the unique Moore-Penrose inverse of A and B respectively. This is a stronger result than uniqueness of Moore-Penrose inverse. Some other results are established generalizing the earlier result of Rao and Mitra (1971) that a matrix is uniquely determined by the entire class of its g-inverses.

1. INTRODUCTION

Rao and Mitra (1971) have shown that if every g-inverse of A is a g-inverse of B and vice-versa, then A = B (see Theorem 2.4.2, p. 27) or, in other words, a matrix is completely determined by its class of g-inverses. In this paper, we explore the possibilities of characterizing a matrix by its subclasses of g-inverses.

We denote a particular choice of g-inverse of A by A^- and the entire class by $\{A^-\}$. Similarly the reflexive, minimum norm and least squares inverses and their classes are denoted by A_r^- , $\{A_r^-\}$, A_m^- , $\{A_r^-\}$, A_r^- , $\{A_r^-\}$, A_r^- , $\{A_r^-\}$, respectively. The symbols A_{mr}^- , $\{A_m^-\}$, etc., have obvious meaning (see also Table 3.6, p. 16 of Rao and Mitra. 1971).

It is obvious that if $A^* = B^*$ then A = B, since $(A^*)^* = A$ and $(B^*)^* = B$, and the Moore-Penrose inverse is unique. However, the more general result is proved in Theorem 4: $A^* \in \{B^-\}$ and $B^* \in \{A^-\} \Longrightarrow A = B$. The other results are:

(ii)
$$\{A_{\overline{\nu}}\} \subset \{B_{\overline{\nu}}\} \Longrightarrow A = B$$
, and

(iii)
$$\{A_{mr}^-\} \subset \{B_{mr}^-\} \Longrightarrow A = B$$
.

It is also shown by counter examples:

(iv)
$$\{A_{i}\} \subset \{B^-\}$$
 and $R(A) = R(B) \Rightarrow A = B$,

(v)
$$\{A_{\bullet}^{-}\} = \{B_{\bullet}^{-}\} \neq A = B$$
, and

(vi)
$$\{A_{\overline{i}}\} = \{B_{\overline{i}}\} \not\Rightarrow A = B$$

where A_x^- and A_x^- are ρ and χ -inverses. (See also Table 3.6, p. 16 of Rao and Mitra, 1971).

^{*}The research work of this author, now in Indiana University, Bloomington was supported in part by the National Science Foundation Grant GP 27715.

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

2. Some preliminary lemmas

In the sequel, we use the following lemmas. Lemma 1 is given in Rao and Mitra (1971), (see Lemma 2.2.4 on p. 21 and example 14 on p. 43).

Lemma 1: BA^-C is invariant and non-null for all choices of g-inverses of A if and only if B and C are non-null matrices, $\mathcal{M}(C) \subset \mathcal{M}(A)$ and $\mathcal{M}(B^*) \subset \mathcal{M}(A^*)$.

Proof: We observe that a general representation of a g-inverse G of A is

$$G = A^{-} + (I - P_{A^{\bullet}})U + V(I - P_{A})$$
 ... (2.1)

where *U* and *V* are arbitrary and *A*⁻ is a particular choice. (Two other representations are given in formulae (2.4.2) and (2.4.3) of Rao and Mitra, (1971)). Pre- and post-multiplying both sides of (2.1) by *B* and *C* respectively and noting that *BGC=BA-C*, we find

$$B(I-P_{AB})UC+BV(I-P_{A})C=0$$
 ... (2.2)

for all U and V implying that

$$B(I-P_{A^{\bullet}}) = 0$$
 and $(I-P_{A})C = 0$... (2.3)

which establishes the desired results.

Lemma 2: Let A and B be matrices of the same order. Then the following statements (i) and (ii) are equivalent:

(i)
$$A = B$$
 ... (2.4)

(ii)
$$A^*AA^* = A^*BA^*$$
, $B^*BB^* = B^*AB^*$ (2.5)

Proof: Trivially (2.4) \Longrightarrow (2.5). To prove the converse, observe that (2.5) \Longrightarrow R(A) = R(B) = r (say).

Consider the singular value decompositions of A and B

$$A = U_1\Delta_1V_1^*$$
, $B = U_2\Delta_1V_2^*$... (2.6)

where for $i = 1, 2, U_i, V_i$ are unitary matrices,

$$\Delta_i = \begin{pmatrix} D_i & 0 \\ 0 & 0 \end{pmatrix}$$

and D_t is a diagonal matrix of order $r \times r$ with strictly positive diagonal elements.

Let $W_1 = U_1^*U_1$ and $W_2 = V_1^*V_2$. Let W_t be partitioned as $\begin{pmatrix} W_{t_1} & W_{t_2} \\ W_{t_3} & W_{t_4} \end{pmatrix}$ such that the submatrix W_{t_1} is of order $t \times r$.

Check that (2.5) -

$$\Delta_1^* \Delta_1 \Delta_1^* = \Delta_1 W_1 \Delta_1 W_2^* \Delta_1, \ \Delta_1^* \Delta_1 \Delta_2^* = \Delta_1 W_1^* \Delta_1 W_1 \Delta_1
\Longrightarrow D_1^* = D_1 W_{11} D_1 W_{11}^* D_1, \ D_2^* = D_1 W_{11}^* D_1 W_{12} D_2
\Longrightarrow |D_1| = |W_{11} W_{11}^*| |D_1| |W_{11} W_{11}^*|
\qquad ... (2.7)$$

DETERMINATION OF A MATRIX BY ITS SUBCLASSES OF g-INVERSES

However, since WilWin and WizWes are n.n.d. matrices

$$W_{t_1}W_{t_1}^* + W_{t_1}W_{t_1}^* = I \Longrightarrow |W_{t_1}W_{t_1}^*| \leqslant 1$$

and the sign of equality holds iff $W_{t*} = 0$.

Hence from (2.7),
$$W_{i3} = 0$$
, $i = 1, 2$
 $\Longrightarrow \mathcal{M}(A) = \mathcal{M}(B)$, $\mathcal{M}(A^*) = \mathcal{M}(B^*)$
 $\Longrightarrow A = BKB$. $B = ALA$ for some K and L .

Thus in view of (2.5) we have

$$ALA = B = BB^*B = ALAB^*(B^*BB^*)^-B^*ALA$$

 $= ALAB^*(B^*AB^*)^-B^*ALA = ALALA$ and
 $A = BKB = ALAKB = ALALAKB = ALA = B.$

3. THE MAIN RESULTS

Theorem 1: $\{A_{\ell}^-\} \subset \{B^-\}$ and $R(A) = R(B) \Longrightarrow A = B$.

Proof: Let G be a particular g-inverse of A. Then A-AG and GAA- are reflexive g-inverses of A for any A-e[A-]. Then, R(A) = R(B) and BA-AGB = B for all A- $\Longrightarrow \mathcal{M}(B^*) = \mathcal{M}(A^*)$ by applying Lemma 1. Again, R(A) = R(B) and BGAA-B = B for all A- $\Longrightarrow \mathcal{M}(A) = \mathcal{M}(B)$. Hence B = DA = AE for some D and E. Now, BA, B = B $\Longrightarrow B$ = BE = DB $\Longrightarrow B(I$ -E) = 0 $\Longrightarrow \mathcal{M}(I$ -E) = 0 $\Longrightarrow A$ = B.

Corollary:
$$\{A^-\} \subset \{B^-\}$$
 and $R(A) = R(B) \Longrightarrow A = B$.

Note: However, $\{A_{B}^{-}\}\subset\{B^{-}\}\$ and $R(A)=R(B)\not\Rightarrow A=B.$ This is demonstrated by the example

$$\mathbf{\Lambda} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}. \qquad \dots \quad (3.1)$$

The same example demonstrates that $\{A_{\bullet}^{-}\} = \{B_{\bullet}^{-}\} \Rightarrow A = B$.

However, the following Theorem 2 is true.

Theorem 2:
$$\{A_{\vec{k}}\} \subset \{B_{\vec{k}}\} \Longrightarrow A = B$$
.

Proof: First observe that under the given hypothesis R(A) = R(B). Further, $B^*B(A^*A)^-A^* = B^*$ for all $(A^*A)^-$ and $R(A) = R(B) \Longrightarrow \mathscr{M}(A) = \mathscr{M}(B)$ and $\mathscr{M}(A^*) = \mathscr{M}(B)$. The rest of the proof follows as in Theorem 1.

Theorem 3:
$$\{A_{-i}\} \subset \{B_{-i}\} \Longrightarrow A = B$$
.

Proof: The result is established as in Theorem 2.

Theorem 4:
$$A^+\epsilon\{B^-\}$$
 and $B^+\epsilon\{A^-\} \Longrightarrow A = B$.

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

Proof: Clearly $A^*\epsilon(B^-)$, $B^*\epsilon(A^-) \Longrightarrow R(A) = R(B)$. Further $A^*\epsilon(B^-) \Longrightarrow BA^*B = B \Longrightarrow A^*AA^* = A^*BA^*$ using the representations

$$\begin{split} A &= U_{11}D_1V_{11}^*, \quad B = U_{21}D_2V_{21}^*, \\ A^+ &= V_{11}D_1^{-1}U_{11}^*, \ B^+ = V_{21}D_2^{-1}U_{21}^*, \end{split}$$

where U_{11} , V_{11} , U_{21} and V_{21} are partitions of U_1 , V_1 , U_2 and V_3 defined in (2.6). Similarly $B^+\epsilon(A^-) \Longrightarrow B^*BB^* = B^*AB^*$. Hence Theorem 4 follows from Lemma 2.

REFERENCE

RAO, C. RADHARRISHMA and MITRA, SUSIT KUMAR (1971): Generalized Inverse of Matrices and its Applications, Wiley, New York.

Paper received: October, 1971. Revised: January, 1972.