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SUMMARY. Wo consider o clawa of n.di ional elliptio having almost
periodio cocfficients depending on finitely many rationally independent frequencics in eech
coordinato. A strong law of largo numbcers and o functional central limit theorem aro proved
for such diffusions.

1. INTRODUCTION

In this articlo we study asymptotic behaviour of diffusions on R* whose
drift and diffusion cocflicients are almost periodic depending on 34 rationally
independent frequencies w%, 1 & r < My, in the jth coordinate (1 € § < n).

In tho case of a diffusion whose generator is in the sclf-adjoint divergence
form and whose coefficients come from a random field, a novel functional
central limit theorcm was obtained by Papanicolaou and Varadhan (1979)
under the general condition that the random field is stationary and ergodic.
Kozlov (1979), (1980) contain similar results ; but the regularity arguments
in Kozlov (1970) appear to have a gap. However Kozlov (1979) contains
somo significant idcas which we have made use of. Whilo Kozlov's approach
is purely analytical, ours is primarily probabilistic. Wo also mention the
work of Papanicolaou and Pironcau (1981), in which the diffusion matrix is
the identity and tho drift vector is a mean-zcro divergenco freo stationary
ergodic random field. In all these articles the largo scale moan is zero. The
point of departure in the present article is the consideration of drift veloci-
tios whoso large scale mean need not be zero. Part of tho motivation for look-
ing at this comes from tho problem of modeling solute dispersion in an aqui-
fer (Bhattacharya el al., 1987 ; Gelbar and Axness, 1983 ; Winter ef al., 1084)
and analyzing tho limiting dispersion as a function of tho large scalo velocity.

*Rescarch supportod by NSF Gronts DMS 85 3338, ECE 85 13080.
AMS (1080) subjecs classification : Primory : 60J60, Sccondary GOF17.

Key words and phraed : Markov proccssca on tho torus, gonerators, invariant meaduro,
orgodicity.
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10 B. N. BIATTACHARYA AND 8. BAMASUBBAMANIAN

1t may be noted that for arbitrary strictly elliptic generators with periodic
cocficients tho patbwise central limit theorem holds (sce Bensoussan,
Lions and Papanicolaou (1978), Bhattacharya (1083), and the remark on p. 846
in Papanicolaou and Varadhan (1979)).

2. PRELDONARIES AND THE LAW OF LARGE NUMBERS

It will bo assumed throughout that by(.), are () are real-valued functions
on Its of the form

n 3
bilr) = T bt cxp{i Lo E mPu} (1 < ),
m 1=1 r=1

n My
a@) =32 a‘n‘exp{i P mtpwtp} OB ES). o (21)
m =1 p=1

Here Xy, M, ..., M, are fixed positive integers ; for each j(1 € j < n)one
has o given sct of My rationally indcpendent (i.c., independent over the field
of rationals) positive numbers wi, 1  r < 3y ; the sums in (2.1) are over
o finite set of integer vectorsm = (m9 : 1 r € My, 1 <j & n) €Z¥ where

M= M4 M. 4N e (22)
The cocficients ™, a{7} are complex constants. For each z¢ R» the nXn
matrix a(z) = ((ay¢(z))) is symmetric and positive definite and

Ay = inf (smallest eigenvalue of a(z)) > 0. e (23)
zeN»

In order to avoid ending up with the periodic case it will be assumed
that M > n.

Tor cach ¢ =(c: 2 7 € My, 1 € j & n)eRM-» denote by I, the
n-dimensional hyperplane in R given by
He={y=(/P 1 1<y, 1<5<n) =g+, 2Kl o (24)

We shall adopt the following convention throughout : if 3/; =1, then
terms involving subseripts r > 2 and superseripts j will be omitted.

Let Q denote tho following discreto subgroup of R3-n:
Q={mP2nfu)+mP2n[wP) : 2Kr My, 1<5ER) i me 2. .. (25)
Write f e Trig (w) if f is a finite sum of the form
n M
fay=Sfmesp {i & 2 T mPup b ee
m =1

where fim' are complex numbers.
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A complex-valued function k(y) on RS will bo said to bo periodic (2m]e)

if it is periodic with period 27/w® in tho coordinate y(1 v < My,
1<jg<n).

If f € Trig (w) is given by (2.0) define
n 3y
o = f, ™ exp {; ;E:n E‘ mylwl,ny«,ﬂ}. e (27)

Thcnfis periodic (2mfw), and f may bo identified with the restriction ol‘f to
the hyperplane I/,

Lemma 2.1 : Q is dense in RM—n.

Proof : 1t is sufficient to provo that if w,, w,, ..., wg aro rationally in-
dependent positive numbers then {(wi'+q w3z, qwi'+awst, ..., o+
qewi') 1 qp Gy oo i€2Z) is denso in REL Take wy = 1 without essential
loss of gencrality. It is clear that

¢, (mod m,‘l) = oj! (quy(mod 1)),j =2, ..., k. . (2.8)

Now, by Kronecker’s theorem (Hardy and Wright (1959), p. 382), {(, w, (mod
1), g,w, (mod 1), ..., gywi (mod 1)) :¢y €2} is denso in {0, 1)¢-2, Therefore,
by (2.8), {(g, (mod w7'), ¢; (mod wg'), ..., ¢y (mod wi')) : ¢, € Z) is dense in
[0, wg!)X... X[0, wi'). Consequently, D = {g+qe;', gtgest, ...,
Ot+qr ©i') 19y, @y - gee 2} i dense in [0, w;')X...X]0, w}l]+(giwit,
<oy 03 wY) for every choico of integers gj, ..., ¢;. Hence D is dense in RE-1,

n M
Henceforth & will denote the JM-dimensional lorus IT l'l‘ [0, 2m/wi)
J=1 1=t
{# =y e R} where
y=Uy) = (v (mod 2a/w?): 1 r My, 1KGF &) ... (29)
Let 8- (), bi(+) be defined on ¥ by (2.7). Since arx(.) may bo viewed
as the restriction of 8- (.) on J/; and since (/1,) is denso in 7 (Hardy and
Wright, 1059, Theorem 444, p. 382), it follows by the periodicity and con-
tinuity of 34 (.) on I and by (2.3) that the smallest cigenvalue of d(y)
= (@i () is bounded away from zero:

inf (smallest cigenvalue of 3(y)) = A, > 0. e (2.10)
yeltMt

Let 6(y) = ((8:r(y))) denote the nXn symmetric positive definite square
root of a(y).
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Let (Q, &, p) be o probability space on which is defined an r-dimensional
standard Brownian motion B(l) = (B,(t), By(l), ..., B,(t)), ¢ > 0, which is
adapted to a right continuous increasing family of P-complete sigmafields

Int 0.
Let Y() = (Y®@): 1 <r § Mr, 1 Kk n), ¢ >0, be tho continuous
nonaticipative solution to Itd's stochastic differential equations

aY®() = B Yt + j:x S (Y(W)MBre(1),

Mr< Myl k), e (200
subject to some initial condition Y(0) = Z, where Z is an A dimensional
random vector independent of B(t), ¢ > 0.

For all ¢ =(c¥:2 £ r £ My, 1 j < n) define the functions (on Rn)
a M
beelz) = S esp (i £ 2y T m@upd ),
m =1 7 g=
n My
awglr) = Tafgosp (i 2 = mpuir) . (212)
m =1 r=1
whero n Ay
B = b exp {.‘ T c;nmg»...;»},
=1 r=2
n My
afp, = af exp {i LT PmBud } (213
11 r=2
Noto that dY®()—d Y{P{t) =0 for 2  r < M. Hence

Y®E) = YO+ (YO0)— YP(0)), £ > 0, e (224)
with probability one.
From (2.11)-(2.14) and (2.4) the following lemma is immediate, Write

Ay
de= T 0y (1 k< n). e (215)
r=1

Lemma 2.2: (i) Y{t), £ > 0, ts a singular diffusion on RM generaled,
in the sense of 1to, by

~ l n n n o
Iz 2 o [ £ wow |+ E 500 . (210
k=1 k=1 2=1
where 5; 18 defined on R by (2.7) from the function (on It»)

bi{z) = by(x)— él @oxy) (), L Lk K ) v (217)
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(iiy Jf Y(0) € He (with probability ome), then (Y{P (1), YD (), ..., Y{M (1)),
t> 0, is a nonsingular diffusion on R™ with drift coefficients by, (.) and
diffusion cocfficients apr-, c(*), and its generalor may be expressed as

l " n
Lo=5 I 0jon | T awe(e0lon)
-1

»

+.§. B, (2)0)0z, e (218)

where b;.‘(z)=b.b,(z)-yil Of0z) e oz bo= b} In particular, if

¢ = 0 then this n-dimensional diffusion has drift coefficients by(.) and diffusion
coefficients appe() (1 K&, ¥ < m).

Note that l'/(l) ={Y(), ¢ >0, is & Markoo process with stale space 7,
since by(+), 8x(-) are periodic (2/w).

Lemma 2.3: Assume div b*(z) ﬁli (0/0xy)by(z) = 0. Then (i) the

-1

Lebesgue measure on R 18 invariant for Y(t), ¢ > 0, and (i) the normalized
Lebesgue measure n(dz) on 7 i an invariant probability for the Blarkov process
Y, e>o.

Proof : (i) In view of the assumption div b° = 0 the formal adjoint
L; of L, (and I on) ihilat tant functi One may then check
that the n-dimensional Lebesgue measure is invariant for the diffusion with
generator L,. Integrating first along II. for a fixed ¢ and then over a sct

of ¢ values the result is proved. The precise change of variables involved
is given by (2.21) below.

(i) Let p(¢;y, B), plt ; y, C) denote the lransition probabilities of the pro-
cesses Y(t), £330, and Y(1), ¢>0, respectively. For all Borel sets C of (7 one has
n(C)= [ plt;y, C)dy

RM

g 29, C)dy
mez¥ 7 4 (mgn 2], ooy m 2] ) )

z é p( ty— (mgn 2rfafd, .y mD 21/uf) ) 0) dy

meZH
I p(t 1y C+ (mg) 2nfw®, ..., mG) 2"/“";1)5)) dy

=
gnm
=éi’(‘:i’.0)n(dy).
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Let T' = C([0, c0) : ) be tho sct of all continuous functions on [0, co)
jnto 2. Let Pv denote tho distribution of Y@y, £ 0, (e, o probability
meaguro on the Borel sigmaficld of I') when ¥(0) =y. Clearly Pv = Py,
Let P™ denoto tho corresponding distribution when ¥(0) has distribution n

(the normalized Lebesgue measure on Z). Then P™(F) = { PV (F)n(dy) for
all Borel subsets F of T\ V4

Lemma 2.4 1 Let B be a Borel subsel of < such that, for some 1 > 0,

1p(7(0)) = 1a(¥{t)) for almost all (w.r.t. P™yyeT, o (2.19)
where 1p(y) is the indicalor function of the set B. Then there exisls a Borel
subset C of IM-n such that w(BAY(B)) = O where

B=ynH. e (220)
ceC

L is the map y— y (see (2.9)) and A denotes symmetric difference.

Proof : Let g, ¥ bo linear maps on R (into RM-n, R, respectively)
defined by

)= —yP:2<r LM 1 Lk n),
Vi) = (o), ¥, 4B, ..o 9). . (221)

Then y is nonsingular with Jacobian determinant one. Let p, denote
Lebesgue measure on If.  For ceR3-n, zeR», tho transition probability
q(t; (¢, z), D) = Pr{{y(y(1)) € D}|y(y(0)) = (¢, z)) may be expressed as
q(t;5(c,2), D)= J e 52, 2') pald?), . (2.22)
<,
where D, = (Z/elt" : (¢, 2')eD), and fi(t; z, 2) is the strictly positive con-
tinuous density (w.r.t sz,) of tho transition probability of the n-dimensional

diffusion gencrated by L. (seo (2.18)). On taking conditional expectation
given (0) in (2.19) onc has 15(y) = p(¢; ¥, B) a8, w, ie.,

L) = Bl 5y, £7(B)) o, . . (223)
Writing F = y({-4B)) and using (2.22)), one may cxpress (2.23) as
e ) = f S35 2) pold) e o, e (@229)
o,
i.0,, thoro exists a sar-null sob J such that (2.24) holds for all (c,2) ¢ J. Hence
BRPN\Fo) =0 o (2.25)
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for almost all (w.r.t. sesr_, )¢ in

C={ceR¥™ :p(F.)>0) - (2.20)
It follows from (2.25), (2.26) and Fubini’s theorom that
m{(CXRMAF) = 0. o (227)

Let B bo as in (2.20), with C as in (2.26). Thon
B =y-yCxnn), o (2.28)
and (2.27) implios

ru(BATYB) = 0,
and, theroforo,

nUB)AB) = o. e (220
The main rosult of this soction is tho following.
Thoorom 2.5: Suppose div b*(z)=0. (i) If Y(0) has distribution x,

then Y(t), t > 0, is a slalionary ergodic Markov process on J. (i) Let X(t; c)
denole an n-dimensional diffusion with drift coefficients by -) and diffusion
cocfficients ayy o(+). Then for all c €Y'~ oulside a set of zero (M—n dimen-
sional) Lebesque measure,
o XUTC) =5= 005 . i) 0, o (2.30)
whatever the initial distribution of X{¢ ; c).
Proof : (i) Supposo Y(0) has distribution m. Thon Y{1), ¢ > 0, isa sta-
tionary process with distribution P™ Let F bo o shift-invariant Borel sct
of I' = C([0, e0) : 2). Thoro oxists a Borol sot B of 2 such that (Doob, (1953),

. 460)
PYFA{y{t)e B)) = 0forallt > 0. . (231)

In pacticular, P({y(0) € B}A{y({t) e B}) =0 for all ¢> 0, io., (2.19) holds.
Honco, by Lomma 2.4, thero oxists a Borel set ¢ C RY-% such that n(BA{,’(ff))
=0 with B givon by (2.20). Lot @ = C+Q = {c+g:¢c€C, g€ @), whoro Q
is tho set (2.6). Sinco {(/1e) = YHe) if c—c' € Q ono has {B) = {Ueeo He)
Wo noed to prove Pr(F)=0 or 1, i.o,
n¢(B) =0orl. .. (232)
Suppose that (2.32) ia nol true, 8o that 0 < m(¢(B)) < 1. Thon
#31.0(Q) > 0, piar_n (R¥=*\G) > 0. . (2.33)
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But ¢ is invariant undor translation by eclomonts of @ which is densein
R¥-" (Lemma 2.1). If (2.33) holds, then ono mey find two compact sets
K,C G, K, C R¥-"\@ both with posilive p131_n-moasuro ; bus the convolu-
tion 1, o 1g vanishos on tho donso sot @ ; this convolution is continuous
(indoed its Fourier transform is intograblo), so that 1 5 1 L= 0, which is
falso. Honco (2.33) is falso, and (2.32) is truo.

(i) Lot Y(0) havo distribution m. Thon, by the ergodic thoorom
applied to the timo intogral, and tho maximal inquality applied to the sto-
chastio intogral in (2.11), ono has as. (P),

. (R0

im Y20 4o < r < M1k, 239

o
Lot PV bo the distribution of (Y{)(2), ..., Y{P (1)), ¢ > 0, (on C([0, <0} : RW)
whon Y(0) = y. Noto that Py is the distribution of X(¢; c), ¢ P 0, ifyeH,
and X(0; ) =g = (" ..., 1{"). Now (2.34) implies that p{R¥\B) =0,
whero B ={y6R¥: g{y) =1}, gly) = P({({2.34) holds |Y(0)=3)). Since
X(t;e) ¢ » 0, is a nonsingular n-dimensional diffusion, g(y) is continuous
on IH; also, by tho maximum principlo, g(y) =1 on I if B () H,#¢
(sco, 0.g., Bhattacharya (1978), Lemma 2.3). It follows that B = (J.¢o H:
with C a Borol subsot of RY=" such that pps_n(RM-"\C) = 0.

3. TuE CENTRAL LIMIT THSOREM

We continuo to use tho notation of Soction 2.

Lot «£%.2) donoto the usual Hilbort spaco of (equivalonco classes) of
roal-valued functions squaro intograble with respoct to tho normalized
Lebosguo measuro 7 on Z. Tho innor product on «£%.2) will bo denoted by
<, >, and norm by |i.Jl, Lot Oy bo the subspaco

u My
On = : = T (m) oy b Y 3 i) ) 0 .1
v={oc D o= T _ ¢ exp{-;:l )} @)

whore |m| = 2 |mP|. We shall uso On to donoto projection onlo Oy.
dir

Rocall tho singular difforential operator T on I¥ dofined by (2.16)

Lomma 3.1: Suppose div b* = 0. Then for each N > 1, OnL iso
1—1 map on Oy onio On.
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Proof : Clearly, On LpeOn for oach geOy. Now div b*(z) = 0 im-
plies £ 3 bi(y) = 0, 50 that for every ¢ & On
=1
LN
§ [ 2,850 otn)| st) m(dy)
K4 k=1
1 LI |
=—3{ [ % O.b.(y)J oy) n(dy) = 0. e (3.2)
3 k=1

By (2.10), (3.2) and the sclf-adjointncas of On, ono has for every
90N, ¢ #0,

- o~ ~ 1 bt
<OnDpe>=<Too>==5 [ [Z & )orels) dr o) nidy)
“ glura
<=2 % @uoty)nidy) B CE
Jl-l
=—ﬁ- b5 z |9"’“|‘[A£mu)w“’]'<0
2 petozime ¥ - ’

Mg
For % m ™ is nonzero for each & and each m £ 0.
1=1

Honco Oy L'is 1—1 on Oy into Op. Sinco Oy is finito dimonsional, 5,, I
is 1—1 on Oy onlo Op.

For infinitoly difforentiablo poriedic (27/w) functions ¢ on RY dofino
s
b= 5 £ 1000700 RM] (1 =0,1,2.) . (34)
lati€e g

whero & = (ay, ay, ..., @,) is a multi-index and |a|= ¢,+...+a,.
Lomma 3.2: Suppose div 0*(z)=0. Le! feTrig (w) with fO =0,

Let f be given by (2.7), the sum being over m satisfying |m| & No. Then for
every N > N, there exisls a unique uy € Oy such that On TAZN =f, and for all
8=0,1,2, ..., one has

n

kE‘ Nowtnllt < cls), o (3.5)
where ¢(s) does not depend on N.

Proof : Since f&Oy for all N > N, ono hes, by Lomma 3.1, & uniquo
iy €Oy such that OyLiy =/ for N> N, One then has (as in Kozlov
(1979), p. 487)

Al-3
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1< Zay, i >| = | < Onliw, in >1=] <[, 3w >|=|  fimum|
m N
1 Ay - My
=’ T ) mgnwg‘)] .6[ = mghu,;n] ug;-)[

m#0 yat

<l 5 ll/(,,.)|||3£;k ]
- 3 myw,
21cimi<N, & = I—

fia oz |u$7’|'[§"mmwm]'
2 1cmiex P
1 .
=cx(8.)+5 & 1 unli . (38)

Also, from the calculations in (3.3),

|< Ziw iy > 1> - ol )
From (3.6), (3.7) one obtains
n

2 9t < c(0), o (38)

proving (3.5) for a = 0.
In order to prove (3.5) for s > 0, introduco tho differontial oporat

~ n +
By = [ ) a:] (6=0,1,2, ..). . (39)
k=1
On integration by parts one has

<B.Zﬁkﬁﬂ. ati\‘ﬂ>=—% lii < 5,’,% Byp ()0 3}!2‘\,, aﬁg&N >
+,§,< Difb}(00xn), duity >

- £ -1ypx
R N A )

X < (7‘,‘...ak.(a;;'(.)O]'agﬁN), okl...a‘,‘aﬁgﬁn >

+(_1).J,k,....z.:k.-l < By o0y, (B310D62N), 0y 0.0, D>

. (3.10)
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Using Leibniz rulo for difforentistion of products ono gots, from (3.10) and
and (2.10),

~ 1 % *
|< B ooy >1> g, B < B W0 000 ik

ah-uahaﬂ’taﬂ > —c)(")”akﬁN||:—°1(3)"al"‘N"ul“ataN"l

> cy(0xiial — e tin It —colo)10x AnOE lapy. .o (3.11)

Ve, shall now prove (3.5) by induction on s. Supposo it holds for s < 4.
Then

|< B, Losiy, 0y >1 < D, 2w, dsiin > |
1 .= = . .
45| <D, T 0f@r ()3 in), ok din >
2 0 4, gre1
~ n
+| <D, % O B30y i, 01 By > \ . (312)
Since dyity = Oxdiily, and -b,° dx commutes with O, ono has
I < 5,0 KL iy, driin > l = | < 5‘00,‘6,,1., B, Outin > |

=| < B, auf, driew > |  cooleialy ey - (313)

by (3.8). Also, tho difforential oporator 5,0 is of order 2s, and on oxprossing

it as o sum of products of two differontial operators each of order 8, and inte-
grating by parts ona gots

1, = 1 L
?l < D'°l E lo,((o.a,,'(.))ar an), diitn > ‘

< e [ £ W0gint 10w i, < o0 [ E 10y anl] o @14

One similarly obtains

-~ n " N ~
|<D, E‘ @By By, D B > |

< alod | E 10y, |1 vl < o) . (318)
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Using (3.13)43.15) in (3.12) oo gota

% | <D, I asiim, duy >|

k=1

< ewfodtented [ E 10y inllyn - e (316)
On the othor hand, (3.11) and tho induction hypothesis yiold

-. ~ o~ " .
I [< D, L Or Gy, D ity > | 3 ¢4fs) 1—21 l2x "N"’,u
k=1 -

—Cyy (8)—C1a (%) [ l§l 19 fln",o.u] . . (317)
From (3.16), (3.17) one easily obtains
’zl 197nllegs2 < €1dl80)- (319
In the proof of Theorem 3.4 wo apply Lomma 3.2 (as woll as Lemma
3.3 bolow) with f = 6,—b, and N, = Z Em¥ in tho ropresentation (2.1).
For tho next lomma wo shall need the following hypothesis (sco Xozlov,
1979, p. 489) concerning w'®),
Condition (C). There exists a posilive snleger 8, and a positive number §
such that

My My -
IEM‘?M‘." >6[ z |m‘."” k=12 .,2), .. (319
™~ r—=1

Joralm=(m®:1 r M, 1 <k n)eZM (m £ 0).

Tt may bo noted that outside a sot of Lobosguo measure (3/-dimonsionst)
zoro, all A-tuples (w®):1r < My, 1 <k n) satisfy (3.19) if §>0
and 4, is sufflciontly largo. (Sprindzuk, 1079, Theorem 12, p. 33).

It is oasy to check (sos Kozlov, 1079, p. 492) that condition (C) implies

-

Koty < cul) 103 0 > a0 . (320

Now lot 7, ¢ > 0, denoto the semigroup of transition operators on &%J)
dofined by

(T\f)ly) = B YE)| F10) = ) = é FEE sy d). o (32D)
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It is simple to check that this is a contraction semigroup. Let & denote
the set of all fin £%(2) such that the following limit cxists in 42

47 = lim T"f‘_‘f . . (322)
130

The operator A is tho infinilesimal generalor of tho semigroup and 3
domain. Let 72 denote the range of a.

Lemma 3.3: Suppose div b*=0 and condilion (C) holds. Let
feTrig (w) be such that [© = 0, where f i repre:enled as in (2.6). Let f be

defined by (2.7). Then there exisls ge,& such that Ag =1, and there ezist
GueON(N = 1,2, ...)suck that Gy— § and Zﬁ_\,ﬁ Aj = {in £2-norm, as N->eo

Proof : Let 4y bo the unique solution of OnLay =], for N > N,. By
Lemma 3.2, and (3.20),

sup ffuylf <co(s=1,2,..). . (3.23)
np Ny

Now it is easy to check using Ito’s lemma and path continuity of ¥(s)
that all infinitely differeniable functions which are periodic (27/w), regarded

a3 elements of £%(2), belong to % _, and A = L when restricted to this class
A
of functions. Hence fiyess_, and (3.23) implies that @iy nndZﬂNEl;ﬁN‘
A
N > N,, are norm-bounded. Therefore, there exists a subsequenco N’ of
the integers such that iy, converges weakly to j, say, and Zﬁ‘\., converges
weakly to h, say. Thus (3, 7) belongs to the weak closure of the graph of a
restricted to 0 = 0 Oy. Since (i) 0 C .3, (ii) the graph of Ais closed,
N1 i
and (iii) the weak closure of the graph of A restricted to O equals its sfrong

closure (Yoshida, 1966, Theorem 11, p. 125), it follows that (3, /) belongs to
the graph of IT, ie., ge.s. and Z_t'i = . Also for all 240 one has
4

<hu>= lim <diyu>
N—p o

= lim <Opdiyu>=<fiu>. (329
N—oew
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Since O is denso in 13, € 1+ (since R_(C 1*; Bhattacharya, (1082, Relation
i

(2.8)) and fe 1%, it follows that b= I

Finally, again using tho fact that the weak closure of the restriction of
the graph of A to 0 equals its strong closuro, the second assertion follows.

Theorem 3.4 :  Suppose div b* =0 and condition (C) holds. Define
Xt ¢) = e(X(fet; ) - L B, . (3.25)

where X(¢; c) is the n-dimensional diffusion generated by L, in (2.18), starting
at an arbilrary initial state in R".  For all c€ R¥-" oulside a sel of (3 —n)-
dimensional Lebesgue measure zero, X,(t; c), ¢ > O, converges weakly as ¢ 10
to a Brownian motion with zero drift and dispersion maliz

4{ (@a(y)—Da(y)Iily)—1Y'n(dy), . (3.26)

where 4i{y) = (&,(y), ..., 8,(y)) is the unique solulion of A = 3k—b{°) <k
< n) in 14, and 3 is the nXn matriz((dxiiy)).

Proof : By the second part of Lemma 3.3 there exists, for each j(1 <j
<n), d,ne0x(N =1, 2,..) such that, 23 N> 0

s, w—sllo = O, ARy u—(B—b{) o — 0. . (327)
Since (see (3.3))

10xity, v —sty, vl

2 -~ Y A A
< b < — Ay, n—dg 1), 2y, n—ty n >, .. (3.28)

it follows from (3.27) that 9, € £%(7) and

106y, y—3xitglly — 0 a3 N — co. e (329)
Now let Y(t), £ > 0, bo the continuous nonanticipative solution of (2.11)
with Y(0) =y. Then writing
Wilt) = YIB()— YH(0)— 110,

W(t) = (I,(0), ... Walt))', v (330)

one has L, !
() = {(b(Y(a))—B)da+{a(Y(a))dB(a). w (331)
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By Ito's lemma,
iy, (Y () — 1, n(Y(0))

= [ Aoy (Yo § 03, MY (). SNIBE), (1 < < ).

(3.32)
In view of (3.27), (3.20) one has the representation (see Ikeda and Watanabe,
1981, Chapter II)
WY —2AY(0)
= ‘{' (B Y (8))—bP)ds-+ of iy Y(a))5(Y (8))dB(s) a.a. (¢ 0).
(3.33)
From (3.31), (3.33) ono has
W) = a(Y()—2(¥(0))

— e[:‘(6‘&(]’(3))—1)6(Y(a))dB(a) as.(t>0). .. (33%)

The quadratio variation of the martingale
Wt 5 ¢) = X (¢ ; e)—ei(Y(¢]e?))+ealY(0)) is given by

2
Z.(f)=c‘/£ (02(Y (8))—=1A(Y(s)) (02( Y (s))—1IYds. ... (3.35)

Since each element of the integrand is a stationary ergodic stchastic process
(when Y(0) has distribution =) having a finite expection, by the ergodic theo-
rem one has a.s.

lim Z,1) = | (3i(Y)—D)a(y) Baly)—IY(dy). e (3.36)
edo R

It follows that (3.36) holds with Y(0) = y, for all 5, € &2 outside a sct of null
w-measure. Let (y,) denoto the probability that (3.36) holds with Y(0) = y,
Since the event that (3.36) holds is shift-invariant, ¢(y,) is I-harmonic, and
ity restriction to H. is L.-harmonic (see (2.16), (2.16)). Thus if ¢y, =1
for some y,¢ H,, then o(y) =1 for all y e H,, by the maximum principle
for strictly elliptic operators. Therefore, for all ¢ outside a sct 72 of
zero (3 —n)-dimensional Lebesgue measure, if , € Il then (3.36) holds with
initial state y,. It now follows from (3.34)~(3.36) that with y, e Hc(c ¢ 7),
W,(¢; ¢) converges weakly to tho desired Brownian motion (one may show
this, ¢.g., by expressing 0.1 ,(¢ ; ¢) as a timo changed one-dimensional Brow-
nian motion, for each 0¢Rn)). Tinally, ei(Y(¢e?))—cit{ Y'(0)) converges to
zero uniformly on compact timo intervals, with probability one (Sco Bhatta-
charya, 1982, p. 189) when tho injtial distribution is x. Again this implics
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that eu(Y(¢/e?))—et(Y(0)) converges to zero uniformly on compact timo inter-
vals, with probability one when the initial state lics on I, for ¢ lying out-
sido & set of zoro (M —n)-dimensional Lebesgue measure.

Remark 1: Ono may relax the assumption that the sums in (2.1) be
over a finile set of integer vectors m. The proof of Theorem 2.6 goes over
if one assumes

n | A1
z b [ X ,z mPalP
m =1 1y=1

|<wt<E<n,

My
T |a2 [ "z, T mPud ] <ol hLE K n). .. (3.37)
" 3=1| r=1

Theorem 3.4 goes over if the ‘finite sum’ assumption is replaced by (3.37)
and (sce (3.6))

Ay -2 .
T () ”fl mgbwg»” <o mI<i<n). o (339)

In view of condition (C), (3.38) may be replaced by tho condition

g g
Z|b‘,""|’[21|m£”|] <ol k<1< i<n). . (339)

Remark 2. With each y € 2 one may associate the set of drift and diffu-
sion coeflicients by (.+2), a".a(.+z), where c= (= Fh—gh:2r
My, 1<K n)eRY" and z=(z;, = §P:1 < k < n)e R". When §
is chosen at random with distribution x, one obtains & random field indexed
by zeRn:z— {(brolz+2h< i wl@re c®+2)1 g r,4'c a}- This random field
is slationary (w.r.t. translation on R") and ergodic (Sce Papanicolacu and
Varadhan, 1979). Tho proof of Theorem 3.4 shows that when the drift and
diffusion coefficients arise in this random manner (i.c., as a raalization of
this random field) and the corresponding stochastic differential equation is
solved with a Brownian motion B(f) independent of this random field (i.e.,
independent of § € 2), then the solution X(¢), say, is asymptotically Gaussian:

eX(t/e’)——: B, t » 0, converges in distribution to an n-dimensional Brownian
motion with zoro drift and dispersion matrix (3.26).

Remark 3: Kozlov (1079) derives estimates such as (3.5) in the sclf-
edjoint caso, and infers tho smoothness of solutions. Sinco theso estimates
concern differentiation in only % dircctions in an Af-dimensional space, tho
validity of such an inforcnce is doubtful.
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