Sankhyd : The Indian Journol of Statistice
1088, Yolume 50, Series A, Pt. 1, pp. 62-68.

ON WEAK LIMITS OF SEMISTABLE LAWS

By K. RAMA MURTHY
Indian Slalistical Institute

SUMMARY. Let (pa) bo o ecquence of momistablo lawn on a real scparsble Danach
spaco B converging weakly toalaw g on B, Il g hos parumotorarg and aa(n =1, 2,..) and
lim inf re > 0, then wo show that 4 is semistablo. In general, a weak limit of eomistable laxy

M

neod not bo somistablo, In fact, wo show that ovory infinitoly divisible Jaw on B ia the limit
of & sequonco of somistablo laws.
1. INTRODUOTION

Let {1t} be a soquence of somistablo laws on a reul separable Banach
spnce B converging weakly to a probability measnure (p.w.) g on B. From
tho stablo caso considored by Kumar (1073), one would like to ask if p is
neeessarily semistable. Wo show that if s, has parametors r, and &, (n =1,
2, ...,), and if lim inf , > 0, then x is, indeed, semistable. However, if no

"

condition is imposed on {r,} then g need not be semistable. In fact, we show
that tho class of semistablo laws on B is denso in the class of all infinitely
divisiblo (i.d.) laws on B, for the topology of weak convergence | Wo first stato
some basic definitions and notations (c.f. Rajput and Rama Murthy (1987)).
We write 1, st to indicate that the p.m.’s , converge weakly to the
pm. s, 88 n—> 0. The spaco of all p.m.’s on the Borel o-algebra & of B
has a metric under which a sequence {1} converges to 2 if and only if yr,— p.
Let 0 <r < land pboapm. on(B,8). Wesay that g is r-semistable
if thero exist {z,} C B, {a,} C (0, 0), positive integers k,(n=1,2,...) and
o Borel pm. v on B such that
13

)

-7

and I
a,. v " 8o

(Here, a.p s tho measure 1075 whero T, : B— B is defined by Taz = az).
Such a g is id.. Turther, a given i.d. law g is r-somistablo if and only if

W= o, (=212,
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for some sequence {z,} C B. If this equation holds, we say that 2 is r-semist-
ablo with index a or r-SS(x) for short. If @ 3 1, then the characteristic
function (ch.f.) o of p is given by

ﬁ(’/)=°-‘P-("<¢"o'!.’>"£ I<zy>|*k(<z,y>)VdT(z)

for all y ¢ B*, the topological dual of B, whero < z, y > denotes the cvalua-
tion of y at 2, T is the restriction of tho Levy moasure F of 4 to

Ay=freB:rr <2 <)
and k, is & complex valued function on R\ {0} with the following propertics :
=) = B0, Ay(e) s periodic on (0, &) with period —L log r, k, is conti-
nuous on R\ {0} and there exist positive constants C, and C, with
Co S Re. k(1) € [k()| € Cyforallte R\{0}.

(R stands for the real line and Re. for tho rea part of a complex number).
If p is symmetric, then a similar result holds for @ = 1.

Tho Lévy measure F of x can be recovered from its restriction T to Ay
by the formula :

o
F(A)= T sT (24 N A,).
k@
Further, F satisfies tha relations :
e F=yF (n==0, +1, £2,...).
2. THE MAIN TBEOREMS
Theorem 1: Let 0<r, <), 0<a, <2 and lim inf r,> 0. Lel.

pabean r,—S S(a,) pm. on (B, 8) for each n and let p, be symmelric if a, = 1.
If po— p, then p is semistable,

Proof : It is well known that wealk Jimits of i.d. laws are i.d.. Henco,
pisid.. To show that g is somistablo we begin with the defining relation :

POCES LB IR N ()
whero {x(n)} C B. e split the proof into four easce.
Casel: O0<liminfr, limsupr, <1
L] L)

and 0<liminfa, < limsupa, < 2.
[ .
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In this caso we may suppose (by going to u subsequence, if noocesary)
that rq—m rand a,» @ with 0 <r << ] and 0 <@ < 2. We claim that

N=7rV" ;08 forsuomezeB.

For this, wo first note that 7o *2 z, — v, 4. Indecd, let f be 8 bounded
continuous function : B— R. Given ¢ > 0, there is a compact set K in B
with st (K) > 1—¢ and p(K)>l—¢ (=1, 2, .... Wo may suppose K
is absolutely ronvex. Now, by the uniform continuity of f on K, there
exista 3> 0 such that | f(z)--fly)] < £ whenever |z—yl| < 8 and z, ye K.
Now,

|1 (4" 2) dpatr= g g0y d

< (sup 1021 @0)+4] IRl (r* ) =g 21} d, (z)|
HILSO 2 d )= § 100 2 dp ()

< (sup 1/} )20 +e my (R fir M ()
1 2) & )| Houp | (z) (20

if n ia so large that [s3/*7_sire

8
< o where M = g;\lx}{) lixll.

Sinco 2,(K) & 1, {f(r'/x) d p,(x)— [f(rV/* z) dp (z), and ¢ ia arbitrary, we have
proved that

nh, B>V p,
Next, we show that ,n:"—v;t'. Since {u,} is tight, it follows from the
relation
fn == e g "
that {p;") is shift tight. Further, the ch.f. of " converges to tho ch.f. of
A" a3 n oo, Honce, o . Finally, lotting 2 — o0 in (1) we sco that
thero exists zeB with p7 = ped,. This completes the proof of the
theorom in caso 1.

Case 2: limsupr, = 1.
"
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In this case, we suppose that v, > 1 and ¢, s a with0 { 2 < 2. Let
¢> 0and (k) be a sequenco of positive integers with &, — oo and r:"_, tieg;
&, ={(log H)f(log ,)]). Iteration of (1) leads to
Wt
=" - < Hn Sy - (2)
for somo sequence {y(n)} C B. As in Case 1 wo obtain

=00 ped, - (3)

for some yeB, if @ £#0. If @ =0 then ¢t =4, Thus, p is degencrate
if @ = 0 and stablo (hence semistable) if & # 0.

Case 8: liminfa, = 0and 0 <liminfr, limsupr, <1.
L] L] L]
Assuming that a,» 0 and r,~ r (0 < r < 1), we get ' = §;. s s thus
degencrate, and henco semistablo.
Case 4: limsup a, = 2 and 0 < liminf r, limsup r, <1
n n n
Wo assume that ¢, — 2 and r,— 7 (0 < 7 < 1). As in tho above cases
wo geb pf =12, ped, for some z¢B. Ve show that g is Gaussian (and
hence r—S§ S§(2) for any re(0, 1)). For this, it suffices to show that the
Lovy measure F of g vanishes identically. Now, the symmetrization F of
F, defined by F(4) = F(A)+F(—A4) (4 € g), satisties y F = y¥2, F and

l—cos<z,y>) dF(z)= | § rk{l—cos ¥t <z, y>}d Flz).
By k=-a
However, if <z,y> # 0, then

@ © ok
L rk{l—cosrt?<z,y>}> T —4—r*<z,y>’=ao,
K=k,

k=—a

where k, is chosen 8o large that 1—cos r¥2 <2,y> >
k> ky and zeA, Ience

x 3
r<ny> i’ y> for

f{l—cos <z,y>)d F(z)=0orco

forally. Howover, [{l—cos <z, ¥ > }d F (2) < oo for all y, sinco F is &
symmetric Lovy measure. It follows that f {I—cos <z, >} dF(z)=0
for oll y e B* and henco F = 0. Of course, this implies F = 0 too.

The proof of Theorem 1 is now complete.
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Theorem 2:  Let p be an id. p.m. on (B, 8). Then, there exists a sequence
{ra} in (0, 1) converging to 0, a sequence {2,} in (0, 2) converging to 2 and a -
quence {p,} of pan’'s on (B, ) such that p, is r,—SS(a,) for each n, and
HFn 2 H

Wo provo a slightly stronger statement that if {s,) and {8,} aro scquences
with 0<s, <], 0<f, <2 llm 8, =0, hm Ba=2, hmam =0, then

there is a subscquence (ng} of the integers snch that for some sequence {u)
of p.m.’s wo have uy— 4 and py is &, —S S8, ) for each j.

Proof of Theorem 2 : Sinco  is i.d., wo may write

f= g * 3 * fty Where g1y s & centered Gaussian p.m. and the ch. f's of
1 #y ond py are given by

Puly) =exp. (§ <z, ¥>)
Paly) =exp.(—} [ <z, y>tdpy)
Byy) =oxp.{ [ {!<mr>—1~iT W8, <zmy>}dFa)
with & > 0, 2, € B and F the Lovy measuro of z. {c.f. Araujo and Gine, 1980,
p. 137).
We begin by noting that g, is r—8 S{a) for any re(0, 1) and
any a2 ¢(0, 2). Next, wo show that whenover r,— 0 and a,— 2
8,72,
exp.{—4(J <z y>?dp)"}
is the ch.f. of an r,—S8 S(a,) p.m. A, with A ;= p,. Indeed, there is & pm.

e,/2 1~
¥, o0 (0, o) wholo Laplace Transform is exp. {—C, ¢~ }, where C, =2

(c.f. Fellor, 1971, p. 424).
If we dofino O,(d) = ¢, (3¢ (0,0): vae A}, then A(d) = | pyfa 4)
0

d ®,(a) satisfies our requirements. (one verifies dircctly, from tho def. of
weak convergenco that A,— ).

In view of the discussion in the above peragraph, and the fact
tho convolution of any two r—§ S(x) p.m.'s is r— S S(a), it suffices to consi-
der tho case when g = p,, i.e., when the ch.f. of x is given by

Aly) = oxp. { § {e‘<'-'>—l—i <zny>I @ } dF(z) } .
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Now, restricting F' to {ze¢ B : |lz]| > 1/n} and using Proposition 2.1 of Araujo
and Gine (1980, p. 45), we reduce the proof to the case when F vanishes identi-
cally in a neighbourhood of the origin in B. However, in this caso F is o
finite measuro and henco thero is a sequence of measures with finite supports
(contained in B\{0}) converging weakly to F. Once again, proposition 2.1 of
Araujo and Gine, (1980) can be used to reduco the proof to the caso when F
jtself has finito support. In this caso s is tho convolution of a finite number
of i.d. p.m.’s cach having a degencrate Lévy measure. We may thus take F
in tho form a 6‘,0 with a > 0 and z,e B. However, it is clear that in this
case, g is supported by the I.di ional space sp d by x, So, we
assume that x is an i.d. law on R with Lévy meesuroc a 3,0 (a>0,z,¢ R). Now

B () = exp.a "1},

01 itz

or Ay =exp.afe
according as |z,| > & or |7,| < 8. However, when |z,| > & we may write
£(t) = exp (iat x) exp. ale"*0—1—i ¢ z,) and exp (ial x,) is the ch.f. of an
r—S8 8 («) p.m. for any r and a. Thus, we may suppose

itzy

At) = exp.ale’ "—1—itz,).

Ve now define
Ikl.

(z,

f.() =exp. a { k:{_)u ryk { e 0 n—l—i Lz, r:""}

whero 7,50, ¢,2, 0<r, <1, 0<a,<2 and r:""-'—b 0, but {r,} and
{2} are otherwise arbitrary. g, is an r,—S§ S(z;) p.m. on R with Lovy
measuro F, = £a 128 4y, . (Itiseasilyscenthat [ |[z|d Fo(z) <
te—o EN 121>8
for n 8o large that @, > 1. Since exp. af{f(itz—itzl (z) )dF, (z}} is tho ch.f.
1148
of & degenerato law, it follows that f, is indeed & chf.). To completo the
proof of Theorem 2, it suffices to show that 2, (1)— A(¢) for each £. Now,

®, {izo ki . 17
I oyt {c O —l—itz,r, "‘}
P

< I rpryedlts
k=1

1g. =1

a2 g o

= w0 oo
1—r,

A1-8
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for each ¢. Also

M
= “» ok

| z r;'{e“""" —1—ilz, r,.l"‘}
k-

Hapy

<..351.':' {2+1eln™")

pi=(t/m)

1=,
rﬂ

271y
T 1—r,

+ |t 7| —0asn—>
for each ¢, Since

exp.ar;® (e“'°'2— 1—itz, r‘”'")

= exp. a(e""—l—il:o),

it follows that f,(t) - fi(t) as n—» oo for each t¢ R. The proof of Theorem 2
is now complete.
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