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SUMMARY. Lot fiufor vurfs bo real valuod additive arithmetie functions and Set Fyy vy Fo
bo polynomils with integral cooflicients, which aro not divisiblo by square of any irreducible polynomial
and Fiim) > 0(mem 1, 2,..05 € 1.yt

In this papor a condition is given which ensurce thet ([{F,(m)s - /i Fdm}) hes & distribution.
This condition turns out to bo neccasary slso. Our tochniques are probabilistic in nature. A sironger
sufliciont condition was found by Katai (1909) using sharp versions of the sieve method.

1. IxTRODUCTION
Katai (1069) has given sufficient conditions which ensure the existence of
distribution of {f{(Fy(m)), ..., fe{Fs(m))), where f{n), ..., fu(#) are real valued additive
arithmetio functions and Fy, ..., F, belong to #, whero X denotes the set of all poly-
nomials F with integer coeflicicnts satisfying the folowing conditions :

(Pl}) Flm)>0form=123,..
(P2) F is not divisiblo by square of any irreduciblo polynomial.

Ho used sharp versions of sieve theorems to prove tho aliove result under the
additional condition that Fy(m) und Fym) are relatively primo polynomials if § # 7.

Hero we give a probabilistic proof of a much stronger version of Katai's result,
whero it I8 not assumed that Fi(m) and Fy(m) are relutively primo. o ulso show
that theso weaker conditions are not only sufficient but also neeessary for tho existenco
of tho distribution of {fy(Fy(m)), ..., fs{fFs(m)}} whero Fy, ..., FyeP.

Altor sending this paper for pross Lho suthor camo 10 know about & paper duo to J, Calnnibos
(Diatribution of additive and multiplicative funetions 1 Tho theory of atithmetio functions, Proceedings
of the Conference on Arithmetio Functiona ikl ol Michigan Univerity, 1071} whero he proved sufficieney
part of Thoorem 2 for strongly ndditive funotivns uing probabilistic methuds.
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2, NOTATIONS AKD DEFINITIOKS

For F in # let Dp denoto the degreo of tho polynomial F. For any positivo
integer d, lot #(F, d) denoto tho namber of incongruent solutions in integers of the con.
gruence relation F{m) = 0 (mod d).

2,9, ... denote primo numbers,.

Pis Py, - 13 the sequenco of all prime numbers in tho increasing order of their
magnitude.

Let f(n), £,(n), ..., fs(n) denote real valued additive arithmetic functions. Let
N,{...} denote the number of positivo integers less than or equal to # having the

property indicated in {...}. For any subsct A of the natural numbers, let D(A) and
D(A) denote the upper and Jower natural density of A respectively :

ie. D(A) = lim supL N, (m ¢ 4)
b T

and D(A) = lim inf L N (m & 4).
- nbe B

We denote by D(4), the common value of B(4) and D(A4) whenever they coincide.
) foh i el <1
19 = ,
1 it SNl 21

Put

We define,

AwnfP= T ””—"“,‘“—”'

Bunpy= 3 [LERAE))E
<rdn 4

A, f, F) = A(0, n, f, F}
B{n,/, F)= B0, n.{, F).

Wo suy that the a-tuple {hy(n), ..., ki(n)} of real arithmetical functions have
a distribution, if

11—‘N,(I|I(m) < gy ony Malm) < €8}

tends 1o u s-dimensional probubility distribution function Q(e,, ..., ¢s) a8 #— oo, for
ull its continuity points.

324



ADDITIVE ARITHMETICAL FUNCTIONS OF INTEGRAL POLYNOMIALS
3. Resours
Theorem 1: Let FeP and f(m) be any real valued additive arithmetical function.
Suppose
Dp 2 2 and f(pt)r(F, pt)— O asp~— o0 » for k = 1, ..., Dp—1. o (3.1)
Then the distribution of f(F{m)) exisis if , and only if,
sLOHEP) verges - (32)
» 4
« Lp)EriFp)
» ¥ 4
Remark: Tho stalement of the theorem holds if Dy = 1 without any further
assumptions,
Thearem 2: Let fi{n}, ..., fuln) be real valued additive arithmelical funclions
and Fy, ..., F, belong to P. Suppose
Jio¥) r(Fy, p¥)—> 0 as p—> o0 whenever D,,‘ P2for k=1, ...,D‘,‘—l. - {3.4)

converges. e (3.3)

Then the s-tuple {f,Fy(m), ..., f{Fi(m))} have a disiribution if, and only if

5 {io)rtFe p) converges for § = 1, ., 8 o (3.5)
d P

x Y rtFu p) ’;(P" 2 converges for § = 1, .8, . (3.0)
»

Remark :  In Theorem 1 if F is a product of linear polynomisls we can omit
the condition (3.1). Similar remark holds in Theorem 2 also.

Theorem 3: Let f(n) be a non-negative additive arithmelic function and FeP,
Suppose for some ¢ > 0.

D{f(Fm) < ¢} > 0. - (37

Then L@k
» P

4. OUTLINE OF NOVOSELOY'S METHOD

Here we givo a brief outline of Novosclov's (1966) mothod because our proof
mainly depends on tho probability space constructed by him.

Let Z denote tho set of all integera. Consider the topology induced on Z
by taking as a neighbourhood basia at the point @ the set of alf residue classcs with
respect to non-zero moduli that contains a.

In this manner Z becomes a topological ring S with tho usual addition and

Itiplieation and with a discreto topology. Note that § is totally disconnected,
totally bounded., Comploting § wo get & compact ring 3, whoso elements will b called
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polyadic numbers. On g, as & compact additive group, thero exists a normalized
Haar #. This is not pl Its pletion is denoted by P,
We denote the clements of § by z, 9, ...

Basic concepts and nolations. Let Ny bo a scquence of natural numbers con-
verging to zero in 8 satisfying the following conditions :

v
Npy > Ny, 2—\‘\—5:)—» 1 as k>,

This sequence i3 fixed throughout this paper.

Let Ra{x) be the smallest positive residue of 2 modulo Xy,

Let $°bo tho class of all complex valued functions on § such that f(Ry(z)) i.»/(z)
as k—»c0, where 2, denote the convergence in P-measure. e say that an arithmetic
function f(r)eS° if there is an extension f{(z) of f(n) to 8 such that f(z)e S°.

ptllx means the highest power of p that divides z is equal to & if £ is a positive
integer, and p*|l z means p¥|z for every k > 0 ({[z means ! divides z).

Some resulls of Novoselov.

Lemma 1: l_)(h(m)e:A) = I:'m sup P{z : h(Re(x))e A}
—e

Dik{m)ed} = I:'m inf Pz : M{Rafz))eA}
—e

Jor any set A and any complex valued function h on the sel of positive inlegers.
Lemma 2: If h,(x)eS°, then the validity of any two of the following conditions

B (25 Riz), Tim Df|him)—h(m)] > 0} =0 forallo >0,
n—

h(z)eS®, implies the third.
Lemma 3: JIf hy(z)eS® and hy(x)eS°, then
(1) ah{x)+bh,(z)eS® for any complex numbers a and b,
@) Bfe)Mhfz)ese.
If h(m)eS® then him) has a distribution.
Proofa of all these lemmas are casy. Sce Novoselov (1966).

5. Leapus

Lemma 4: Let Fe®. Then there exists a p, such thal p > p, = r(F, p*)
=r(F, p) for any positive integer k. Alsor(F,a-b) = r(F, a)-r(F,b) if (a,b) = 1 and
r(F, p¥) € ¢ for some constant ¢ depending only on F.

TFor proof seo Tanaka (1055).

Lemmo 6: Let FeX with Dp » 2. Then for each ¢ > 0, there exisls vy = vy(€)
and k = k(g) such that v > vy = N,‘(pD’[F(m)j‘or some p > v or gt | F(m) for some g}
< gn-0(n) as n— o0,
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Proof: Chooso k> Dy and v, such that
D
nFpf) _ nFpt ¢
I —p— <zpoandI 2 " < —.
[X7) PDP 7 o0 > PF <3z
Let Al > 0 bo such that Mm®” > F(m) for every m > 2.

If v>v,
then
D,
N.p '| F(m) for some p > v or g¥| F(m) for some g}

D
- "Fp ) - P pP < fFPY S F
<",>'—ppp m;w-'( ,p " )tn ot ’<~m7( ¥ al

< n5+0(i£;) = netoln).

Lemma 6: Let U and V be two probabilily distributions neither of which is
concenirated at one point. If for a sequence {F,} of probability disiributions and cons-
tants a,> 0 and ¢, > 0

F (a,z+b,)-> Ulx),
F (c.x+d,)=> V(z) al ali poinls of continuity, . (81)
then Sasa o0, dbe ,p
a, a,

For proof see Feller (1966, p.246).

Lemma 7: Let FeP. Let [ be any additive arithmetical function such that
B(n, f, F)—> o0 as n—> 0, and

J2) r(p) = o(B(p, F))
J@)r(p)> 0 as prcofora=2,..,Dp—1 if Dp 2 2.
Then
1 L& o
= M) < Aln S, P +2Bnf P} 7= f €70 dy
as n—» o, for all real numbers z.
For proof sco Halberstam (1056).
Lot f(n) bo any additive arithmetio function and Fe®. Suppose F(m) = a;m*+-
wvta,. Define, F(z) = aiz*+... 4, 2¢8. Clearly F(z) is uniformly continuous on
3 into 8.

Defino oz, Fy = .E‘/(p*) wlF, p*,2)
Vi prlF(z)
whero w(F, pt, z) = {
0 otherwiso,
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It is casy to seo that w{F, p¥, .) is measurablo and
k1
Plx:wlF,ptz)=1)= '(—i;;,z'-) - %fl—”; seo Novoselov (1966).

Lemma 8: f(n) be any additive arithmelic function. Let FeP. Suppose
De > 2 and fipt) r(F,pt)> 0 g p oo, k=1,..., Dp—1. .. (5.2)

Then given any o > 0, there exisls v, = vi(e) such that v > v, ==
E (2 fm P—do.nf P))' < OnB (v, 1, i ben
P>

mel
_ ) it k<D
o) = o

otherwise

where

ard C depends only on F.

Remark: If F is product of linear polynomials we may omit the condition
{5.2).

Proof of this lemma is similar to Turan-Kubilius inequality (Kubilius, 1984,
Lemma 3.1, p. 31).

6. PROOFS OF THE THEOREMS

Proof of Theorem 1: It is easy to show fy(z, F) is continuous almost every-
where. (Sce Novoselov, 1968).

Hence for any =, Z fylz, F)e S
P&n

Let p, be such that p > p,==>r(F, p*) = r(F, p) ¥ k.

Observe that ElwlF, pt, 2)] = %ﬂ (1-’%) ifp>p,
and, E(w(F, p*, z)w(F, p*, 2)) = 0 if k ¢ and p > P,

Sincs r(F,d) is multiplicative function (Lemma 4), {fylz, F))»p are all mutually
(]
ind dent random variabl Seo Novosclov (1966, p. 244).

Now suppose that (3.2) and (3.3) hold. By Kolmogorov's 3-scries theorem
it follows that £ fp{x, F) converges almost everywhere. Henco, X fylz, F) con-
> »

verges almost overywhoro,
Z fy{x, F) whenever it converges
Define  f*z, F)=< ?
otherwiso.
Noto that f*(m, F) = f(F(m)) for natural number m.
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To show that f°(z, F)eS$® it is enough to show, in view of Lemma 2, that

lim 5{' Z fo(m, F) I>v} =0, forevery o> 0
e o
which follows from (3.1) and Leramas 5 and 8. Hence f(F(m)) has a distribution.
Conversely, let U(x) bo tho distribution of f(F(m)). If U(z) is degencrate,
then chooso pf, & > 1 such that r(F, pl} 5 0.
Put o) = S +1
') =f') if P #pd

Now it is easy to sco that, if f* is the new additive arithmetic function defined above,
the distribution of f*(F(m)) exists and is nondegenerate. So without loss of generality
we may assume U(x) is nondegenerate probability distribution. From Lemmas 6
and 7 it follows that

Jim Blm,f, F) < oo.

By Kolmogorov's 3-sories th , we have

Z {fp(z. F) _f'(p)'T(F.P)} convergea almost everywhere.
b 4

Dofine
SOIF, Py oo
P L F)— L2 D if it converges
o | Z 1o = L2 ) it
0 otherwise.
Let Qle) = Plz; glz) < ¢}

By Lemma 8 and (3.1) it is easy to seo thet - N, {(f(F()—A(n, /, F)} < &
= Q(c) as n— oo at all continuity pointa ¢ of Q. If Q is degenerato, it followa thut
A(n, f, F) aro bounded, since —: N {UAF(m)—A(n, f, F)] < ¢} are discrete distributions.

Hence thero exists & subscquonce {n,} of natural numbers such that A(n,, /, F)—b
83 r—» co for somo b. Henco we conclude that U{c+b) = Q(¢) which gives a contra-
diction, since we assumed that U is di te. Henco @ is i

By Lemma 6, it follows that

= L&), p) ;(F' 7 converges,
»

This proves Theorem 1.
Proof of Theorem 2: By Theorem 1, (3.4), (3.5) and (3.6) wo havo,
SUF(m)eS®, ..., f{Fy(m)) e8°.
By Lemma 3, for avery a-tuplo {t,, ..., #;) of real number LI(F ) oS Fa(m))e S,
1lence by Cramer-Wold device (Felter, p. $05), the distribution of {f{(Fy(m)) o JolFe(m)}
exista,
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The converso part follows from Theorem 1.

Proof of Theorem 3: Lot p, bo such that r(¥, p*) = r(F, p) for sl k> I,
whenever 2 > ;.

= o0, then by Kolmog 'a 3-series

Suppose that S Loita)

S fple, F) diverges to +00 almost everywhere.
>3,
Let b (z) = <E" Jolz, F). Note that the distribution of A,(z) is discrete.
Py<PEn

Supposo (3.7) holds for some ¢ > 0. Let £ ¢ bo any common continuity point of
tho distributions of the functions &, h, 41 oo o AS B 00, tho natural density of

400, ] 0.
Let (¥, } bo a subsequence of {Vy} such that
r

lin g Ny (f(Fn) < B} = Dim :S(Flm) < ) = 7> 0 (sa3).
r

By using Lomma 5, choose ¢ > Dy such that ¥ ,{p*| F(m) for some p} < 7 n+o(n) for
alln. Let (Mg} bo an increasing subsequenco of {N¥, Ja. t. k> l'(n)=)p‘ | Npif p < .
r

So
Fom Y JFN <A < Pfe: L ol P < #)

P{x L e P < ﬂ}+%+n(l) 25 1> 0.

Henco, 88 n—» co the left hand sido term converges to Z and the right hand side term
converges to Z/2 which is a contradiction.

Therefore, s[@rFp)
» ? (Q.E.D.)

Theorem 4 : Let g(m) be & mulliplicative funclion and Fep. Suppose that
Dy > 2 and {g(p*)—1) 1(F, p*}— 0 as p—+ <0, for k = 1, ..., Dp—1, g(F(m))eS® if

g be=LrFp) o jee)=1Pp) . L gy

=< ? " etpr-t 1<t [ Istni-ita1 P
CHEY

converge. For a positive g(F(m))eS® this condition is also necessary, if the distribution
Sunction Qlc) of the function g(F(m)) is continuous for ¢ = 0.

Proof: Uso Thoorom 1 and arguments similur to tho proof of proposition
51 of Novosdlov (1066, p. 251).
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Remark: Most of tho results in the monograph of Kubiliua can be easily

ted to tho arithmetical functions whose domain of definition is {(F(m), m = 1, 2,...}

(Fep), instead of the wholo sequenco of natural numbers. Using Kubilius methods,

wo can prove the following two theoroms. We do not know whether they have
been obtained previously by any one or not.

Theorem &: Let f(m) be a atrongly additive arithmetic function. Let

A =.§_@m B =t £&,

»6n P

If Bln)—> oo and if %¢>0,

L I f'“”-.o as n— o,
B ol Siom P
then
Jm)—Ah) F o
G o MR} = g f s>
.1 Jum)—4(k)
Jdim o x| B <)
1 s o= _ lu—2ka?
= v LS e (SES dur>o
where Jelm) = ,2‘:./(1')-
rim
Theorem 6: Lel f(m) be a sirongly additive arithmetical function and F be
an inlegral polynomial with F(m)> 0 for m=1,2,.... Ld,
A Fym £ SOHED) g g by 3 (PN riF,p)
& r PEn 4

Suppose B(n, F)= 0 as n—» o and f(p) = o(B(p, F)) as p—> o, then
i Fim))— Ak, F) -l N
L e A T AN

(F(m))—A(l: )
B(n, F,

and Itm — N maz

1 £ 0 {u—2kr)*
= - -} d 0.
7o LB e (-5 due>
We need the following lemmas to prove the Theorem 6.
Jio®) i p¥ | m for some kD 1,
Notation :  fy(m) =

otherwiso
form» 1,
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Lemma 0: Led f be an additive arithmelic funclion such thal B{n)—> o as
1— 00 and for ecach € > 0,

LJitn)

1 “
—~'—0as n—c0.
Bl 10> s P

Then there exista a funclion r = r(n) such that

lokg,gr(n) B('(("))) ————1 and foreache >0

Ly . o)
¥ e |2, (bm- T2 )[>@m) o
as n—» .
Proof: Lot 3.=%N {'“‘xl L (/(,,,)_f(l’))|>m(n)}_
v 113 0 |y
Now, 3. < aBnp n '2:. ('<§‘- Solm)— Tl)
— (£ Jo)]
<z (B (L Z, Motm)+on( |z LOLY,
But,
.2.:.(,< n |Iy(m)|) '<:-"‘_ Wt E - {fplmlfelm)]
r<pean
lop )] \*
<”'<§‘u P +n ,<§‘, P )

Now, by hypothesis there exists e(n)a.t ¢(n) > 0 for all », ¢{n)— 0 a8 n—» 0 and
1 Jip)
z
T wonsuomn P et
Pul r(n) = n* ; it is casy to seo that

B(r(n))

) =1 a2 > o,

Also wo havo
e Yollye po( s Ualye o s Uely

Bi(n) (r<r‘- i r<pén ? 1<pin
1PNEeim D) W) > (m)B(a)

< uog s+OP+ o (| 2 2) 2 L)

r<pin P PG ?
H@N> w38}

< 2e(n)}{log e(n)+O(1))242¢(n) log ﬁ - 0 88 #—+ 00, sinco £(n)—> 0.

Henco 4,003 n— 0. This completes tho proof of Lomma 9.
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Lemman 10 (Corollnry 5.4, Parthasarathy, 1967, p.230): Let (Za), i =
1,2, ..., k, be a triangular sequence of real valued random variables satisfying the follow-

ing conditions
(i) for each fized n, {£4) are independent,
Iy
() M{Ene} =0, V(Eat) = fatr :2-1 =1

where M and V denole mean-value and variance respeclively,
{iii) for each ¢ >0,

b,
lim T [ Wl =0,
e (=l (>

where F 4 is the distribution function of &,
Then,
fim P maz |Euto. ] <a) = ﬁ _;r ._1".__ (=1 exp [—ﬂ] dy,

s <6

and

. 2 a
Jim P 2 ok HEur) <a} =7 f exp (—0¥2Mua > 0.

Proof of Theorem 5: Let r = r{n) bo the function appearing in tho proof
of Lemma 9. We now consider tho Independent and discrete random veriables

Ep(p < 1), where Ep assumes the values f(p) and © with probnbilitics% and l—%

respectivply,
It ia casy to check that the triangular sequenco
&= l%‘)
y p€rinhn=12..
v b3 _](p)(l_ l)
r6rm P ?

of random variables satisfics the conditions (i), (ii) and (iii) of Lemma 10. So for any
a>0

E‘E,—A(k)
lim P max '= ga
— e 16 g K J 5 ﬂp).(l_L
S (%)

rerny P

g‘_' (-1 oxp[—@] du = y(1,a), (say)
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I Ep—A(k)
r&s

d lim P m —_—
on e G 5 _f_‘(?_)(l_L) <a
» M P P

= o5 [ oxpwind = iz, (ay)
where Ak)= Z ﬂi)
s P

By using tho results of chapter II of Kubilius (1064) and the facts Butnn

and ¥ f' (P) = o{B(r)%), we get
14

1 Jalm)—Atk) -
-h—':,- n N lmu) ' B(") ,< a} vl 8)

. 1 . -
and Jim N.{'W) Ualm) =A%) < aB(n)} = 912, ).

Now the theorem follows casily from Lemma 9.

Proof of Theorom 6 is same as above.
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