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SUMMARY. For but mot i ? iatei random variublos,
almost aure convorgenco of rogrossion (simplo lincar) rank slatistics is catablished. For indopendont and
idontically distributed rondom variables, weak as woll as almost sure convorgonce of regression rank slatiatics
to appropriato Wienor proccsscs is studiod, and & law of itorated logarithm in dorived. Thess rowults are
slso oxtondod to signed Jinoar rank statistics.

1. INTRODUOTION
Let {X;, 5 > 1} bo a seq of independent random variables (r.v.'s) defined
on & measureapace (Q, A, P) with i distribution functions (d.f.) {Fi(x), i > 1}.
Let u{t) = 1 or 0 according as { » or < 0, and for a sample X,, ..., X, of size n, let

Ry = i‘. u(Xj—X;) be the rank of X;among X, ..., X fors = 1,...,n. Let{q, > 1}
=1

be a seq of known regressi We define a regression (simple linear)
rank statistic T, (see e.g., Hajck, 1962; 1968) by

Ty= X -t NaRufn 4 0 By = n B e D L (L)
t=l b=l
where ¢, ..., ¢, are assumed to bo not all equal, J (if(n+1)) = EJ(U ) i =1,..., 7,
Un ... € U,, aro the ordered r.v.'s in a samplo of size n from a rectangular (0, 1)
distribution, and J(x), 0 < u < | is & score function satisfying

j" | J{w))" du < oo for some r > 2. e (1L2)
0
Without any loss of gonorality, wo let 4 = jl J{u)du = 0 and dofine
°
A= MuM(>0), A3 =71 E Jiifta+ 1) )
° =1

ct ='2.I {eg—E )% and ey = (6—E)/Co T=1,.uninp . . (1Y)
-l

Also, we nssume that (cf. Hdjek, 1008) that
max Jex] = O(n-d). w (L5)
1&i6n
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Let then

T8 = (w4 0T, = n"A;“'Zl o+ 1)1R); e (16)
Fule) = (1) £ P, Fite) = w0420 £ et )
n= f JF MR, a3 1. . (18)

For every positive integer n, we defino @(n) = C%, and by lincar interpolation, wo
let for ze(n, n+1), Qz) = (z—n)Qn+1)+(n+1—-2)Q(n), n 3 0, Q(0) = 0. Then
our second jon on tho regressi is the following :

P

(i) Qr)is T inz:0gz< 0o, ,lf.n Q(z) = o (L9)

(i) for every scquence {a,} of positive numbers for which a,— 1
a8 n-» o0, Q(na,)/Q(n}> 1 as n— c0; o (1.10)

(iii) lim inf #7Q(r) » C}> 0, lim sup A 2Qn) K C* <, .. (L11)
LI 1.} A

where A( » 1) is 5ome positive number, Finally, let [s] be tho largest integer contained
in 8.

QYu) = inf {u : Q(z) > u}, o (L12)

V. =‘z" E((T—Te | Ty s Tes), 1 3 2, v (L13)

Ty =Tan=h2., F=T=0, e (L14)

and by linear interpolati pleto the definiti of T for every te(V,, Vauh 7 3 1.

Then, we have the following theorems.
Theorem 1.1 : Under the assumptions {1.2), {1.5) and

wt £ 10,60+ D=6+ )] = O, - (115)
Tim (TS—13) = 0 a.a. e (116)
A—ta

Theorem 1.2: If J(u) is non-decreasing in u, (1.2), (1.5) and (1.11) hold,

3
Fe=F forall i1, and |J'(u)| € Rol—w] T <<, >0,

then (a) there ia a standard Brownian motion E{f) on [0, co) such that

Ty = Et) ot log log 1)) a.s., a8 £ — o0, . (117)

and (b) tim sup T /(242C log log CJt = 1 a.s., o (L18)
lim inf T H{2A2C% log log C?P = —~1 a.s. v (L19)
Ao
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Tho abovo theorems rolato to tho tail eequenco {Tx, k 3 n}.  For the complo-
mentary ecquence {Tx : & ), in tho light of tho classical Donsker theorem (sco
Billingsley, 1968, p. 68), wo have tho following weak convergence theorom.

Consider the spaco C[0, 1] of real continuous functions on tho unit interval
I={:0<¢t 1} For overy n{2>» 2), define a process 2, = {Z,(¢), te 1} by

Z,,2) = 4;'CTh, w (120)
where Iz, , = AICHA? for & = 0,1, ...,n; and by lincar interpolation, completo
the definition of Z,(1) for Le([fy,  fryy, s k= 0,1, ..., n—1. Also introduco tho uni-
form topology

ploy) = zl:[’) |x{t)=y(t)|, where z, y ¢C{0, 1). .. (1.21)

Theorem 1.3: Under the assumplions of Theorem 1.2, Z,—W, in the uniform
topology on C(0, 1), where W = {WW(t), t ¢ I} is a standard Brownian moion.

Tho proofs of the theorems are postponed to the mext scction. After the
present paper was submitted, the authors became awaro that Professor Hajek (1971)
hed an alternative proof of Theorem 1.1 in the particular case of two samplo problem

1
assuming J, to be of bounded variation uniformly in » and oI J{u)du < co. Hijek has
employed a different kind of truncation than ours. We may also refer to Koul (1970)
for & parallel version of Theorem 1.1 under essentially more restrictive assumptions.

Tho second theorem requires tho identity of the Fy and some additional
condition on the constants ¢, § » 1. Howover, it proves 8 much stronger result than
Theorem 1.1, The last scction is devoted to signed rank statistics (cf. Huskova,
1970), and results parallel to Theoroms 1.1, 1.2 and 1.3 are sketched briely.

Wo may ion one application of Tt L1 and 1.2. Specify tho d.f's
F, Fy ... by
Fzs) = Fle=po—fich $> 1, - (L22)
whero 8 is tho regressi flici foisa p ter, and ¢, ¢ 3 1, aro
known regression constanta snml'ying tho assumptions mado carlier in this scction.
Also it is d that F is 1 i with respect to Lobesguo measure,
baving o continuous, positive and ﬁmte (n.0.) density f(z) such that
lim (d/dz)J(F(z)) ia finite. e {123)
e
Finally, assumo that J{x) is strictly increasing in u : 0 < u < 1, 60 that
BF) = [ (@)dz)J(F(z)) dF(z) > O (124
For testing
Hy:f=0against Il : f > 0, o (1.25)

a test procedure can bo formulated along tho lines of Darling and Robbins (1968). Let
first positivo integer a(> =) auch that T, > d,,,
Ne= (1.26)

o, if no such n ooours,
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where {d,} is somo auitably chosen seq of positive ts such that d,—
as n— 0, Tho test proceduro consista in rejecting Iy if N < co and accepting Iy
otherwize. Then Theorems 1.1 and 1.2 can bo used to show that tho test has power
one and sizo arbitrarily small by choosing (i) n, sufficiently largo and (ii) d, increasing
at a rate not slower than tho denominator on the left hand side of (1.18).

2. PROOFS OF THE THEOREMS 1.1 AxD 1.2.
We first prove Theorem 1.1.  Defino

S = (n+l)“';:l u(z—X,), Siz) = n-lA;l‘§ g ulz—X),—0 <z < 0 ... (21)
o] =1

7o = | J(8,@HSH) = nidg? £ cBtnt 1), e (22)
One obtains under (1.6) and (1.15) (ensuring A ,—A(> 0) as n—» o) that
i i
Iu (51) = ()
Thus, it suffices to work with T%". If we let J,(¥) = J (if(n+1)) for (i—1)fn <u

Qifn, 1<i<n as (12) bolds, lim{l [Joe)lrdu=J [J@)I* du, r = 1,2,
~—a []

and hence, for every & > 0, there exist a &(> 0) and an n{e), such that for all
n > nofe),

[ ] 1wt <t |+ 1wl < e, r=1,2 . (24)
1-4 L] 1—4

|T2=T] < 457 [max |4l {n-| b }=0(n-l). (23

Further, J(u) is continuous in the open interval (0, 1). Hence, J(u}is uniformly conti-
nuous in u in every closed interval [y, 1—7}, 0 <%  §. Henco, for every ¢ > 0,
there exist &), 8;, (0 < &, < }4,, &;+8, = &), such that
sup sup |J(utv)—J(u)] <& e {2.5)
191 <dy §y<n<i=gy
Defining then a, =supfx: Fa(2) & &) and b, = inf {x ‘F () > 1—4)), one can
write

T —1n = Ly +l g+t o - (26)
La=—(1"+] ) JF.ta dF2ta) w @7)
L) -
o= (1 + ] ) J(8.a) dSay - (28)
4, e
La=§ (S, e—IF. 0] dste; e (20)
),
Lo=J" IS File) - (210
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By (1.5) and (L.7), d|FU2)| < [O(1))A-'dF (2), whero A,~A sa n—sco. Hence,
by (2.4), for large n, for every ¢{ > 0) there exists an ¢'(>> 0), such that

L
[a] < 477(0(1)] (.r + j_‘ |.r(u)|¢u} S [OMAJA T & o (211)
1

Again, noting that d]S3(z)| & [0(1)]d3'dS,(z) and sup [ 8,(z)—F,(z)|—0 as, s
n— 0, we obtain from (2.1), (2.4) and (2.7) that *

[1,] <€ aa., a8 n—s 0. o (212)
Again, using sup ]S.(z)—i_(zn > 0 a.5. 88 1—> 00 along with (2.5} and the definition

of (a,, b,), wo obtain by some etraightforward computations that

|14] < ¢ 8., a8 n—co. . (213)
Finally, [,y = 7 & (Z~EZ,), whers, Zuy = A et FuX),(ED, 1 <6 <,
u,(z) = I or 0 according as x¢[a,, b,) or not. But, from (1.5), and tfie fact that 4.~
A(> 0) as n—» 00, A'nd|cy| = O(1) for all 1 < i n Now, putting ¥ =244,
&> 0in (1.2), one gota,

wt 'g E|Zu|™ < [0(1)1..-115':l EJJF X

- ou)j [ /()] *4du < o, - (214

Hence, applying Theorem 3 of Sen (1970) along with the Borel-Cantelli lemima, it fol-

lows that
1,0 as., as npc0. . (2.15)

Theorem 1.1 now follows from (2.6), {2.11)—(2.)3) and (2.15).
Next we prove Theorem 1.2. Lot 5, denote the o-field generated by R, =
(Rups oot Roo); Fo is obviously 1 in n{n > 1). We firet prove tho following.
Lemma 21: IfFy=..=F,=Fforalln) ), then {T,Finp 1} it
a marlingale sequence.
Proof: Note that
ETupls) = (0..1—5..1)5("-01(’?-91-n/("‘f"))|\9'.)

+ E - ta B BB D). e (210
4!

el
But, B oisRBusimad (0-+2))| 5] = (04 l)"'_zl Jonlifnt-2))=p.
Also, ElV w s Rasstf(n+2))| &) = 0+ 1) Rud eliR o+ D +-2))
+H{1—(n+1) R e Rusl(a+2))
= J(Rultnt1), 1 <5<,
from the following well-known recursion relation among the expected values of func-
tions of ordor atatistics :

(i57) e+ 204 (1=) e (555) = 9a () 1 < <
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Thus for every # > 1,

ETal20) = Coni—Funit E (~earid a1

= (Can—Cns )i+ nCu—Cp i+ Ty =T o (21
Hence, {(T,,5,) (# > 1)} is a martingale scquence.
To prove the theorem, wo need now only verify the conditions of Theorem
4.4 of Strassen (1067) (seo also his Corollary 4.5), which gives us access to the law of
iterated logarithm via tho extension of tho Kolmogorov-Petrovski-Erdos eriterion
for martingales.
Lt 2,=7,=0 Z,=T7.—T\y={c—Col{Rfln+1))+¢.,

w1
$a= T (mbud ARl NI iRifrl), 7> 2
Hence, E(Z}) = % (cl—cl),{‘ll (%J—J, (%)}' > 08 ¢ # 6y
otherwise show £(Z3) > 0, where 1 is the first positive integer (> 2) for which
€5+ €5 aro not all equal. Also.
E(Z}| Fact) = (= PEJHRGIG+ ) Fio )+ BT S50

+2es—C_YEGI o Rylti+ 1) Fia)
and hence from (1.13),

Vo= £ BZUFL) = Wark Wk Ve (oa5), e (218)
whero W = £t BV IR+ )] 1.0 e (219)
W= 2§ =i ) EGIARG+ 1) 10 . (220)
W,y = 'fi’E(#l‘y,_,). . (220)
Now, BUNRG+ | Fi) = EGHRG+D) = 48, i3 1.
Hence, W,y = B (er—Eitdl.
=1

Noting that
Cl= X q—i)i = E Fland & (a—5_)t = 5 Gli—1)Y3,
fui (23] (=g fug

where Yi= (et o Feia—li—=D)e)lili=1)) i =2,3, ..., 1,

n
one gots C2 % (o4—cq,y)*AY = A% us n—r o0,
{=2
ie, C3I 1> A* ag 5 0. . (2.22)
Noxt, we shall show that there exists nn 3 > 0, such that
GV, = O(n=") us., ns n— 0O, . (229)
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In passing, wo may note that ¥ > W+, and C?— o0 asn—» 0, so that by
(2.22) and (2.23).
lim V, =00 as, . (224)
—te

To prove (2.23), fimt note that
E(¢.J.(R../(n+l))|.9‘.-.)=:§:(c,—-é.,_.)[n"'::flu.l_(i/(n+l))] :
Byt D+ D)= (R ygln 410 ... (2.25)
Hence, ono can write
86 —Ea ) Bl ad (Bl +1)) | Fpcs) = 2A.C._.n"(c.—i:__,);:‘.:: dosaas(Rocss)

. (2.26)
where duyy = nlcly; and "}“" 1da-yl = 0{1). [by (L5)}, w (2.27)
Fuali) = '[n“i L+ DY G+ )= TGl a1, .. (2.28)
1<ign

By (2.27),?}: dyyy=0, :i: J}_,' =, and for every r > 2,

;.: ol < (,max 1ol E, Ty =0m). .. (229)
Also, taking r = 248, &> 0, it follows from (1.2) that
j JHw)(log(1+ | J()| )y < 00 == o} 1 )] {n(1l = u)}~du < o0

(sco proposition 1 of Hoeffding, 1068). Hence, noting that J{u)is 1 inu:0<u <1,
one gets that

£ 9(z5)

where K, << 0. The last equation in turn implies that there exista a finite K such
that

l dfn1—i) -7

e l\',j 00 (el =) du < co,

<A bl VR o<

[CE3)

. . . (2.30)
4o =3} vt rul N
wE o |< we ) M <icn

Ono can also write
i) = [ =01 & st ] [ (Z5) - ()] 1 <5<,
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Write
st =9 () 40 () -7 () a < aom.

Procecding as in Section 10.5 of Puri and Son (1971), one can show that under condition
{iv), aan—> o0,

=0(n1-7), y> 0.

i 4 (n+1} J (n+l)

[T3{<{}
: u n ~§ i
Also from (iv) |J("7.:'_: n+l)| ;I(l:f: ﬂ) — t * du =0

for all 1 € 5 < n—1.
Thus, for large n,

et = [ £9 ()17 () () oo™

e [IRY j+1 —1-0
=[-=E ()7 () 7 (53) ] +ou™,
. @3
whero 85 = min(},4,). Since (1.2) implies that [J(u)| & K[u(l—u)]=+**, where

8 can bo so selected that 0 < 8" <85, we have |J(j/(n+1))| < K[j(n+1—j)
(101, 1 £ j < n. Using this along with (2.30) and (2.31) we have

sup (or sup )|g._,(j)[ =0(n-'°), Yo > 0. - {2.32)
P T LY

Also, for (23] < § < n—[n?7], by assumption (iv),

. =),
| (G4 1)+ 1))—J(Gf(n+1)] = Ofn ) . (233)
Thus, from (2.32) and (2.33), we have
l‘g‘u?_‘ |gaald)| = 0("-70)' for some ¥y, > 0. e (2.34)

Now, the veetor R,_; = (R, 1, ..., R34y} cAN assume all possible permutations of
(1,...,n—1) with tho common probability [(r—1)!]-1. Also

sl L=}
;‘2‘ desfarlRacy) = 12‘ d oy ggR-s(Racap) o (2.35)

whero g2.4(j) = gas(f)—(n—1)"> ;:" Fuatlih 1 < J € n—1. Hence for any positive
integer %,

= ®
E{E:d,,_ugﬁ_.(lf__,,)} =,}§.x= (=1)1"ID fey, crvs em)Taley oo )y e (2.36)
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whoro the summation I, extends over all ¢ » )1 € &  m) for whichg:-l o = 2k,
(n=1)"t™ = [(n—1)...(0—m)}"! = ((n—1)'™))~}, and

Diey e = EE Ay, - iy - (237)

Odepntmd= BT G ARG e (239

Using (2.27) and (2.20), one can show that D (¢,, ..., &a) = O(n™) for m & k and O{n%)
for m < k (sce 0.g., Puri and Sen, 1971, p. 74). Also, wo shall show that

;-E“ {gaaald)| = 42 < 24* . (239)

To prove (2.39) note that aince J (j/(n+1)) is 1 in j, and ‘fl Jln41) = o_’z’l.l_
(3/n+1)) < 0 for overy r & n.
Th,  Elgaail =2 E El.l "H)[ (E)-a.(:5)]

=g () E D ()2 ]

ta)

- _,.~-:§:J_ m)[.r ;._+‘1)‘ "_H)] = A1 G 241,

Now, from (2.28), (2.34) and (2.39), ono can show that G.(e,, ..., ém) =
-t

—m)7, =k, - ~[m]

On ‘) <O )forallm & kyand = Ofn "°) forallm > k. Thus, (n—1) -

D,fe, e tm)F (e, .y tm) = 0(11—"0) for all ey, ..., ey satisfying i =2k g,
ful

S=1..,m 1< m g2k Now, lot y, = yo+7os whero yu> 0(i=1,2), and
soloct k such that ky,, = 149, ¥’ > 0. Then

P{l % dusttraB)| > 0} <0 {E e Re)

=00 = 0™, o (240)
¥ > 0, and hence, by the Borel-Cantelli lemma
= =471

IE‘ d._,,g,_,(R,_,,){= O(n ") aa, a8 #— 0. . (2.41)

e PR . -
b ,°0:-,(c.—51..)A:J< (..’5 i ep) '(‘_x. fer=é1 141 < 0,0 )

Also,

L] - t
{l}'l (e1~&y.,)04] } , wwing tho faot that C, is 1 in n. Hence, (2.23) follows from (2.20),
(2.22), (2.30) and tho abovo inequality.
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Finally, we prove that as n— o0, C73¥,,— 0 a8, Noto that by definition,
gt= l‘“-“:._l {e1—Ca-1)(y—Cacn) [V sl Rat/(r+ 1)) =T oy (Rt /1 o Bigl(n 1)) =T ey
(Rapsin)]l. Now, E[(J (Bufin+ D~ s Racytfi}] Famy) = n73{n— Ry ) NI R
(04 D) = Ry gt 07 R [T ((Rue g+ D0+ 1)) =T u sk Boyifn)). Using the
identity that J,_y(ifn) == n="(n—i)J (if(n+ 1)) 40" ((i4+Dfin+1), s =1, ..., n~1],
ono gets on simplifications that E([J (R fin+1))—J (R, _ye/n))}| Fnoy) = 0728t
(=R (R DN+ D)= I (R yf(n+ . Again,  for R,y <Ry
B R0+ 1) = acs Ryt B g+ 1))~ T p (Rl )] | Fah) = 87,V
((Racst )0+ 1) =S o Racat/ MY SR+ I 1) =T s (R gm0 (R oy —
R )V R ygfn 1)~ u (B i) (R omyg D (1)) = s (R ygim)] 1M~
Ruc s MI R acul(n+ 1) =d s(Racatf )T (R ygl (2 +-10) = J o R, _yfn)] which simpli-
fiea to 2R ,_y(n— R y)[J (R ucrt W (n+ 1)) =T (R _yifin+ 1 (Ruys+ V)f(n4-1)
—J {Ru_ygf{n+1))] (by using the same identity among tho expected order statistics).
A similar case holds with R,_,¢> R,_,;. Thus we get

E(J o Rutfin+1)—J sl Rt M) (R agln 1)) = I u o R _yyIm)]} Faca)

= n~t[min (Ryyq, Royg)ln—max(R, s Booyy))
(a(Rucait Dot )= o Rucif (1))
Ry + Din+1)) =T o R _ygln+1)))-

Hene,  E@M|Fu)= & 12: (B =Fu iRt Rucas)y oo (242)

where  g}(1,7) = n-¥min(i, §))[n—max (i, I i+ 1)/(r+1))

= (ifia+ DN WG+ D) +1)—=Jd il n 1)) . (243)
Note that by virtue of condition (iv), we have as in after (2.30), J,((i+1)/(n+1))
=Ju{iftn+1)) = [JIE+ 1)f(n 1) =G n+ IN]H( G+ 10 + 1) =G+ Un+ 1)]
=[Vuiftn + 1)) = JGn 4+ 1)} = [V + D + 1)) — JGE[in + 1)] + O(n~t), for all
1§ € n where y > 0. Therefore, by the Cy-inequality,

[Talli+ D+ 1)~ I+ 1)  20J (41 (n+1)—J(E/(n - IN]HO(=1-#),
for all 1 {§ g n. Since R, ;=(R,_,, ..., R,_,)’ takes on each permutation of
(L, .., n—1) with tho common probability [(n—1)}!]-1, it is easy to show that CZ%
E{E(¢}| SFuma)) = O(n-1-).  On tho other hand, by using (2.42) and procceding as in
(2.34) through (2.40), it follows that for every (fixed) positivo integer k, Ci*} E{E(gE]
Faa ¥} = O(nk-27), Consequently, for some C > 0,

P{CIHE(BEFoey) D Ca177) & C-knk+E[O(n-k-21)) = Ou~1Y), e (244
So that, if we choose k auch that &y > 1, we obtain from (2.44) that ns 1 — o,
CiAEGN &ua) < On7Y7 ais, e (245)
Finally, by (1.11) and (2.21),

Gt = E @Hicheiicy, e (240)
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where C1 3> €7y, Sinco £ a~t7 <0, 0K CHCIK T, ¥ 2KV K, and oo
88 n— 00, by (2.45) and (2.46), we obtain that
Gt ;>0 as. as n—oo. e (247)
Thus, by (2.18) through (2.23) and (2.47), we obtain that as n— oo,
C'A-1Y =1, an. as no . e (2.48)
Now, for every { > 1, we define
Jity = max {1, t(log log 1)*/(log 1)}, e (249)
o that f(t)is T istbut 12 fit)is | int. It follows from (2.48) that for every ¢ > 0,
there exists a positive integer n,{e), such that for n > nyle),
1—¢ S GV, A1 & L4e us, o (280)
Thus, front (1.11), (2.49) and (2.50), wo obtain that as n— o,
SV 2 [{(1—e)4°CEllog log{(1~ ) A3 CH ) llog(1 + €)+ 2 log A+k log n ]t
> K, n{log log n)/(log n)* a.s., e (2.60)
whero K,{ > 0) dopends on ¢. On tho other hand,
2, < Jea—tuus] | Julafln+ 1] + 180
< lea—Cunyf | Vulnfin+ 1)) + ,zl,‘l‘x_l Jet=8pe| 1Talnf(n4-1))=J (1 (n+1D)] .

But, [ J,nfn+1)] = | BNV, | < E[IMULFF =0 J‘|J(u)l'u""du]"'=0(n"'),
n > 2, wherer > 2. A similar bound holds for |/ (1/(n+1))]. Using(1.5), ono gets
then | Z,| < C,[0(n~)[0(n¥)] = C,[0{n-v-¥)]. Lot then dp = {weld :V () >
(E—€)A2C?, 4 n > m}, for every m » 1. Noting that both ¥, und f{V,) are non-
decreusing (a.e.), we abtain from {2.51) and the above bound for 12,], that 83 n— o0,
P2 > (VN F o)) = 0% wed,. o (282)
Thus, if wed,,
LV 2PZ,Cz|F. ) <0 na. e (2.63)
Ligd A

Hence, the conditions of Theorem 4.4 of Strassen (1067) are all satisfied, and (1.17)
follows. Finally, (1.18) and (1.10) are direct consequences of (1.17). QE.D.

Consider now the proof of Theorem 1.3. Using Lemma 2.1, and a recent
murtingale functional central limit theorem by Brown (1071), it suffices to show that

V. fvar(T,)— 1 in probability ua #— co, e (2.64)
and the following condition holda :
(vur T )t ) [ a%P{Z; € 1} 0 as n—>c0. e (283}
I et

345



SANKHYA : THE INDIAN JOURNAL OF STATISTICS: Seares A

(2.64) is an immediate consequence of (2.60) and tho fact that var(T',) = A2C?, whero
A} Atas n—s 0. Alvo, by (2.49), (2.562) and the fact that var (T',) — c0 a3 1 — ¢0,

(2.55) follows.
3. SIONED RANK REOBESSION STATISTIOS

Let {X¢, i > 1} bo a sequence of independont r.v.'s with d.f's (Fy(z), i > 1)
with each F; absolutely continuous with respect to Lebesgue measure and aymmetric

about 0 i.e., Fi(x)+F(—x)=1forallreal zand i » 1. Let R} = l£ u(| X ~| ),
=
1Ks<n(> 1) and let i"_: ‘z::‘qJ:(R:‘/(n+ 1)) agn X;, where sgn u=1, 0 or —1 according

pauiy <, =or <0;Jyi/(n+1)) = ES(Uy), U, € ... € U,, 09 defined in Section
1, and J*(u) = J((14u)/2), 0 < u < 1. It is assumed that J{u)4+J(1=u) = 0 for all

n - PR
0<u<] Also, let A= n-1X [Joif(n+I)]E, ¢t = ( z c}) ¢,8i=1,..,nand
" f=1 i=1
To=n-b A2 Z Gy sgn XgJa(REfn+-1)). Then, we have the following two
fml

theorems whose proofs are onitted becauso of their essential similarity with the proofs
of Theorems 1.1 and 1.2.

Theorem 3.1: If JeL, for some v > 2 and maz |&y| = O(ad), then
1Gign

lim (Ta—12) =0 aa., . {30)
—pn

twhere 7n = w1421 b Cnt f agn 2" (| z| MFz), H(|z]) = n~t ‘ilﬂt(lz”. and
f=] - o
Hilz1) = FllzD)—Fd~z]) = 2F|z)— 1, § 2 1, z real.
Theorem 3.2: If (i) J* L, for some r > 2, (ii) for every 0 <u < 1. | ()|
31244, :
< K[u{1—u)} ' ®for some 8, > 0, (iii) Fy = ... = Fy = F, % 5> 1, (iv) ,"‘w‘z_lc-‘l
=0, and (v) lim inf 52 E 4> Gy > 0, lim aup n» E A< C° <, then
—o f=1 —o =i
(a) there is @ Brownian molion (1) on [0, co} such that

T2 = E(t)+o[(t log Tog 1)) a.s. as - 00, (3.2)
where 1—"': =T, f,=0; (3.3)
v =":L‘l BT Ty oo Bi) @34)

and (b)
lim sup T (245030 log log (4:C0)4 = 1 as. @.8)
e {3.6)

tim inf B [2(ASC2) log log (G314 = —1 a.s.
N
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where r=fd Y

1t is possidle lo replace (AJCR)* by V3.
Consider now another process Z, = {Z3(t) : tel}, where
Zita ) = (4207T5, o (3.8)

b= (CoADHCIARN, k= 0,1,...,n; and by lincar interpolation, complete tho
definition of Z3(t) for $€ [ty a liys,als = 0,1, ..., n—=1. Then, analogous to Theorem
1.3, we have the following theorem.

Theorem 3.3: Under the assumplions of Theorem 3.2 Z3— W, in the uniform
topology on €10, 1], where ¥ = {IF(t) : 4 € I} is a slandard Brownian molion.

Remark: In Theorems 1.2 and 3.2 if we are only interested in (1.18), (1.19),
(3.4) and (3.5), without the a.s. convergence to appropriate Wiener processes, and we
consider the weaker forms where we repluce AXCHor ACTY) by their stochastic
counterparts ¥, (or ¥3), then one could have used a more recent paper of Stout (1970)
whose conditions are easier to verify. However, in view of our stronger results in
(1.17) and (3.2), we have preferred to use (under essentially no stronger regularity
conditions) Theorem 4.4 of Strassen (1967).
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