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SUMMARY. Tho usuol quo of studying tho asymptolio distribution of linear functions
of n order alatistics is tho decompoaition of such functions into mean of n indrpendent and identicolly
istributed ranilom variables phus & remainder term, say, fta wuch thet 4/7Ra converges 10 zero in proba.
bility a8 n— 0. In this note, we have studicd how fast R, converges 10 zoro almoat aurely a8 n— . In
1this context, on i ing inequali tho ions of thi pirical dintribution function from

¥
the theoretical distribution function is also derived,

1, InTRODUCTION

Let X, ..., X, be n independent and identically distributed random variables
(i.i.dr.v.) each having a continuous distribution function {d.f) F(z). Let X,;1 €
Xe:e € oo € X, denote tho ordered X’s. Consider the statistics

T, = 1.-1‘21:l J (;_')x.;, = _j':a:J(F,(z))dF_(z), 31, . (LD

where F,(x) denotes the empirical d.f. of X, ..., Xp (n > 1). It ia proved (sce e.g.
Chernoff, Gastwirth and Johns, 1967; Govindarajulu, 1965; Moore, 1968; Shorack,
1969 and Stigler, 1069) that under euitablo regularity conditions on J and F, v/n
(T,—p) converges in law to a normal (0, ¢?) distribution as n— co, where e = |
zJ(F@)dF), and or=2 [ [ J(FE)J(FO) Fle)(1=F(t))dsdt. The basic
~ogi<n

technique used in all these papers is tho representation of +/#(T,—p) as 2-tS,
+R,, whero 8, is tho sum of # iid.c.v. with zero mean and variance o?, whilo R,
the remainder term converges to zero in probability.

To obtain S, and R, explicitly, we introduco the following notations. Let
U,(x) denote the empirical d.f. of F(X,), ..., F(X,) (n > 1) which are i.i.d. uniform
(0, 1) variables, and @ any inverso of F. Then ono can writo

7. = nj' GOy U d Unlnd(n > 1 . (12)

K= !l Gu)Jmydu, ot =2 | [ J@)J)u(l~v)dG(u)dGl). ... (1.3)
) oducrcl
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Assuming that J'(u) exists for all ue(0, 1}, T,—x can be represented as
Ta—t = Liy+1,+13,, e (14)

where,

L= f OO0 -wdut § O AU -w); .. (10)
I = [ OO0 =) - W — G Uyt .. (o)

In = { GO0 WU 0~ d( U0 -, - 1)

The above representation is due to Moore (1808). It can be shown that if J{x) is
1
bounded on [0, 1] and E(| X,|) =J|0(u)|du < o= li:z: uGlu) = ]i:z: (1—u)0(u)
« .
1
= 0), then after integration by parts, with probability 1, I,, = _.{ J(u)U (u)—u)

dG(x) = n-1E Z;, whero Z; = —n} {elu—U0)— ) J(u)dO(u) (i = 1,2, ..., n), c(t) =1 or
1

O0ast » or < 0. Z'nareiid.r.v. with zero mean and variance o*. Also, it is shown
that R, = l"+l..—rb 0 as n-» 00, under suitable regularity conditions on J and F.

In the present note, we have examined the almost sure (a.s.) rate of conver-
gence of R, to zero as n— c0. The following theorern is proved.

1
Theorem : If (i) J*(u) is bounded on [0, 1], (ii) j’[u(l—u)]’nﬂ Glu} | <o,
then R, = O(n~Y(log n)*) a.s. a8 n— <0,

Tho proof of the theorem is postponed to the following section. One may
note that if 0 < o* < o0, & law of iterated logarithm (LiL) for T, follows as an imme-
diate corollary to our theorem. This is because the Z's are i.i.d.r.v. with zero mean,
and non-zero and finite variance of. Hence, verifying the classical Kolmogorov
condition for LIL (ree Wintner and Hartman, 1941) one gets, li_r:l sup (2na? log log n)='/2

‘i Z;=1as. Also, from our theorem, (20* log log n)-¥2/7 R, = O{n~2%log n)* (log
-1
log n)-%) a.s. aa n—00. The LIL for T, now follows by writing
(20" log log n)~13/A(T,—p) = (2no* log log m)~V* £ Zi+ /AR,
1

An alternative rep tion of T, is possible using the rcsults of Xiefer
(1970). But thon, the reaulting remainder term = O(n-(log n)"5(log log n)~V*) a.s.
AR n-3 0,
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2. PROOF OF THE TREOREY
The following is the basic lemma in proving the theorem,
Lemma : For every 83 0, there exist K(> 0), 6 > 0, and n, (all depending
on &) such that for n > n,,

P{»:u.g‘ (u{1=w))" M| U (u)—u) | > Kn M logn) S 2012, (1)
v
Proof :  The proof of the lemma is completed in several steps, First we show

that for every & > 0, there exist X,(>>0) and n, (positive integer) (both depending on
8) such that forn > n,,

P { sup (u(1—u))~ 11| U (u)—u| > Kn=12logn }( w1 L (22)
n-1gug J—n-t

Next wo show that for every & > 0,

oup  (u(l—u))" P\ U (u)—u| = O(a~1~"), . (2.3)
onun-t-4

[ ({1 =) | U (u)—nu| = O(n-1-41), . (24)
L=nt4gul

each with probability » 1—n-'%, Finally we show that for every 4 > 0, there exist
K,, ny and ¢ (all dependont on 8) such that for a > n,,

P { i n“)l/’(‘:gn“, ’_n_H](u(l—u))-"“‘| U (u)—u| > Kpn¥t]og n} < dn1
. (2.6)
Step 1: To prove (2.1), let 4, ,=7/n, r=1,2..,n—1 Then, for
ey Trad, =23, .., n~1,
(a1 =ra, U (ot 01—, 8)
< (1 =u) U (@) ~1) < ros, 1=, U NTr, )~ Teans) e (2.0)
The upper bound in (2.8) can be expressed as
0, (=25, A1) 22001, wftir-1, )2 U a0, )= 0, )+ (10, l1=T0r, )220, w271, 0)
=(rf{r— l))‘"("h, w1 =27, N UGy, 8)=77, )+ [r—Din—r)]2,
Similarly, the Jower bound in (2.6) can be expressed as
(=D)L=, W KU sper, =0, )= {r(m~r+ 112,
Note that
{r—1)n—n))17t < (n—2)"¥8, (rin—r+ 1))V%  (2n— 1))V and (rfir—1IV* € V3
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Thus, for we[yr_y, s Tr, )
(n(1=1))"4| U fu)—u]
<3 max {01, (1=, I Unlny, ) =15, 8}4-0(7¥8), r = 2,8, .., n—1.
Thus
"_sl\?“((lug‘_—_u))“”l Unlw)—u) V%_El.t::_!ru, w{1=75, NI U, (55, ) — 15, o] Oln=3).

Henco, for proving (2.2) is sufficiont to show that for every & > 0, thero exist JX,(> 0)
and n, such that for n > n,,

—7 - £ - -
P{ max (0=, ) Uy, }=14,01] > 7 n¥log n) < 20714

. (27)
But L.m.8, of (2.7) is bounded above by
n=1
T PlIn Ulag, =yl 3 15,0, - 28)

Wheo 1,0 = L a0 (L WP ognlj = 1,2,y 1)

But aU,(y;,,) hes a binomial distribution with parameters » and y;,,. Hence
applying Bernstein inequality (see Uspensky (1937), pp. 204-205) and (2.8), one gets
L8, of (2.7) bounded above by 2'51 exp(—hy, ,), where,
fat
1 1
hi,n = 5 G, oll10s, o=, a) 5 11, WBX (77,8, 1—71,4))
1
> 5 B, ll—ns,n)Hy, )
1
= 5 (K}f2)n1y, s1—2y, wXlog n)!/[n75, o(1—73,w)

+ 5 Ko alii=ny Jinlog )

1 1
= Kiflog n}/ [1+ 75 Bt a—my, it log n], e (2.9)

i=1,.,n—1. But,forallj=1,...,a—1, 5 001—ns )} {n}(1—n-7)}. Henco
the d i of the Jast expression in (2.9) is bounded above by

(v (20 o)
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Noting that

i (l—n ) = (7—'—:—1) Y g vz,
one gels from (2.9),

b > ¢ KHlog wP(L+K, ognyt > L K logn

- J¢
for » 3 n;, where n, depends on K,. Honce, 2‘:‘:: oxp (—#,,) <2nl-Tl<2
»=1- for K, > 8(2+3).

Step 2: Wo prove only (2.3) aa (2.4) followa anulogously, First, note that

P {o<f:£’-w U,n) = o} > P(U,(n44) = 0} = P{F(X,)) > 34

=(l—a1)n > 119,
Then, with probability » 1—n-1-%

sup (u{l—u))"VMU (e)—u]) € sup ulYl—u)in
[ ] 0<Lun=i-

§ n1 (] t-4)-18 = O(p-1-00),

1
Step 3: Write I}, = [n~2, n7Y),1,, = (1—n~1, 1—n~*2], To prove (2.5) it
is sufficient to show that for overy 8 > 0, thero exist Ky.Kj, g, ng and € such that

P { u}p (@(1—u)) 188 | U (u}—u| < K22 log n} < 2n-1 for n > ng; ... (2.10)

P{ :‘\;p (u(l—u))=12| U (u)—u)| » Kgn12log n} < 2071 for a pag. ... (211)

Wo provo only (2.9) as (2.11) follows analogously. To prove (2.10), let &, » = r/a*¥,
r=1,2, ..,0, ¢, = [n1*), the largest integer contained in #*+. Arguing similarly,
a8 in step 1, ono gets, for us{Ey_y, a Erv W)
(a{l—u)) R U fu)—u | < v/2 B r?gf'[i/. M1=Eg, I U Ey, =6y, a]
+O(n-t-s+itsbi 1),

Hence,

sup (u(l—w) 4| U () —u| € V2 max  [(G,u(1=, )00

nelin Jm1, 8 e yta

| UslEs, a)—Es, u| JH-O(n-3-4a-20d0),
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Hence, to prove (2.10), it is sufficient to show that

P{mex @08, U6, 081> 73 Kinlogn} .. @12
< 2% for n > ny.  But Lus of the inequality in (2.12) in bounded above by

£ P(InU.&, ~3ks,] > £, . - 219
=
wheto 4= 7 KinhPloga(ly (i—F, 08 (=1, ...0,).

Using Bernstein inequality once again, the expression in (2.13)

[ 0 ;
S B L oxpla e where, 01 = G L ST Sor

Wa can write

Fim = oz Ko 1og s o1y, (1 K- m0110g 1) (e, (15, )]

(=12 )
Usa the inequality
14 ] 41—
nEy (1=F; V84 3 alip—ithilit-a(]_y-11-8 5 y-10HMen) (_2_)
for n > 2,
Also,

niilog n)1(Ey, w(1—Es, PH2 < n¥2{log ) a1 = n(log n)T;

choose ¢ =%(l+6)/(2+6)( < —;—) It follows now that

1 1
Eyf = )*-%ogn
Ve 12 .
[/ ———.—1-——2[1_'_’('! n-)‘(logn)-l] > Clognforn > ny,

Ca
€ and ng both depending on K’ and ¢ i.e. X; and 4. Hence, 2’:.‘.‘ exp(—gy,.) €
2e,-C  2n1H-C & 201 §f O » 243, Thue (2.10) s proved. Hence, the lemma.

The lemma has independent interest apart from proving the theorem. It
gives & useful estimate of the fl fon of the empirical process, and s expected to
be useful in other contexts us well. For proving our theorem, the following corollary
to the above lemma is used.
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Corollary :  For zvery 8> 0, thereis a K > 0 such that with probability 1,

"(2_3)' v

L (u(1—u)) Wu)~u| € Kn-dlogn us n — co.

Proof : Tho proof is immediato from the above lemma and the Borel-Cantelli

fomma.
3. PROOF OF THE MAIN THEOREM
J” bounded — J and J’ aro bounded. Using tho mean value theorem, ono
1
ocan write Iy, = { Glu)(U(u)—u)? JOU (u)+(1—0)u)dU (x), 0 < v < 1. Using tho
corollary to the Jomma and conditions (i) and (ii) of tho theorem, it follows that J,, =
1

O(n-Ylog n)*) a.6.88 n — 0. Also, with probability 1, I,, =—;— J Glu) (u)d(U, (u)

—u)’+—;‘6fl G(u) (u)(d(U () NOW:; Glu)J'(u)d(Ua(u))t = "-’.é:" GFX) (F
(X)). GF(X))J'(F(X,))’sareiidr.v. withexpectation njl' G(u)J’(u)du = E(say). Henco,
[E| & const. J [G{x)]du < oo from (if). Using the strong law of large numbers,

a 1 1
a1 E\ QIFX)N'(FIZ) —» { Qu)'(u)du < 0 8.8 88 n— 0. So, oj Glu)J'(v)dU,
(1)' = O(n~!) 8.8. a8 n —> 0. Again, integrating by parts, one gots with probability

1 1 1
L SO (T fe)—uft = — ! (Un(u)—u)t Glu)) '(“)d'l—of (Un(u)—u)V'(u) dG{u).
Using the corollary and the conditions (i) and (ii) of the theorem, it follows again
that each of the above two terms is O{n-(logn)!) a. as n—co. Henco, the
theorem.
R ks: An interosti jon would bo to replace tho boundedness

condition of J* by milder cond.mons on J, J* and J“ under which a simifar theorem
can be proved. We do not know, however, whether tho same order of the remainder
torm still holds truo. It would also bo worthwhile to carry out tho investigation

1
undor the milder and moro natural condition E(|X,|) = [ [G(u)]du < o than our
0

condition (ii).
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