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SUMAMARY. For stutionary ¢-mixing procoss, n Chorunff-Bavague mprosenlation of n groomal
elngs of runk order slatistics iv considerced nnd wuituble ordom {in probahility vr abnost surely) of tha
indor termy aro i

Thewo nro thun utilized in proving tho asymplotic normality, weak
convorgence to i i amdd St type alinoat suro invariance principles for theso rank
statiation, Tho law of iteratod logarithm for thoso siatinlios is also entablishod.

1. INTrRODUCTION

For the problem of two independent samples, Chernoff and Savage (1058)
considered an elegant decomposition of a rank order statistic into a principal term
involving averages of independent random variables (where the central limit theorom
applies) and a remainder term which converges (at a faster rate) to 0, in probability, as
the sample sizes increase. Similar decompoaition for the one-sample rank order sta-
tistics were studied by Govindarajulu (1960), Puri and Son (1969) und Sen (1970),

umong others. Hajok (1008) and Huskovit (1970) relaxed the regularity conditions
to o certain extent by using n powerful varinnce inequality along with the polynomial
npproximation of absvlutely conti seore luncti lof bounded variation], and
Pyke and Shorack (1968s, 1968b) attacked the problem of asymptotic normality
through weak convergenco of certain related empirical processes. Though these
later developments weakon the regularity conditiuns on the score funotions a little,
they may not provide an order of the remainder term (holding either in probability or
almost surely (a.s.)), which has certain interests of itsa own. For example, 8 refined
order of stochastic convergence of the remainder term enables one to study the limiting
behaviour of rank order statistics (deeper in nature than their asymptotic normality)
by working with their principal terms which jnvolve averages over independent
random variables and are thereby readily adaptable to refined probabilistic aualysis.
Indeed, in certain weak und a.s. invariance principles for rank ordor statistics, to be
studied in detail in Sections i and 6, the CS (Chernoft-Savage) decomposition alung
with specified stochastic ordors of the remninder terms aro very useful. The law of

* Part of tho work was complolod whila tho author was visiting tho Indian Statistical Institute,
Caloutta, and partly supported by tho A h Laboratori Air Forco Systoms Conunand,
U.8. Air Forco, Contraot No, F33815-71- C-IO°7 Roproduction in wholo or in part permitted for nny
purposs of the U.8. Government.
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itornted logarithm for rank ordor statistics also follows quito easily from this decomposi-
tion. Finally, when the obsorvatiuns are not independent, it may ho quite difficult

to oxtend tho poworful vasiance inoqunlity of Hajok (1068), and o compuratively easy
appruach to the study of tho asymptotic normality of rank order statistics can be
furmulated with the aid of the CS-decomposition and the stochustio ordoer af the ro-
mainder term.

Our study in tho presont papor cent 1 the dj ion of how fast Lhe
remainder term converges stochasticnlly to 0 for tho one.sample problem (seo Seotion
4). In duing so, we cunsider stationury ¢-mixing | which includo independent

m-dopendont (m 22 1 and tixed), uutoregressivo and moving nverage processes as
specinl coses. Under essentislly two different g-mixing vonditions [viz., (2.3) and
(2.4)], two different orders of the stochastic convergence of tho remainder torm are
obtained. It ia seon that less restrictive ¢-mixing conditions can be adopted by pay-
ing o premium on the growth condition of the score function {viz., (2.8)]. Uuder
cither of tho two ¢-mixing conditions, asymptotic normality of rank order statistica
is studied in Section 5, while certain weak and a.s. invariance prineiples are established
in Seotion 6. In passing, wo muy reroark that for stutionary ¢-mixing processes, be-
sidea the work of Sorfling (1968) on the Wilcuxon two-samplo statistic, the authors
are not awaro of any dovelopent for unbounded soore functions.

The bnsic study is related to certain stochastic order of Quctuations of the
ompirioul proceas, studied in detail in Seotion 3. The preliminary notions rre given
is Seotion 2 and the order of the remaindor terms is studied in Soction 4. Asymptati
properties of rank statistics are thon presented in Sections 6 and 6.

2. PRELINMINARY NOTIONS

Let {Xy, —0 < i < o0} ho a stationary sequence of ¢-mixing random variables
defined on n probubility spuce (Q, A, P). Thus, if & . and 45, be respectivoly
the o-fields generatod by (X, i € k)and [X,, i > k+n}, and if Bis st . and Be My,

thon for ull k(—w0 < k < ) and 2( > 1),
| P(E,| B))—P(E,)| < $n), dln) > 0, . (20)
where 1 2 ¢ (1) > 4(2) > ... and lim @(n) = 0. Tho usual ¢-mixing condition pertain-

—pr
ing to tho applicability of tho central limit theurem for sums of the X is

Ayf¢) = £‘¢'(n) < o (22)

=

On the other hand, for weak convergenoo of empirical procosses (to be defined later
on ), we muy nsed oither of the following two atronger conditious :

(a) for somo k 3> 1, Axlg) = T wighn) < oo, - (23)
=1
() forsomo ¢ 0, B stng(n) < co. e (24)
w=l
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We denote the marginal distribution funotion (d.f.) of X; by F(z), z«R, tho real
line (—o0, o0}, und agsume that F(z) is continuous everywhere. For = sample (X,. ...,
X,) of size n, define the empirical d.f. F by

Foz) = -lli".l wp—X)), —o <z <o, . (25)

where #(t} is [ or 0 according astis > or < 0. The weak convergence of the empirical
process

(ni[F,(2)—Fz)], —o <z <o} e (2.0)
to un appropriate Gaussian process has been studied by Billingsloy (1968, p. 187) under
4.(p) < oo and by Sen {1071) under A,(¢) < . In passing, we may remark that
(2.4) holds for m-depondent and a general closs of autoreyressive processes, while (2.3)
is much more general,

n
Lot Ry =;2 (] Xi] —{X;|) be the rank of |X;| among |X,|, ..., |X,|.
-1

1 € i € n, and consider the usual one-sample rank order statistic
T, =1 5 aX)dn 1) Bag), 53 1, 27
=1

where J (if(n+41)}) = EJ(Uy) or J(iju+1), 1 €ign, U, €...& U, are the
ordered random variables of o sample of size n from the rectangular (0, 1) d.f. and
J(u) = JU(1+1)(2), 0 < u < 1 is an ubsolutely continuvus and twice differentiablo
score function.  As in Chernoff and Savage (1953) and Puri and Sen (1060), we assume
that there are positive (finite) constants K, a0 << a € 1) and 80 < & € a), such
that for 0 < 2 < 1.

|Jo0)| = |drT @)dur| € Klu(l—u)]=-, ... (2.8)

for r =0, 1,2. Note that (2.8) implics that
Iy € K l—~a) -, 0w, r=0,1,2, (2.0)

where K* < 0. The choice of a depends on the ¢-mixing conditions (2.2), (2.3)
ur (2.4). In fact, under (2.4) we will let. & = }, while under {2.3), & = (2k—1)/2(2k+-1),
k> 1, or (k—2)/2k, k > 3, depending on whether we desire to have a bound for the
remainder term holding in probability or a.s.

We write H() = P{|Xi| € 7} = F(g)—F(~z), > 0 and H;x) = F,(z)
—F (—z—), x > 0. Then, we haveo by (2.7),

T, = [ 3,08, @)+ 1F )

= gt '): B(X()+Aa, e (2.10)
L}
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whore
pe {' J(H(2))dF(z), . @11)
BOX) = QA X1+ [z~ | Ko~ W HEMF @)=k, .. (212)
R, = ] U0 @)+ 1) = (a4 DDA (o) e (23)
+ I [J(nH () (n |))—J(H(I))W.(=)—I [H ()~ H(2)\ ) (H())dF(z).
We term n38y = u4n-"' ‘f‘.l B(X;) and R, as respectively the principal and remain-
der torms of T',. Limiting behuviour of these torme and other properties are studied

with tho aid of rertain convergence properties of the empirical process in (2.8),
which we consider frst in Section 3.

3. ASYMPTOTIC BEHAVIOUR OF THE EMPIRICAL FROOESS

It is known [of. Sen (1971)] that if 4(#) < co then the empirical process in
(2.8) weakly converges to an appropriate, Gaussian p and

Bup M| F (2)—F(x)] = Oy(l). . (3.1)
-m<eca

Wo are interested in the following related vesults where we define ¥y = F(Xy), i > |,
80 that P(¥ < =(:0&(& 1, and we let G,ll) =t 5:‘ wi—Yo. D <1< 1.
2 L

lemma 3.1:  If(2.8) holda for some k 3> 1, then for every & > 0,
sup it G ()~ {10}~ = oy(n} /), as n—p o0; w (3.2)
06161
if (2.3) liolds for some k > 2, then as n >

Jup 1M G () —L | (1=} = o(nti%k) a8, e (33

Finally, under (2.4), for every ¢ > 0,

Zup, w61t | {1~ D}14* = 0 log u) we. o 8

[Note that for b = 1, (3.3) always holds, but is of little practical interest.]
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A CHERNOFF-SAVAGE REPRESENTATION

Proof : First note that mimgign Y1 = Y, , (88y is ™\ in n, so that for every
r>1,

P{Ym, < m~" forsomem > n} =P {ﬁ[)’m < m~" for some 2-1n K m < ﬂn]}
& £ P{¥py < (2-10)T, forsome 2-n < m < 2n)
§=3
< B P(T,, <020)
- ng! -
=EP {E. w{(n2Y)T—TF1) > 1} e (3.5)
- ny!
<IE { Y ul(nt-)-r— Y.)}
i=1 t=1

— T a2 n-r2-r4-1 = orp-r41 § oftr-
4= s

= 2y rH(1—2-1-1)-1 0 a8 1 0.
Let us define
B0 = a0 —N)H G 0—t], OIS e (3.8)

Then, note that G, (1) = 0, 0 § ¢ € n~", implies that k() = O(n=Ir-1/3)5 0 & n— o0,
Thus, by (3.5), for every r > 1,

sup A, () 0 as., a8 1> w. e (3.7)
oktgn—T
Similarly,
sup ha()— 0as., asn— o0, v (3.8)
1=-n7gIg1

Next, we note that if for some positive integer &, Ap(@) < 00, then [ef. Sen
(1974a)]

n¥ENg(n)— 0 as n— 0, e (89)
a 2k}
E [‘zl {ult— Y.)—:}] & Ryfnr+... 4 (n7)E4), .. (8.10)

for every 0 < £ < 1, # 2 1, whore 7 ={(1—¢) and K,(<c0) dependa only on {¢(n)}.
Also, note that @, () and ¢ are non-decreasing in {0 < ¢ 1), and hence, if we define
VW =kalin ™), =1, c,mg=[n""1]+1, W (3.11)
it follows by some routine stops that
(0 /2 7Y+0m-t-um)}, e (3.12
BB E |, gy, THORI)
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where by. (3,10), Aslp) < o= lor every 1 <j < g
E[(VEPE+0] & Ky(jinnyss (i o} .. +73f) . (313)
and 7,4 = n[jin'—j)n%] € 1+0(n-7*!). Thus, for every 7 > 0 and a > 0,

]
P{ mux V>m T PV > gne . (304
{x<1<»."’ ™) < T PV >y } (3.14)

4 :\_‘: (l(,(jln')“" (] +n"‘.0(j")+ +nk(v-lI_O(j-k)],(.,’"ﬂ):'(hll}
=1

—_ K’[n-lllk H)/,’Hlk ll)llO(n°)+o(nn log "n)+ e +0("=)][()(n—sllﬂ)].

Thus, on letting r = (2k+3)/(2k+1)(>1) vnd @ = 1/2(2k4-1), we obtain from (3.12)
and (3.14) that if Ax{¢) < oo for rome k 32 1, then

1
sup  [(hal)nm V] = o). e (318
AT Qi nt

Also if Ax(@) < oo for some k > 2, on letting 4 = 112k and r = 14(2k%)!, we obtain
from (3.12), (3.14) and the Borel-Cantelli lemma that as n—wo,

aup [n-VeR (1)] = o(1) n.a. .. {3.18)
gl net

The case of 1 —n~!' € t € 1—n*, r > I, follows similarly. Let us now define
VP =him), j=1...n~1, . (317)

and note that as in (3.12),

sp (01 v2 { max  TE4n. . (318)
w1 Gt glont 1<K nmt
Also, by (3.10), for cvery | € j & n® = [n4+DN%0] apnd 9 > 0,
PV > latestl) & potk sl 2 Op-tk D E[(PEE 1]
< K g rain®)1-2k{1 4 0(j/n)}, . (3.10)
80 that

Pl mox PO pmnaay <SPS s puiaeen
L s V> }< IRV >0 }
< K-Stk +h(y®)~25[] 4 O(n-k/1tk411)]

— 0 a8 n— oo, for every £ > 0,9 > 0. . (3.20)
Similarly, for every 7 > 0,

F {._,',‘.‘2;__‘179 >0 "”""“’"}—b 008 08’ n—0. . (821)
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A CHERNOFF-SAVAGE REPRESENTATION
Thus, to prove (8.2), it remains only to show that for every 7 > 0,

Pl max V¥ >19 nm"hn}—»o 88 n—) 0. . {3.29)
Mi<n-ne

For proving (3.22), we note that the left hand side is bounderd by

i ' PP > g st} < (' max  P(V > g minary,

Jono41 *<j<n—n
(3.23)
80 that it is enough to show that for each n* < j < n—n°,
nP{V§ > 7 nd/MUD}, 0 as n—ro0. .. (3.24)

Now, by (3.6) and (3.17),

PIV® > g pystesn) = p{ }«}::: [ (__y, ” >K } ... (8.25)
where

h:l =9 n(ltﬂ)mltﬂl[j(n_j)/nl]llt-l' n® <J < n—n'. ... (8.20)

Bince {u(’;—m), i»l } is ¢-mixing where P{u(j/n—¥;) = 1} = 1=Pluljin—¥y)
= 0} = j/n, following the proof of Lemma 4.1 of Sen (1972) and choosing (in his

notations) k, = "ﬁ};”' we obtain that for every ¢ > 0, Ax(@) < o for some k > 1,
(oo {13 [u (S-v)-L])] < B o {E [ (£~ Yrm,)-£]}]

< {1+ [-‘f—l-l;—o(n"““"'**‘“)] [exp(tk,)—l]}"-“. .. (3.27)

where m,_ is the largest integer for which 14k m, < 5 (i.e., m, ~ nl-Unk+),

By (3.25), (3.20), (3.27) and the Markov inequality, we have
P Ex [u(i—-Y.) ——-] > h,d}
<inf {(oxp [——thi) B [oxp (1 £ (uljin—Y—itn}) ]}

< exp{—f) n”“'“'"+—;- [j(n—j)/n‘]"-l-—a(l)}, o (3.28)
where in the last line we use ¢ = {,; = p-1-VAR[jn__j)pa]-H4 A similar bound
holds for P {‘>":l (u(din—Y—ifm] < —h3}. Now, for every 7>0 snd k> 1,
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7 nMUEHY ) oo an n—doo, and for every & ( > 1) there oxiste un n, (s, 1) such that for
n > Rafs, 1),

AR 5 g log n+%+log 2. . (3.20)

Consequently, by (3.26), (3.28) and (8.29), the left hand side of (3.24) is O(n—2+)—0
a8 n— 0. Hence, the proof of (3.2) is complete.

To prove (3.8), by virtue of (3.7), (3.8), (8.18) and (3.18), it auffices to show that
a8 n—H00

max  [h(j/n)ni%] = of1) as, . (3.30)
1€hen~1

For thia purpose, we define n® = [n¥%¥], k > 2, proceed as in (3.19) throngh (3.21),
and obtain that for every » > 0,

P [,2::- v > qn""'} < K,n“"“'"ﬂ‘"“"zl {(14+0(j/n)}

o= K ynetr Dy sE+IgI] | | O(n=1¥14R)]
= Kyn-1-Maky-3tkt10[1 4.0(1)], . (3.31)
so that by the Borel-Cantelli Lemma,

P{ max V& > pm¥*¥ for some m > n} < Kyn-2dstig-1k_, () a3 n— o0,
G sEme

(3.32)
where Kj( < o) depends on K, and k. Similarly,
P{ max V& > pm''% for some m » n}—) 0, a8 n—>00. ... (3.33)
- mog fEm— |

For »° < j < n—n°, we repeat the steps in (3.22) through (3.29), where we take
k, = nV* and s > 2, so that

PL max V9 < ﬂn‘m} = O(n-"1) as n— 0. ... (3.34)

® <J<n—ne

Thus, again by the Borel-Cantelli Loroma and & > 2,

max  [n=V%) (in)]—> 0 a.8., as n—s co, ... (8.35)
oL n—ne

which completes the proof of (3.3).

Finally, to prove (3.4), by (3.7) and (3.8), it suffices to show that for every
r> 1, and some K(1 € X < c0).

Aup [{log n)'%,()] < K. a.5. a8 n—> 0. ... (3.36)

FIGISt-n"T
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A CHERNOFF.SAVAGE REPRESENTATION

Here, wo lot » = L4-¢, € > 0, where € is defined in (3.4). Then, we divide the range
(nt=%, 1—n—1-%) into (714w, (no) l—a)) aad (1—n-), 1-n-2%). For the
range (n~1-%, n-1), we again use (3.12) und show that on defining n, as in (3.11),

mox [A,(j/n'**)/log n]— 0 a.s. a8 B> 0. .. (8.37)
1eiang
Sinoe (2.4) holds for some 1, > 0, we can select & C( < o) such that Cty > 14+¢e. Then
on choosing &, =clogn

Plutiimtt— Yy ) =1 | ML} S [§/nt*]+o(s=os)

=[jiR**]4o(rn'-*). % 1 €5 < ng. .. (3.38)
Thus, proceeding as in (3.25) through (3.29), we havo for every 5 > 0,
Ph(5mt+*) > 7 log n} < 2oxp{—7 (log al(ni+j~1) + keln-2-j(n' ' —j) | 4o(1)})
= 2fexp{—yllog n)int4 o)), ¥ | < j K ng~nt ... (3.39)
Agnin, for every € > 0 and 7 > 0, there exists an ny(€, y), such that
1 log n)in® > alog n, where 8 > 2,%n > nyls, 7). . (3.40)
Consequently, by the Borel-Cuntelli Lemma,

max  [A,(j/n'1*)/log n]—> 0 a.8. as n—» cc. . (3.41)
1€i<n

A similar proof holds for the range 1—n!  t € 1—a'-%, Finally, for the range n-!
gt < [—n~1, we again use (3.18) for each j(1 € j < n—1} and note that (2.4) implics
that as n— o0, 'ne'“'¢(n) — 0 for yome 4, > 0 ic. ¢(n) = a(n"e—"") for some ¢, > 0.

Thus, @(C log ) = ofe "™ ™(C log a)71) = offlog n)-'a-Y), where Cly > 1.
Hence if we repeat the steps (3.25)-(3.28) where we choose k, = C log n, we
ohtain on choosing ¢ =t,5 = n-i[j(n—j)/n%]-4+, that as n—c0,

r { max h.(j/a) » K log u}
1Gi€n-1

< 2n—1){exp{ & log n-t—y (G log milim—wiI*+oll)}} (1 <5< n—1)

€ 2014, 5 > 2, .. (342)
by choosing K( > }Cs) adequately large. Thus, again by the Borel-Cantelli Lemma,
max hy(j/n)flogn € K us. a8 n— o0, e (3.43)

Igman—1

and the prouf of (3.4) is complete. Note that (3.4) extends a lemma of Ghosh (1072)
to & class of ¢-mixing processes.
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4. STOCHASTIC ORDER OF THE REMAINDER TERM
We rewrito R, in (2.13) as

Ry = Upt.ctCpni v )
Opa = ] Watn @)+ 1) = JnH (& in+ 1) F ale), (42
Cp = f_ [nH @+ 1)~ JH N Pate), . (43)

Cpu = [TI(H (@ftn+ 1) — HHE)—(H o)+ D—HE) T (HEWWF ), .. 14.4)

'.
Con = —r(n+l)"£ H () (H(x)dF (), . (4.5)
Cya = ;[.[H,,(-.:)—H(,:)]J’(H(z))d[}‘_(z)— F(z)}, . (4.8)
O = _z- [H (2)— H)J (H()dF ), e 4)

where we define ay by H(a,) = 1—n-4, 8( > 0) is defined in (2.8). Note that df,
< dH,, 8o that

|Cial =72 ‘ﬁ | Ialif(n+1)—=J(ij(n+1))| = O@¥-7),, 3 > 0 e (4.8)
-1
hy Theorem 2 of Chernoff and Savage (1158); for a proof of (4.8) under less restriotive
regularity conditions, we may refer to "Theorem 3.6.0 of Puri und Sen (1971}

Theorem 4.1 If for some k > 1, A¥(g) < o0 and (2.8) kolds for a = (2k—1)/
2(2k41), then

nIR, = O (n-") for some 9 > 0. . (4.9
If for some k 3 3, Ax(¢) < oo and (2.8) holds for a = (k—2)/2k then
n Ry = O(n~*) a.5. as n—» co, for some 3 > 0. e (4.10)
1f (2.4) holda for some ¢ > 0 and (2.8) holds for @ = }, then
niRy = O(n™") a.s. as.n—00, for some 7 > 0. e (41D
Proof :  Wo only prove (4.11) as (4.9) and (4.8) follow on similar lines. By
virtue of (4.8), we only show that |Cgs| = O(n~") as. (sa n— ) for 2 k< 6
First, coneider C,,. Using tho fact dFs < dHs, we can write
101 < {9(355 H()) JdH )| +1] JHEMH @) . (423)
a U1 a,
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A C(HERNOFF-S8AVAGE REPRESENTATION
Integrating by parts,

{'_ HENMH =) = —] I —H )

=[1—H a )V H@N+] (1~ Hao)|S H ).

Hence, by (4.12),

1000l < T 19 (g Hnte)) 198014 T (B el dHe)
1 —Hala))| S H{an))|. e (4.13)

By the same arguments as in Lemma 4.1 of Sen (1972), it can be shown that under
(2.4),

Hu(a,)—H(ay) = O(n~1*¥log n) a.6. a8 n— o0, e (4.14)

In the sequel, we assume that n is so large that H(s,) > {. Now, by (2.0) witha = }
and (4.14), the firat term on the right hand side of (4.13) is bounded by

T L=nH (@)t + 1) V394 z)
< —nHu(an)/(n+ )] i[l —nH (&)(n+ V)] dH(z)
& [I=nHal)n+1)Ji* ..f (1 —nH (@) {n-+ D] dH )

< [On112)4-O(n-349 [og n) )i+, i (1--il{n4-1)) 5.
-1
= [O(m—1+)42|[O(lug n)] u.8. . (4.18)

Thus, the right hand aide of (4.15) is

O(n-1-#1-2 1og 1) a8, = O{n—3-7-%) a8, e (418)
where 0 < 9y < §8(1—8). Now, by (2.0) with & = } und (3.4), the second term on the
right hand side of {4.13) ia bounded by

I_ (1— )| JH @) | ()0l Klog m)] ] [1— (-] J"(H(e))| dB(z) w..

<K Iﬂ(l—H(z))"*‘dH(zH[O(n" log n)]’f(l—H(x)]"-"‘dH(z) (a.8.)

= O([1~H(an)}+)-[O(n~ log n))[O(1 — A{u,)])**) (a:8.)

= O(nt-1+OU+D)L [O(n log n))[OM+4)(*] (a.8.)

= O(n~-0-0)L [O(n~} log #)][O(n="1-H18-)] (a.8.)

= O(n1) as. e {(417)
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where we chonso 0 < £ < 8/2 and 0 <y < § 8(1—28). Finally, by (4.14) and (2.9)
with a == §, the last torm on tho right hand side of {4.13) is bounded by
I[1—H{a,)+(Hnlan)~Hla )| | J(Ha )]
§ [O(n~14%) -0 (=141 Jug m)J[O(n-1-91-3]  (as)
= [0 Om-1-12) ()

= [O(n-¥3— #12-4")) = O(n~-i~¥) 0.5., § > U, e (4.18)

as O < & < §. Hence, |Op| = O(n~4-") as. Noxt, we consider C,4. Using the
fact that dF, < dH, and the mean value theorem, we obtain from (4.4) that

ol < §'[ 53 Hate)— 1) ]|, o) A, . (A19)

where Hy , = 0,Ha(@){(n+1)+(1—0)H(z),0 <0< 1. Since H(ag) = l—n-144, > 0,
and by our choice 0 << € < §, by (3.4), forovery 07K 1,0 2K n,,

1—Hp, o) > 1 —H(x)—[O(n-t log n){H (=)} - Hx)}~* (vs.)

> {L—H(x))[} ~[O(n-4 log n)}{1 — H(z))~4-*)

? {1—HE)1— [0 log n))(1 — Ha )} -1

= (1—H@)){1—[O(n~! log n)[{O(nt+0-4))}

= [l—H(z)){1—O(n~t¥2-11-2 log n}))

= {1—H(z){1—o(1)}, as. as n—> 0. e (4.20)

= (1 —Hu(x}}{l —o(1)}, u.8. a8 n—c0.

[Putting 0 = 1, the same inequality applies to 1—Hp(z).] Using thon (2.9) wth
a =}, (1.4), (4.19) and (4.20), we obtain for large a,

= _f
10un| < [Ofn~Hlog ] | (B~ HE)-*(1—Hog(e] * * dHals) (u)

b _3 +8—2:
<Ot log ) [ [1—Ho(a) * dH ,(z) e (@21)
L -3 +8—-2¢
= [O(n-(log n)")][n" lZl[(n—j)[u] T } (where #° = nHu(a,)).

Now, by (4.14), n° = n—n®1-0(n?2 log n) a.8., while for svery & < #,

1 AP
7 E [n—giin) T2 s ) T
1= =]
= n#-0H8(O((n— k)-i+-13)] o (4.28)

= Ofafi~+0-0) a g for & = n® = n—n*-L0(n"*log n} a8,
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Thus, the right hand side of (4.21) is

On~Y(log n*)O(ni~4+3118) 0.9, — O(n4~4) a.s, for some 4 > 0, (4.23)

Thus, |Cps| = O(n~4-%) 8.8, a8 n—> 0. Next we consider Cys. By (4.5), (2 0), wit!
a = §, (4.14) and (4.20), wo have ¢ v (400, (0 with
o _2
Conl < n 13 f (1~ Ha) T b ote)

oy _8
<1 £ 11 B~ 2 o (o)

= 0{n"Y). O{n(_; —a)(l—l)} 8.8

1
= O{n 2 —'} a.8., where p > 0. e (4.24)

Fur the study of the stochastic arder of Cy,, for the conveni of ipul
tions, we assume in view of the probability jntegral transformation that F is rect-
angular (0, 1) d.f,, and we write t, = F(0), so that 0 < ¢, < ). Then,

Con = & [H a()— HOu) (B[ F o (6)— ), e (4.25)

where a) = F(a,), and H(a}) being 1 —n-1, 1—.n~MH8 L a} < 1. Since, for the
reotangular d.f,, the density function is a positive constant for the entire positive
support of the d.f. proceeding as in Theorem 3.1 of Sen (1972) and using Theorem 4.2
of 8en and Ghosh (1971) [namely, their (4.13)], it follows that as n—0,

sup  sup  ([Fp()—F.(u)—t+u|} = O@nIlogn) as .. (426)
02U 4: (1] <l

Now, we can rewrite C,, a3

é.{ [Hu(u)— Hu) 1 (H ) d[F () —], . (427)
I=1 Iy
whero
Ig= {4 bt (=1 vn K u < teHjlvn),  G=1 . n'—L
In—n® = {u: ty+(n*—1){y/n < 8 < a3}

and n* is the largest positive integer suoh that l+(n"—1)/+/n < a3. Naote that by
definition #* = O(nl). Let us then write
tng = by bng = bgtind, 1 <j < n°—1, tn—n® =a}. v (429)
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‘Then, by (4.28), for overy usIns, 88 n—>co,

H (w)—H(u) = Hy(ba)—H(tg)+0(n ¥4 log n) . v (4.30)
Fulu)—u = Falg)—tg+0(n-¥4log n) o.e. - (431)
and by (2.8) (with & = }). for ual,,
S (HB) = J(Hta)+10- D01 — H(t )} -¥2+4)] . (4.32)
Consequently

I ,f [Hu(u)— B(u)}J* (HONMF ) —u)
'

< [Hultns)— HOm W HE ) [ Fo )= F ol )~ T,‘—” I

+0(n~* log m)| J' (BN} f;, JdIF o()—u)l]
T
+0(ﬂ")’f | Hptud—HUE P —=Hit)) 27 [d[Fg(u)—ul|
nf

8
+O(~S log n) | [1=H(tl ™ AP 0 ~ul], s e (439
W
By (2.9) with 2 = }, Lomma 3.1 and (4.26), the firat term on the right hand side of
(4.93) is bounded by
[0(n~5(log n)*[1 — H(ly)]"¥2H, aas. e (4.34)
Also, by (4.26),
[ 1A[F(u)—ul] < [ dFy(uw)+ | du
Tnj Iny Iy
- p_(c_,)—n_(:,‘,_,)+% & 21O log n) a.s., e (4.35)

80 that the second torm on the right hand side of (4.33) ia of the same order as of (4.34).
Similarly, the third and the .fourth torma ave bounded hy, respectively,

[O(m=22 log w)|[} —H(tag)|"2* a.8. L (4.38)
[O(n-77 log n)){1 —H(tap)] 4 a.n. e (437)

Now, for > 1,
;z;l —H@ N2 < ;2.‘ [Fltag)]? = ntn ’i" (foV/n+j)? = O@m*n). .. (4.38)

On summing aver j ( =1, ..., n°), we have from (4.93) through (4.38), aa n—0,
|0snl < [O(n—$4(log n})][O(n?4-413)]
+[0(n-2 log M[O(nt~*1)]+[0(n-"¢ log n)[[O(n¥*—7)] &.a.
= O(n—1~3(log n)t) = O(n—+) as., 9> 0, .. (4.39)
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where 0 < 7 < 8. Thus, Oys = O(n—1-") a.5. a3 n— c0. Finally,

[Cenl < i | Hola)—H@)| | ' (HE) | dl@)
. _3
< [0(v~+log )] | {1 —HEY A1 —B) T T dh) (o)
< [0 log n)]j_ (1 —H(@)- a8 ()

= [O(n~ log n)[[O([1--Hlan)\-)] (80 <e<}d)

= [0(v~* log m)}[O(n-1~H10-))
= 0(n—¥*) a8, >0, e (4.40)

Hence, the proof of (4.11) is complete. The proof of (4 9) and (4.10) follow on parallel
lines; for intended brevity, the details are th itted

Remarks :  For independent random variables, the proof of O, = op(n)
follows more easily by showing that E{C3s] = o{n-*). However, for ¢-mixing proceases
and a.s. convergence, evaluation of higher order moments of (y, becomes cumbbrous,
and the prosent proof appeara to be simpler.

For independent random varinbles, the assumption on J*(u) in (2.8)—(2.9)
has Leen dispensed with [See Guvindarajulu, LeCam, Raghavachari (1967) and Puri
and Sen (1969)]. These results depend on the property that for indopendent random
variables,

Zup v/n| Ga)—t[ {1 D) = Opl1), A4 > 0. e (4.40)

On the other hand, for ¢-mixing processes, our result (3.2) is not aa strong as (4.41),
and this necessitates the assumption on J’(u). In any case, for a.s. convergence in
(4.10) or (4.11), (4.41) does not suffice and we may need the condition on J*(x).

We also note that by the same techniquo as in Lemma 8.1, it can be shown
that if 4,(4) < co, then for evey 4 > 0,
sup (n-?|Ga(t)—t|} = o(1) a.5., 88 n— 0. v (4.42)
061

Henece, if J(u) has a bounded first derivative for all (0, 1), we may repest the ateps
for the proof of (4.11), use the boundedness of J'(u) and obtain more casily that | R, |
= O(n—4-%) a.8. 88 n—» 0. Hence, we have the following.

Theorem 4.2: If J(u) has a bounded first derivative inside (0, 1), and A ($)<w0
then |Ry| = o(n—t) a.s., as n-» co.
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5. ASYMPTOTIO NORMALITY OF RANK ORDER TESTS AND ESTIMATES
Let na define B(X;) ns in (2.12) and let

7 = PIBED2 £ cov (BLX,), BXM), o (B1)

whore we know [viz., Puri and Sen (1871, Section 3.0)] that under (2.8),
0 € P[B(X,)) < . . (52)

Furthor, 4,(g) = '2':, #Hn) < 0=>a® < oo |viz. Billingsloy (1968, p.172)]. In
ne
tha sequel, we assume that

0 <ot <o, (5.8)

Now, by Theorem 21.1 of Billingsley (1868) under 4,($) <oo, as n—
n
.c(n—b[z B(X,)]Ia')—).ﬂ(o, 1). . (54)
let

On the other hand. by Theorem 4.1, A(¢) < 00==> Ru = ap(n~}). Consequently,
we liwve the [oliowing.

Theorem 5.2 : If Ax($) < oo and (2.8) holds for & = (2k—1)/2(2k+1) for some
k> 1, then under (6.8), as n—
LINT, —p)o) = MO, 1). X))
Undor more restriotive ¢-mixing conditions, Philipp (1069) has studied the order
of the remainder term in the central Limit theorom for sample averages. By virtuo

of our Theorem 4.1 und (5.4), under similar ¢-mixing conditions, we have analogoua
oxpressions for sup | P{nVT ,—u)le & x}—O(z}|, where ®(z) is the standard normal

d.f.

Our next result concerns the asymptotic distribution of point estimators based
on rank order statiatics, Hore, wo assume that for the stationary ¢-mixing process
{Xw i > 1}, the marginal d.f. F(z) is

Flz) = Fyfz) = Fylz—b), v [5.8)
where f(—c0 < £ < c0) ia & losation parsmoter and F, is symmotric about 6. Our
intereat is to estimate 0, With this end, defino T',(3) similar as in 7' in (2.7) but the
X¢ boing replaced by X;—b, 1 € i € n, where b is o real variable. Then T,(b) ia
defined for —o0 < b << 00 and when J{u) ia non-decroasing, Ta(b) is | in 6. Define

Oy = suplb : T0) > pg)f,g = inf {b : Tald) < pio} e (8.7)
b= —;‘(anr’""), . (6.8)

168



A UHERNOFF-SAVAGE REPRESENTATION

where g = [ J(idal = (In)* E Tuliltn-+1) when Jfin-+1) = EIU,, 1 <

i < n]. Asin Hodges und Lehmanu (1063) and Sen (1963), we consider @, as nn esti-
mator of 6. In view of our Theorem 5.1, an argument unalogous to Theorems 1 und
5 of Hodges and Lehmann (1963) leads to the following.

Theorem 5.2: If for n non-decreasing score function (2.8) holds and A,($) < w,
then under (5.3),

P, —0)\B(F o < 2} (21')—1_;' ey, e (89)

Jor every —o0 < x < w0, where
BF) = ] WIWFeNdaflehs, fo = Fy, e (B.10)

and it is assumed thal as z— co, ;} J(Fy(x)) is bounded.

A partioular estimator not covered in (5.7) is the sample median for which
J(u) = 1430  u < 1. Howover, in this case, or in the general caso of sample quan-
tiles, results gimilar to (5.9) are already derived in Son (1872). So far, we have asumed
that {X,} is stationary ¢-mixing; non-stationarity can e handled in the same manner
us in pages 179-180 of Billingsley (19868), provided the probability measure governing
the X, is dominated by a stutionary mesgure.

6 INVARIANOE PRINOIPLES FOR BANE STATISTIOS

Here we consider u Donsker-type invariance principle for rank statistics
as well as a law of iterated logarithm for these statistics.

Consider the apaco C(0, 1] of all real, continuous functions on the unit interval
[0, 1], and associate with it the uniform topology

plz, y) = sup |z(8)—y)], .. {8.1)
oktg!
where both 2 and y belong to 0[0, 1]. For every n > 2, define a process Z, = (Za(t),
0t by
Z (kin) = MTr—p)oy/n, k=0,..,n, .. (6.2)

where 7'y = 0, T, k > 1, are defined in (2.7), e in (2.11) and o*in (5.1). By linear inter-
polation, we completo the definition of Z,(¢) for le[k/n, (k+-1)/n), k = 0, ..., n—1.

Theorem 6.1: If Ap(p) < oo for some k > 3, and in (2.8), @ = (k—2)/2k,
[or if (2.4) holds, and in (2.8), @ = §), then under (5.3), Zx converges in law lo a siandard
Brownian motion W = (W(t), 0 < t < 1} in the uniform topology on 0[0,1].

Proof : Let us define B(X;), i > 1, as in (2.12), and let
Z(kin) = [f‘: B(x,)] Jos/n, k=1,..,n, 2% (0) =0, .. (63)
=1
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and by linear interpolation, wo comploto the definition of Z3() for te[kin, (k4-1)/n],
k=0,..n—1 Let Z)={23(t), 0 <! 1). Then, by (2.10), (2.11), (6.1), (6.2)
and (6.3),

plZy, Z7) < {:‘2“.:.“’"]/"‘/"' e (6.4)
Therefore, by (4.10), under the hypothesis of the thoorom,

P Zn, Z,'.)-f» ¢ a8 #—» 0. e (8.5)

On the ather hand, by Theorem 21.1 of Billingsley (1908),
Z:—Dv W, in the uniform topology un C{u, 1]. (6.5)

The theorem follows from (6.5) and (8.6). Q.B.p.

Note that by virtuo of Theorem 6.1, for every & > 0 and y > 0, thore exist
a 3> 0 and an ny(¢, ), such that for n > nys, p),

P -2 . .. (6
{“.f:&‘w.(«) (8)] > ‘} <7 .7
Consequently, by Theorem 5.1., (8.7) and by Theorem 2 of Mogyorodi (1967), we obtain
the following.

Theorem 6.2 : If (N, r > 1} be a sequence of positive integer valued random
variables, such that us r—»

»
r=INy— A, ... (8.8)

where A is a positive random variable defined on the anme probability space (Q, A, ),
then under the condilions of Theorem 6.1, as r— ©
LNRIT, —p)fa)-> 70, 1). e (00)

On defining B(X,), i > 1, as in (2.12) and noting that these forin o atationary
¢-mixing sequence, so that under {6.3), by tho results of Reznik (1968),

lim sup nﬂ[ f: B(X«)]/u(?.log logn) =1 a.as., e {0.10)
e =1

tim inf 4 5 B )i log log w)) = —1 . . (811)

e =1

On tho other hand, under the hypothesis of (4.10) or (4.11),
lim sup nt | Ry| = 0 a8, - (812)
—

Consequently, from (2.10), (6,10), (6.11}) and (6.12}, we urrive at the following.
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Theorom 6.3 : Under the hypothesis of Theorem 6.1 the law of iterated logarithm
holde for (Tu—p, n > 1}, iec.,

P { lim sup n}(Tw—p)]er(2 log log n)t = ']} e= 1 .. (6.13)
a—pa

P {tim inf n(Tu—p)lo(2 log log n)) = -1} =1 et (8.04)
—p e

Remark : For indepondent und idontically distributed random variables,
Sen and Ghosh (1973) havo catablishod Theorem 6.3 (under the hypothesis (5.8) with
8 = 0), and Sen (1974b) has considered Theorom 6.1 undor weaker conditions on
soore functions. Both of these results ure based on a fundamental matringale
property of (n[T,—ETa).n 3 1}. For ¢-mixing processea the martingalo property
does not hold. Noverthel our Th 4.1 and tho decomposition (2.10) provide
the parallel results. For independent random variables or martingales, Strassen
(1967) haa established an n.s. invariance principle. By virtuo of (3.4) [always
holding for independent processes], undor (2.8) (for & = §), |Ra| = O(n-1-7) a.n.
for some > 0 (seo (4.11)). On tho other hand, for independent processes, Strassen’s
(1867) Theorem 4.4 holda for {B(X;), i > 1}. Consequontly, if £{t) be o atandard
Wiener process on [0, ), thon by Theorom 4.4 of Strassen (1967), a8 n — co,

(ix B(X) = E(n)4-o(nl) as., ... {6.18)

dant

nand hence, for ind
(28) for & = §

Iy and identically distributed random variables, undor

a{T'u—p) = E(n)-l-o(nh) us., us n—s 0. e (6.106)

Under (6.6) with 0 = 0, a similar result has been deduced carlier by Sen and Ghosh
(1973).

Rxrxnexces
Biouxoursy, P. (1968) :  Uenvergence of FProbability Measures, Juhn Wilsy, New York

Cumaxovy, H. and 8avaor, 1. R. (1068):  Asymptotio normality and vOlolency of certaln nunparsotriy
towt statistios. Ann, Math, Stos., 89, 972.804.

Gnoen, M. (1872): On tho jon of lincar fi fons of ordor atatisti Sankhyd, Borlos A, 34,
340.350.
GoviNvaRAIULY, Z. (1060) : Contral limit th aud ‘ Y for pl Jt

motrio procodures, Tech, Repori No. 11, Dopt. nf sm&.uu, Univ. Minnosotd.

GOVINDARAIULY, Z., LECax, L. and Raoiavacuams, M. (1987): Genoralization of Thooroms of Chomofl
and Savage on tho saymptotic normality of test statistice. Proc. 8A Berkeloy Symp. Math. Statist.
Prob. 1, 800-638.

Hirex, J. (1008) 1 Asymplotio normality of simploe linour rank statistics undor allornatives. Ane. Aath.
Seat,, 89, 326-340,

Hopags, J. L. Ja. and Luumaxy, B. L. (1963): Eatimatos of location basoil on mnk tosts. dnn. Aath.
Stat., 84, 698.611,

171



SANKHYX : THE INDIAN JOURNAL OF STATISTICS : Sraixs A

Hunxova, M. (1070): Asymptotic distribution of aimple lincar rank statistics for testing syrmnolry.
Zeit fur Wakrsch Verc Geb., 18, 208.32¢.

Moavomopt, J. (1867) :  Limit distributiona for sequences of miulom varishlos with mndom indiccs.  Trans
1A Prague Conf on Inf ion Theory, Stutistical Decixion /i and Random Processce,
462-470.

Piserr, W. (1909) 1 Tho remalnder of the eontral limis theornm for mixing atochastin proowwses. Ann.
Alath. Stat., 40, 601.005.

Pout, M. L. and 8xx, P. K, (1000) : On the asymptotio normality of ona samplo mnk vrdor toat mtatistics,
Teoria Veroy. i ce Primen., 14, 107.172.
(1971): N ic Mcthods in 1t

la

Analysia, John Wiloy, Now York.
Pyxe. R. and Bnoracx, G. R. (1008a) ;  Wosk convergence ul a two.samplo ompirical procoss and a new
pproach to ChomofT-Savage th Ann. Math. Stat., 89, 765.771.
(1088L): Weak convurgonce aml s Chernoff-Savage thoonm for raadomn sample iz,
Ann. Math, Ntat., 89, 16751080,

Rezxix, M. Ku. (1968) : The law of iteratedd lugarithin for smn olass of stationary procowios. Teor. Vemy.
§ ea Primen,, 13, 600-021.

8xn, P, K. (1043): On tho estimation uof relative potonoy in dilution (-dircot) sesays by distribution.free
mothods. Biometrics, 19, 432-452.

(1070) : On tho distribution of tho ono sample rank ordor statistics.

Nonparamateic Tech,
in Stat. Infer. (Ed. -M. L. Puri}, Cambridge Univ. Prow 53-72.

(1071} : A note on wonk of ompi p for meqy of ¢ mixing random
variablos. Aan. Aath. Stal., 43, 2!3l 2133.

(1972) : On tho Bah ion of samplo q ilos for scq of ¢-mixing random
varioblos, Jour, Alwltivar. Anal 8, 77:85.

(19740):  Woak geoce of multidimonsional ompirical for y @-mixing
procosses.  Ann. Prob., 2, No. | (in pross).

(1074b): Tho invariance prinoiple for ancsample rank order wtatistics, Ann. Stal., 2,

No. 1 (in proes).

Bz, I'. K. and Guosyr, M. (1971): On b lod longth in} intorvals based on one-sample
rank ordor statistics. Ann. Math. Stat., 42, 159-203.

—— (1973): A law of itorated logarithm for one samplo rank ordor statistics and wn application.
Ann, Stat., 1, 568.578.

Brureisa, R. J. (1868): Tho Wilooxon ¢ pl istic on ngly mixing | Ann. Math,
Stat., 38, 1202-1209.

BTrAnsEX, V. (1067):  Almost surc hehavior of sutns of ind dont random iablive and ingul
I'roc. Sih Herkeloy Symp. Math, Stat. Prob., 3, 315.343.

Paper received : February, 1973.

172



	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020

