ON GENERALIZED INVERSES OF DOUBLY STOCHASTIC MATRICES

By P. S. S. N. V. PRASADA RAO

Indian Statistical Institute

SUMMARY. It is well known that a nonsingular doubly stochastic matrix has doubly stochastic inverse if and only if it is a permutation matrix. Permutation matrices are the only doubly stochastic isometries. This problem is studied with respect to g-inverse of doubly stochastic matrices. In this paper it is established that a doubly stochastic matrix has a doubly stochastic g-inverse if and only if it is partial isometry.

0. Introduction

It is well known that a nonsingular doubly stochastic matrix has doubly stochastic inverse if and only if it is a permutation matrix. Permutation matrices are the only doubly stochastic isometries. This problem is studied with respect to g-inverse of doubly stochastic matrices. In this paper it is established that a doubly stochastic matrix has a doubly stochastic g-inverse if and only if it is partial isometry.

1. NOTATION AND DEFINITIONS

Matrices are denoted by capital letters, A, G, U etc. and vectors by lower case letters x, y etc. A' and A^* denote the transpose and complex conjugate transpose of A respectively and $\mathcal{M}(A)$ and R(A) denote column space of A and rank of A respectively. $\|\cdot\|$ denotes the Euclidean norm. I denotes an identity matrix. R^* denotes the n-dimensional Euclidean space.

An $n \times n$ matrix $A = (a_{11})$ is said to be doubly stochastic if

$$a_{ij} \geqslant 0$$
 and $\sum_{k=1}^{n} a_{ik} = \sum_{k=1}^{n} a_{kj} = 1$ for $i, j = 1, ..., n$.

It can be easily verified that product of doubly stochastic matrices is also doubly stochastic.

Let A be an $m \times n$ matrix and G be an $n \times m$ matrix. Consider

$$AGA = A$$
 ... (1)
 $GAG = G$... (2)
 $(AG)^{\bullet} = AG$... (3)

$$(GA)^* = GA \qquad \dots \tag{4}$$

If G satisfies (1) it is called a generalized inverse of A (g-inverse) and is denoted by A^- . If G satisfies (1) and (2) it is called a reflexive g-inverse of A and is denoted by A_7^- . If G satisfies (1) and (3) it is called a least squares g-inverse of A, denoted by A_7^- . If G satisfies (1) and (4) it is called minimum norm g-inverse of A and is denoted by $A_{\overline{n}}^-$. If G satisfies (1), (3) and (4) it is called a minimum norm least squares g-inverse of A denoted by $A_{\overline{p}n}^-$ and if G satisfies (1), (2), (3) and (4) it is called the Moore-Penrose inverse of A and is denoted by A^+ .

For the properties and uses of g-inverses the reader is referred to Rao and Mitra (1971).

RANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

An $n \times n$ matrix A is said to be an isometry if

$$||Ax|| = ||x|| \quad \forall x \in R^n.$$

An mxn matrix A is said to be a partial isometry if

$$||Ax|| = ||x|| \quad \forall x \in \mathcal{M}(A').$$

2. PARTIAL ISOMETRY

From the definitions it immediately follows that A is an isometry if and only if $A' = A^{-1}$ and A is a partial isometry if and only if $A' = A^{+}$.

Theorem 1: A is partial isometry if and only if one of the following equivalent conditions holds.

 (AA')pA is partial isometry for some non-negative integer p and (ii) (AA')p is a partial isometry for some positive integer p.

Proof:

(1) (AA')P A is partial isometry

$$\iff (AA')^p AA'(AA')^{p} A = (AA')^p A$$

$$\iff (AA')^{3p+1}A = (AA')^pA$$

$$\iff (AA')^{2p+1}A = A$$

$$\iff$$
 $C(AA'A-A)=0$ where $C=[(AA')^{*p}+(AA')^{2p-1}+...+(AA')+I]$

$$\iff AA'A = A :: C$$
 is positive definite

A is partial isometry.

(2) (AA')p is partial isometry

$$\iff (AA')^{3p} = (AA')^p$$

$$\iff (AA')^{2p+1} = AA'$$

$$\Longleftrightarrow C(AA'AA'-AA')=0 \ \ \text{where} \ \ C=[(AA')^{s_{p-1}}+(AA')^{s_{p-2}}+\dots$$

$$+(AA')+I$$

$$\iff$$
 $AA'AA' = AA' :: C$ is positive definite

← A is partial isometry.

Hence the theorem.

3. g-inverse of doubly stochastic matrices

In the sequel we need the following result of Sinkhorn (1968) which we state below for completeness.

Lemma 1: If A is a doubly stochastic idempotent matrix then it is symmetric ..

Theorem 2: Let A be a doubly stochastic matrix possessing a doubly stochastic g-inverse. Then A+ is doubly stochastic.

Proof: Let G_1 be a doubly stochastic g-inverse of A. Let $G = G_1AG_1$. Observe that G is doubly stochastic and is a reflexive g-inverse of A. Further GA and AG are idempotent and doubly stochastic and hence by Lemma 1 are symmetric. Hence $G = A^+$.

Theorem 3: Let A be a normal doubly stochastic matrix. Then the following statements are equivalent.

- (a) A has a doubly stochastic y-inverse,
- (b) each non-zero eigen value of A is of modulus unity and
- (c) A is a partial isometry.

ON GENERALIZED INVERSES OF DOUBLY STOCHASTIC MATRICES

Proof: Let R(A) = r. Since A is normal there exists a unitary matrix U such that $A = U \wedge U^*$ where $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ where $\lambda_1, ..., \lambda_n$ are eigen values of A. Without loss of generality let $\lambda_1, ..., \lambda_r$ be non-zero and $\lambda_{r+1}, ..., \lambda_n$ be zero.

A has a doubly stochastic g-inverse implies by Theorem 1 that A^+ is doubly stochastic. Since A is doubly stochastic $|\lambda_i| \leqslant 1$ for i=1,...,r. Clearly $A^+ = U \Lambda^+ U^0$ where $\Lambda^+ = \operatorname{diag}\left(\frac{1}{\lambda_1},...,\frac{1}{\lambda_r},0,...,0\right)$. Again since A^+ is doubly stochastic $\left|\frac{1}{\lambda_t}\right| \leqslant 1$ for i=1,...,r. Hence $|\lambda_i| = 1$ for i=1,...,r.

First observe that $A^{\bullet} = A'$ since A is real. $|\lambda_i| = 1$ for i = 1, ..., r implies that $\Lambda \Lambda^{\bullet} \Lambda = \Lambda$ and hence $AA^{\bullet} A = A$. Hence $A' = A^{\bullet} = A^{+}$.

Theorem 4: A doubly stochastic matrix A possesses a doubly stochastic g-inverse if and only if A is a partial isometry.

Proof: 'if' part is trivial.

'only if' part: Let $G = A^+$.

A has a doubly stochastic g-inverse

⇒ G is doubly stochastic by Theorem 2

 $\Longrightarrow G'G = (AA')^+$ is also doubly stochastic

→ AA' is a partial isometry by Theorem 3

 $\Longrightarrow A$ is a partial isometry by Theorem 1.

REFERENCES

RAO, C. R. and MITBA, S. K. (1971): Generalized Inverse of Matrices and Its Applications, John Wiley and Sons, New York.

SINKHORN, R. (1968): Two results concerning doubly stochastic matrices. Amer. Math. Monthly, 632-634.

Paper received: May, 1972.