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SUMMARY. The on Misos th ing that the p [ dansity, sy
P ) lirod gos to o normal dansity, is proved for o cortain olasy of difiey
r arialng os solations to 1 hastio diffgrantial oquati As an applingy
tho ml.o, snd Boyes cstimotors for mmooth loss functions and smooth priors, turn ool oy

osymptotioally normal. Tho p space i dto be s P eubset of N,

1. IrRTRODUOCTIOX

In this paper, we prove that under certain regularity conditions,
Bernstein-von Mises theorem holds for s class of diffusion processes arisig
as solutions to stochastic differentinl equations. For the linear case, Us
rosult was proved by Prakasa Ruo (1980). For other results in this direotie
see Borwanker, Kallianpur snd Prakass Rao (1971) and Hipp and Mik
(1976).

As 8 consequence of the mnin theorem, we obtain that the m.le.,us
Bayes estimators for smooth loss functions and smooth priors are asymplot
aally normal. These problems have also been studied by others, us
different approaches. See Basawa and Prakasa Rao (1880) for & list d
references. Recontly Prokass Rao and Rubin (1981) have proved 1t
asymptotio normality of m.le. (in the one dimensionsl cage) by using Fourks
analytic methods. For higher dimensional parameter space, this wos poé
by Basu (1983), using Kolmogorov type inequelities from the theory 4
diffusion processea.

The intormediate results which led to the main theorem ore &7
Borwanker ef al. (1971). The technique used is similar in spirit to what?
used in Basu (1888).

Let (X(#) : t 2 0) be & resl-valued, stationary ergodio process aatisfsit
the stoohastio differential equation,

AX () = f(6o, X())de+dE), X(0) = X, E(X} <o0,t20

and (E(¢) : £ > 0) is B standard Wienor process.
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The conditions: under which such u solution oxists can beidound in.
Ehosminskii (1880). Sec also Gikhmon and Skorokhod (1972).
(6, =) is & real-valued funotion on QX 72, where 1 = {§ 674 N e
4> 1 (finite) and &, € QO (the intorior of Q) is the unknown “true-value”.
The following conditions will be assumed on f. Let L(6) be a fanction
of 0 suoh that sup {L{0):60efl} <o
Al (i) fis continuous on QxR
(i) |f62)] < L)1+ [z )V 0e Q¥ za .
(iii) |6, 2)—f10,9)| < LO)|z—y| %0 eQ, ¥z, y e .
(iv) |0, 2)—f($,2)| < J(2)|0—$|¥ 0,460, ¥z
where J()is ocontinuous and (| J(X(0))| ****) < co for some
oy > 2.
(v) X(6) = E((f(6, X(0))—f(8, X(0))] > 0N 6 6,
A2 (i) The partial derivatives f§ of f w.r.t. & (where 8’ = (6, ..., )
exist 4= 1,2, ...,d.
Denote by f4X8°, z) the derivative evaluated at (8%, z).
(i) 1S90, 2)—fPUp, 2)| <J(2)|0—p| % 6, $ e 0, ¥ze R
Mi=1,2,..,d and J is as in Al(iv).
(i) 179060, 2)1 < LO(+12])¥ 0eQ, 26X =12 ...,d
i1
A3 The partial derivntiveaofTa’/(G, 26, j=1,..,d oxists and are
continuous. Moreover, they satisfy A2(ii) and (iif).
Under the given condition Al(i), (X(¢):¢> 0) is a.s. continuous, Let a3
denote the measure induced by (X(¢) : 0 & ¢ < T) on @[0, T], when 0 is the
true value, (Here @[O0, T'] is the space of all resl-valued continuous functions
ou [0, ], and is ondowed with the supnorm topology).
It is well known that under given conditions ou f,

auy
Lﬂﬁ)=m—(x(l):0<l<1‘)
T
= exp( [ [ 70, Xio)~f(00, X(e) %o

1T
— | L@, X(6))—1(0y, X(eTds )

is the Radon-Nikedvm derivative of x#f wa.t. #%, (See Gikhman and
Skarokhad, 1972 for details.)
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Assume that there exists an estimator p which minimizes Lyg) q,,
©eQ. Then fr is the m.l.e. when the process X(i) is observed over [, 5
It has been shown in Basu (1983) that under Al, fr is strongly consistey,

Suppose now that A is & prior probability on (Q, B), whero 8 s
o-algebra of Borel subsets of Q. Assume that A has o density A() vy,
the Lebesgue measure and the density ia continuous and positive in an o
neighbourhood of 6.

The posterior density of § given (X()): 0 < It T)is
20ZW:0<1<T)

L dp 0K IC Ty
~ 2 (X0 0 <I<TAO) / [ o : 0k < TR,

Let ¢ = /T(6—0r). Then the posterior density of +/7(0—0r) is
PUXW):0KIKT) = V%p(03-+ﬁ JX0:0& 1< '.t').

Before we prove any result, we would like to make the following important
remark.

Remark 1 : Under the given conditions Al-A3 on f, all the stochast
integrals oconrring hencoforth can be defined path-wise. Furthor it is possibl
to differentiate (w.r.t. 6/s) within the stochastio integral (indeed path-wi¢
outside a fixed null set of our basic probability space.) Seo Karandikst
(1983) for details.

For the rest of the peper, we shall assume that d=1. With prop
modificati every ar t in this special case goes through for hight
dimensions. We will continue writing d in general.

‘We shall assume that solution of % log Lr{6) = 0 gives mle. 6p. Th&

[
70 108 I7{0)| g, = 0, and hence by Remark 1, outeide a fixed null =

(which henceforth we drop out of consideration), we have the followinf
orucial equality.

T r
[ 1'0r, K(e\dE(e) = [ f(Or, XONfOr, X(o)—f(0p, X(s)s. -~ o
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d,uz;+;/% d/l%',(x(l) 0K M
G Jauf, (X 0<I<T)

yrll) =

or =1 v20( O+ )

T
12(0) = [ Lfi0, X{e))—f(0or X(e)Tde,

B = E[(f'(0y, X(0))}']. Assume £>0,
Clearly

XD 0< 1< D)= O5yrion (0r+ 7 ).
Lemma 1: Under Al, for every § >0
lim  inf —JL,_,(,Q = A (> 0) a.
Te |1-6]>3
Proof : This is proved in Prakass Rao and Rubin (1981),
Lemma 2: Under A3,

T
lim % § 1"(60r X(s))dEls) = 0 @,
T w a
([ is second derivative w.r.L. 6).

[}
Proof : glt) = [ f*(0, X(s))dE(s) is o continuous martingale. Hence by
¢
tho martingale inequality, and stationary of (X(#):¢ > 0)

T .
P mup 190)] > A} < 55 B0 KON

T
=‘/1_’ﬂ" say.

{,.-x 2u'p< g ‘l»g(l)) » } :
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Then

P4,)< P{ . lowl > 2"“-2"‘"}

8 1) > an-1.9-w4
<#{, sp,, 1o )

28
< T
Thue 5 P(4,) < w end the lemma follows from Borel-Cantelli lemma.

Let
V6, 2) = f*(0, %)~f"(05, %)

X¢ 0= uf V{0, X(s))dE(s).

Note that under A3, (X(£,0): 0 <t < T) as a function of 8, from Q into
€[0, T]is 5.5, continuous fo1 all T > 0 (Sec Basu, 1983 or Karandikar, 1983).

Lemma 3:

1ara, pid+ao)f8
bt

where Cy, Cy are posilive finile tanis ind dent of T.

¢4

0 Pleap sup 1X0.01> 02

(ii) For very y > 1/(d+a,) there exists an H such thal

. 1 X(T, 0)|
Tl:r.n- T {log T < Has
. X, 0| _
(iii) rll'."'. Olﬂlp B e =0 aa.

T
(v Jim eup - T 76, XiohdEie) =0 as

Proof : (i) and (ii) are proved in Basu (1983); (iii) is immediate from {ii);
(iv) follows from (iii) and Lemma 2,

Lemma 4: Under Al, A2 and A3
(r) for each fixed e,

. 1
1"!»"- log yz(t) = ~5 At ae
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(b) Foreverys, 0 <e<p, there exials 8, and T, such that

yoit) < azp(— 3 #f—e)

Jor |t]| KE&T A and T 5 T, as.

(0) For every 8 > 0, there exists a posilive & and T, such that

1
o S 720 < 22 (—5 Te}for 25> Ty 0.
Proof :
T
tog yx) = [ [ 100+ 7=, Xto)—fi0m, X(o) |dtto

1 7

? %
[#(oz+ 7 X(0)) 100 X(e)) ] de
5 | UOr, XeD—110, X,

Applying mean-value theorem and then the likelihood equation (1), it easily
follows that

log yolt) = Li+Iy+It1s
where

_aT
L= o5 J ™00 Xle))ds
1= 5 [ U, xo)—s107. Xtonnan
# T
L= g5 02 XENEE)
= — JUon, X100 XM

[#{0r+ iz K@) ~10n, X0 — - £10n, K00 ]

whoro max(| 030z, 10§ —0r1) < -



166
(a) By Ergodio theorem
—2
1, - f 88 88 T —co.

Also by Ergodic theorem 3 & constant M and 7, such that
T
%6[ J(X(@))1+ | X(s)|)ds K M 8. for T 5 T, . 3

Under assumption A,, (ii) and (iii), consistency of fr and (2) it follows that
I,—0 a8 a8 T 0.

By mean value thoorem
z
LI < Colos—0,] 7 | JEGKI-+] Ko} e

and hence I, — 0 8.8. 88 T'—> c0.
By Lomms 3, I, 50 a.6. a8 T — 0. Hence (s) is proved.

(b) Fix ¢, > 0. Clearly thero exists & T, such that
1 e T, 1
¥ T2 T~y 5 0 X)) < —5 Kf—e;) a5 o )
o
By Loemma 3 there exists & 7'; such that ¥ T > T,

T
wp - 170, X)) < 12 as. . ®

J r
15l < g7 1078 J JX(e)1-+|X(0) Mo

_ B T
<z (%Hay—m)oj JX (o)1 | X(s)] e

- I r
< gr Gk 162—0o)) [ JEE)A+IXE) s if %zdm
Using (2) and ohoosing &, suitably and using consistency of Or, it follows

that there oxists a &, and 7 such that

Al - s
VT < & and T > 7y implies I, oF a8 - [}
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Bimilarly using mean-value theorem and arguing as above, there exists a T,
nnd & such that

I' €4 and T 5 T, implies I, < T & 88 .. (D)

Combining ths eatimates (A){(D), (b) follows.

'yr(t)

o 1og 2= & T [{or+ K x0) 1005, Ko it

§ [Hloe+ 2 x0) 110, x0 ]t

|
|~
W)=

T
+5 7 § UGr, XD 116y, XeNPde
o

= A,(¢, T)+Ayt, TVHAT), say.
Note that 4, does not involve ¢ and by arguments given earlier 4(7'j~» 0
80, 88 T 50

T
sup |44, 7)| < 2 sup 7| 16, Xiohatte) |0 n
H (] 0

Finally, by strong consistency, there exirts a T, such that for all
T>T,| 0—0r| <3 as.

Henoeifé%)dand T > T, we have

|o:-+ —6, | > o2

Thus,

1z 6)
4
2< 2 - > T

Putting these estimates of 4,, 4, and 4,, (o) is proved.
Let K be a non-negative measurable funotion such that
(K1) Thero exists a number &, 0 < ¢ < 8, for which

I Bioxp(~(8-0)4 )&t < .

(E2) For every % > 0 and every 8> 0
e [, KOOErHd 50 05 08 T .
">

1
—5 Algj2) se.
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Lomms 5: Under Al, A2 and A3
(a) There exists a 8, > O such that

lim ] E®
Tde [§] ST

(b) For every 8> 0

proA(0r+ 72 ) —M0oesn(—5 ) |ar =0,

I KO reen(or+ 75 )~ N@uemn( 5 0)| s = 0 s,

lim
e |§] >

Theorem 1 : Under Al, A3 and A3

im ] KWt X0:0< 1< T)—(ﬂ/zw)'exp(—% p)
THo —=

#=0gs

We omit the proofs of Lemma &5 and Theorem 1, since the argumentsar
slready available in Borwanker et al. (1971) and Prakasa Rao (1881).

Corollary : If further f |0|PAG)d0 < a0 for some m, then

Jim _}'_ [41% |26 X0) : 0 < t & T)—(Bj2mpeap(— 3 p2)|dt = 0 aa.

Remark: The case m =0 gives the olassical Bernstein-von Miss
theorem.
2. BAYES ESTIMATION

Suppose (0, ¢) iz a loss funotion defined on QXQ. Assume thet
16, ¢) = I(|6—¢|) > 0 and I{¢) is nondecronsing. Suppose R is & non-negatire
funotion and K and @ are funotions such that

(B1) R(T)l( é,,) <G for sl T > 0,
(B2) R(T)I(V—‘T') — X{(¢) uniformly on bounded intervals of ¢ ag 7@
(B3) _iK(l+m)e—§W d¢ has a strict minimum at m = 0,

(B4) @ satisfies K(1) and K(2).

A regular Bayes estimate fr based on (X(f): 0 < ¢ ) is that whish
minimizes

Br(Y) = J 1O, Y6 X(t) : 0 < ¢ & T)d6.
Assume that such an estimator exista,
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Theorem 2: Under A1-A3 and B1-B4, we have

(i) VT(0r~01)—0 as as T,

(i) }_"": R(T)Bx{0r) = T’Z'LR(T)Br(Ur)

= (B2 | K@ g

Proof : The proof can be found in Borwanker ef of, (1971),
The following is not difficult to check.
Remark : Under Al1-A3 and Bl1-B4

i) 8r—>06,88. 88 TH

(i) VE@r—0)%5 N0, ) a8 T-»co.

Hence Bayes catimators are asymptotically normsal and asymptotically
.officient.

Remark (1) : We oould have made the weaker assumption that £ with ita
relevant derivatives are for each fixed z, Lipschitz in 0 of order &, 0 < & < 1,
provided we made an appropriate stronger moment condition on J.

(2) Similarly in 4y(ii) and A,(iii) the dominating function could be taken
arbitrarily instead of the specific 14 |z|, say g(x), provided we nssume
EQ(X(0)) < 0.

Acknowledgement. The author is grateful to Professor J. X. Ghosh for
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Ruranences
Basawa, L V, and Paaxasa Rao, B. L. 8. (1980) : & 3 Infe Jor Stochastia Ppy
Theory and Methods, Academio Press, Londea.
Basu, A. (1983); Asymptotlo theory of osti in 1k hastio diffarential
for tho 1[5 caso. Jankhyd A, 45, (1) 66-65.

Boxwawxen, J., Kavtianron, G, and Praxasa Rao, B. L. 8. (1871): The Bernatein-von
misos thoorom for Markov processes, Ann. Math. Siatist., 24, No. 4, 1241-1253.

L I and A. V. (1072): Stochaso Differenti 1,
Verlag.
fre, 0. sad Mionnz, R. (1976):  On tho B b Misss app i for distel.
bulion. Ann. Staiist., 4, No. 5, 972-980.
Kanavoman, R. L. (1988): hanging tho ordar of io 1 tlon and ordinary

diffarentintion. Sankhyd A, 48, (1) 120-124.



160 ARUP BASU

Kmasmurvsxay, R. Z. (1060): Ergodio proporties of ion p ond gia
tion of the solution to the Cauchy problem for boli i Theory of PM
and its Application, 5, 179-196.

Praxasa Rao, B. L. 8. (1080) : 'Tho Bornstoin-von Mises thoorem for a olass of diffusion Pree,
sos. Theory of Random Processes, 9, #3-101 {In Russian).

Paaxasa Rao, B. L. 8. and Rosme, H. (1081): A ptotia theory of setimati i 10 gy
jo differontial i 43, A (8), 170-180.

Paper received : Maroh, 1982,



	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011

