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SUMMARY. Wo consider a plan P for integration of k survoys for tho; spocial caso of
a sample sizo ono for each survey and n independoat repotitions of P 80 as to ensuro a samplo
size n for each survey. Wo restrict our attention only to the plans of this typa which we donote
by Pa. A plan is callod optimal if it minimizea tho expectod numbor of distinct unita in the
integrated survoy. It ia shown that whon % = 2 and P is obtained through the Mitra-Pathak
algorithm then P is indeed optimal in tho above sensa. Tho sarne is also truo for & = 3 if 8,<1.

N
Wa rocall that 6, == £ P,y whero Py ia the probability of eclocting tho j-th population unit
J=t

aa apocified by tho i-th survoy and Py, € Py £ Py are the ordered valuos when Py, Py and
Py sro arranged in increasing order.  Whon 6, > 1 we idontify a plan P which ia optimal for
n =1 and hes the following propertios: P is optimal for sufficicntly large sampla size n. A
sufficicnt condition is statod under which P= is optimal for all samplo sizoa n. Numorical com-
putation shows that evon when Pe is not optimal the loss in using P= is numerically
insignificant,

1. INTRODUCTION

The algorithms for optimal integration of two or three surveys in Mitra
and Pathak (1984) and the ones modified in Krishnamoorthy and Mitra (1986)
to suit other cost functions essentially refer to optimality in the context of
a sample size one drawn from each of the population. The object of the
present paper is to present some results for optimal integration for a general
samplo size n when observations are drawn with probability proportional to
8izo and with replacement. For two surveys the problem of optimal integra-
tion in the context of gencral sample sizo n was posed and satisfactorily solved
by Keyfitz (1951) and Lahiri (1054) for & somewhat different cost function.
Des Raj (1956) formulated this problem as a linear programming problem.
This approach is further explored in Arthanari and Dodge (1081) and moro
recently in Causoy, Cox and Ernst (1085) who apparently are unawaro of
the work of Arthanari and Dodge.

AMS (1080) subject classification : 62D0S.
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We shall consider tho caso whero the cost of the integrated survey depends
exclusively on v, tho number of distinct population units that required to be
studicd, and is infact a lincar function of v with & positive slope. As we
noted carlier thiy caso has already been satisfuctorily solved Ly Keyfitz (1951).
Wo show that independent ropetitions of Mitra-Pathak algorithm infact gives
optimal results for a general samplo size n. The argument infact extends
itself for a fairly large class of situations encountored in respect of three surveys
whoro e note that independent repetitions of Mitra-Pathak algorithm indeed
produces optimal results. The same however may not bo said about certain
other classes and our rescarch efforts in this paper are directed to theso sub-
clnsscs. We are able to isolute two integration plans that broadly come
under plans derivable through the Mitra-Pathak algorithm which scem to
play a very crucial role here. Ona of them can be easily shown to be optimal
for largo samplo sizes. Ve conjecturo that between themsclves the two
will cover the entire range of sample sizes n > 1. Our Theorem 5 showa that
when theso two plans are identical, then tho common plan is indeed optimal
for all samplo sizes.

2. NOTATIONS AND SOME PRELDONARY RESULTS

Consider a finite population of N units serially numbered 1, 2, ..., N.
Let & denoto the set {1, 2,...,N}. It is proposed to carry out k separate
surveys on this population. Let Py denoto the probability that the j.th
population unit is included in the i-th survey and X denote the random
varinblo nssociated with the i-th survey such that P(X;=j)= Py on

»
S(I<LiCE, 1€ N)and & Py=1. Anintegrated survey is a joint probability
jl

distribution of random variables X, X,, ..., Xz on &¥, the k-th cartesian power
of &, which realizes .for X; tho samo marginal distribution as the one deter-
mined by tho i-th survey. Letx = (2,, 2, ..., x) bo the observed sample
in thoe integrated survey and y(z) denote the number of distinet integers
appearing in the & coordinates of . An integrated survey is called optimal
if it minimizes E v(X).

A matrix ({ag)); v of nonnegative numbers will bo ealled a configuration
if the row totals aro all equal. Tn tho configuration of Py’s, let Py, denote
the i-th smallest entry in j-th column and let

N
0= % Py 1=12 ...,k
g1

Further, let
Si={z:v@)=1d,i=1,2,...,k
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Wo rocord hero the definition of majorization and a theorem concerning
tho same which wo shall make uso of later in this paper. For & = (z), 2, ..., z5)
€ 77", let the coordinates boe arranged in a nondecreasing order and tho ordered
coordinate values be donoted by zgy Zigy---s Ziap Ty  Ziy & oo < Zimye
The n-tuplo z is said to bo majorized by the n-tuplo y(y majorizes z) if

" n
X )< 5 oyg =23,.4m
- 1~

and n I
I 2= X yy.
e =1
Theorem 1: Let x, y e 72" If y majorizes & then for all convex func-
tions g,

- n
I glzd € T gly)-
=1 {=1

For a proof of Theorem 1, sce Marhsall and Olkin (1979, pago 115).

Consider a plan P for integration of k surveys for tho speeial case of a
sample sizo one for each survey. Let Pydenote tho probability that tho j-th
population unit is selected for atleast one of tho k surveys. Wo havo seen
in Mitra and Pathak (1984) that the expected number of distinet units is

N
equal to X Py Tho following lemma can be similarly established.
J=1

Lemma 1 : If the plan is independently repeated n limes to achieve the
desired sample size n for each survey then the expected number of distinct units
in the infegrated survey is given by

Eva= E(1—(1—Py¥.
P

Sinco wo proposo to consider only plans of thia type any integration plan
can henceforth be identified with the vector P = (P, P,,..., Py). Wo
have secn in Krishnamoorthy and Mitra (1986) that the vector P is not unique
even for the optimal plans derived from Mitra-Pathak algorithms. Let »
denoto the class of such optimal integration plans P.

Tho following lcmma can be easily established.

Lomma 2 : The set p is a closed convex sel.

Wo have scen in Mitra and Pathak (1084) and moro explicitly in
Krishnamoorthy and Mitra (1086) that for a plan belonging to 2

Py € Py < Pay+Piyy—Pay
for cvery j.
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Tho next lemma gives an upper bound for P,y in terms of 0,.
Lerama 3 : Py < 2—04 for all 5.

Proof : Lemma 3 is trivially truc if 0, € 1. Consider tho case 0, > 1.
For somo j, let
Pay+0,—1 > 1.

In the j-th column of tho stochastic matrix of Py’s, assumo without any
loss of generality, that Py = Py, Py = Py and Py = Py Since Py
= max (Pyq, Pga, Pya) for sll a,

L (Pga—Puma)
ats
> I (Pa—Pya)
azg

N
= "2_1 (Pya—Pa)

= 1-0,
Adding this inequality with the previous one, wo get
Oy+0;—1—0,+ Py > 2—0,
which implics that e e !
Py > 8—0,—0, =0,

N
which is impossiblo since 0, = I Py,
a=1

This completes the proof of Lemma 3.

In tho following thcorem we show that for any predetermined choico of
probabilitics of sclection of the N units, subject to certain conditions there
exists a corresponding optimal integration plan.

Theorem 2 : Consider a slochastic malriz for three surveys for which 0y > 1.
Let ey, €,, ..., ey be numbers such that

Py € &5 < Pigystmin {Py—Pyyy 6,—1)
N
and Z e =2-6,
1=1
Then there exists an oplimal inlegration plan for which Py = ¢, j = 1,2, ..., N.
Proof : By Lemma 3 it is scon that ¢; 1 for all 5.

Let us consider the configuration as it stands aftor the smallest entries
aro zcroed out in all the columns. Each row total in this configuration is
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now equal to 1—0,. Axsume without loss of generality that in the j-th column

Pig = Poy, Py = Pigyg and Py = Py Suppose that Pigyy—Piyyy > 6,—1
x

and ¢ = Py+0,—). Then the condition X ¢ = 2—0, implics that

=1
e =DPuy, $=1,2,...,, N(i #j). In this cnse Mitra-Pathak algorithms can
be applicd so that Py=¢, i=1,2,...,N. Let Pyy—Pyy < 0,—) for
all i, and ¢j = P54 Pigyy— Py, y;—8;.  For Py to be equal to ¢ it is necessary
that the points of the type (r,j,7), x # j, in S, should have a total mass of
8 = P35+ Pigyy— Py y—¢y. Out of the available masses in the configuration we
have committed ourselves an amount 8 from both Pyyy— Py and Piygyy— Py,
What remains, namely Pyyy— Py —8; and Pyyy—P,y— 8 we shall call them
residual masses which will play a erucial role in determining the odd member

N
z in the triplet (z,j,j). The condition ¥ ¢ =20, is equivalent to
3=1

N

S 8= 1—0,. To prove Thcorem 2 it is therefore sufficcs to show that
3=1

the available residual masses are just sufficient to fix all the odd members in

this plan.

As in Theorem 4 of Krishnamoorthy and Mitra (1986), let Ty denote
the set of indices of those columns for which the i-th row contains £-th smallest
column entry (i, k = 1,2,3). The total demand for residual masses in row 1
is thus scen to be equal to £ 8y and the total committed mass in row 1 is

JeTy,
equal to £ 4§ Since the first row total is 1—0, tho available residual
Je(T,3UT,0)
mass in row 1 is equal to

N
1-0— £ =% &— T &
JATUT) 4=t (T pUT)

= b f— I 4
JECWUTLUL,)  jeTiaUTy)
=3z 4

JeTy
The available residual masses in row 1 is thus just sufBcient to meet the
demand.

The same argument applics to other rows.

Our next lemma shows that 2 is essentially a complete class in the sense
that for any integration plan I* that is outside the class  there exists a plan
P* in the class @ such that Py Py for every j.

B 3-12
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Lemma 4t Consider a slochastic malriz of three surveys with 0, > 1.
For every plan P4 there exisls a plan P* in P such that

Py Py
Jor every j and Py < Py for some j.
Proof: Note that, when 0, > 1, for an optimal plan Ey, = 2—8
Since the plan P is not an optimal ono

N
£ Py>2-0,
=1

and for some j, Py > Pyyy. Reduce thoso Py's (for which Py Puyyg) to Py
or to some g; > Py, such that the new Py's (coll them Pj) add upto 2—0,.
Then, Theorem 2 ensurcs the existence of the plan P* = (P}, P}, ..., P}),
P} £ Py for all j and P§ < Py for some j.
Lot min{P,y— Py 0;—1) be denoted by A,
Lemms 5: Consider a slochastic matriz for 3 surveys with 0, > 1.
P = (P,, Py, ..., Py) is an extreme point in X if and only if Py = Py,50r Py =
Pygyg+A for all bul at most one 5. Further, if J, denotes the set of integers for
which Py = P,y and J, denoles the set of integers for which Py = P+ Ay then.
_E (P(,,,—P,,,’) < 1-6,
jeJy

ond
Z (Payy—Puy) € 0,—1.
jeJ,

Proof : Let P = (Py, Py, ..., Py) bo an optimal integration plan such that

Jy = 8—(J){JJ,) contains at most ono integer. Without loss of generality

assume that J,={2,3,..,m}, Jy={m+1, m+2,..,N} end Jy;= {1.
Let P* and P’ be two vectors in # such that
aP'+(1—a)P'= P

for some a in (0,1). Since Py= Pyy (2<j < m) and Py= Pyy+4,
(m+1 € j < N), aPj+(1~a)P; = Pyimplics that

P;= P}=P,, i=23, .., N. e (D)
. N N N
Agsin a8 33 Pl = }‘.‘. Pj= 2:. Pj, (1) implies that

P=P==p
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Thus, we have
rP=r=r
and so P is an oxtreme point.
We now suppose that Jy contains moro than ono intoger, say, Jy =
{1,2,...,§}. Then, writo

Py = Pyute,0<e <A,
Py = Pyjate, 0 <ey <A,
Chooso tho numbers ¢, and ¢, such that

6 < ¢ < min(4,, ¢,+¢,)

ey < @y < min(A,, ¢;+¢,)
Py = Pyt Py = Piyptey—(r—ey)
Pl = Pante—($r—ts) Py = Paytéy

P* = (P}, P}, Py, ..., Py)

P’ = (Py, P,, P, ..., Py).

Clearly the plans P* and P belong to # and their existence is guaranteed
by Theorom 2. P can be written as

P = aP*+(1—a)P’
whero @ = ($g—e)(Pr—e1+Py—rd).

Thus, if J, contains more than one integer, P can not be an extreme point.
We next show that

and define

and

I (Puay—Puy) € 6,—1.
jed,

Let I J, and
Py = Pgyte, 0<e < Pou—Pun.

Since P is an optimal integration plan and 6,4 0,+06; = 3.

N
T Py = 2—0, = 6,+0,—1. )
41

Write ~

™
I
I

I Payt I (Payt+A)+Panta
jedy jeJs

N
I Pyt I At
= jeJs

I

0+ I Aptg e (8)
jeJy
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Equations (2) and (3) imply that

.E Ajte = 0;—1. . (4)
jeJy

As ¢; > 0 (¢y = 0 < J, is an empty set) from (4) we have
A 0,—1.
jed, 1 < 0y
Heonce Ay = P53 —Pyyyy for each jeJ, and
z (Ping — Py} € 03—1.
jeJs
Similarly, writing

N
z (Puu—P(nl) =3 (Pml—Pml)—{ > (Pml—PmlH‘H}—(Pml—Puﬂ"'l)
jth g jed,y

= 03— 0,—(0,— 1) =(Pau—Lyy—e1) (using (4))
= 1—=0,—(Pan—Pon—e))
and using the relation (Py—Pyp—e1) > 0, wo provo

X (Pyy—Puyy) € 1-0,.
jed,

Lemma 6: Consider a stochastic matrix for which 6,> 1. Let P =
(Py, Py, ..., Py) be an extreme point in P such that Py Py < ...& Py. For
any 3, 1 s & N,

N N
% Py B Piy+0,—1 v (8)
I~ =i

and ¢ t
;zx Py 1z| (Payy+ Ping— Py —(1—0,). e (6)

x
Proof : Since P is an optimal plan, the relation £ P; =2—0,=0y+0,—1
J=1
and the inequality P; > Py (for all j) imply that P;= Pgy+a; where
»
0 < ay & min {Pyyyy— Py, 0,—1) for all j and ¥ oy = 6,—1. Therefore,
=1

we have

x ¥ N
L Py = I (Pyy+a) € T Pyyy+0y—1.
g=t =i 3=
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Define Jy, Jy and Jy uain Lemma 5 and let A¢= (1,2, ...,i}. Then

EP= ¥ P X Pt ¥ Iy
jedd T jdAmd) T fetdindy T jetaindy

oY Payt L (PuytLluy—Luy)
jatdind)) je{dinds)

X Pyt Pay— L) —(1—=0,— X (Pigyy=Dyyy))
Je(Ains) jedy

>z (P4 Piayy—=Piyyg) — (1= 0,)
Jody

sinco Jy containa at most onc integer and

‘E (Piayy~Puys) >. X (Pay—Pug)-
jedy Jeltdind))

3. MAIN RESULTS
In the initial configuration of Py's for three surveys let 0, < 1.

The following theorem shows that the plan derived through the Mitra-
Pathak algorithm, which is optimal for a sample size one, is also optimal for
s general sample sizo n when obscrvations are drawn with probability pro-
portional to size and with replacement.

Theorem 3: For 0y & 1, the plan P* = (P}, ..., P}) obluined through the
Mitra-Pathak algorithm is optimal for a general sample size n.

Proof : Since for any plan P, Py > Py j=1,2,..., N, from Lemma 1,
wo havo
5 N
Evn = Zl(l—(l—l’;)') > ’3-'1(1—(1—1’(:»))")‘
1= -

We also know that Mitra-Pathak algorithm applied to the configuration of
Py's, when 0, & 1, gives a plan P* such that Pj= Py for all j. Therefore
P* is optimal.

We next consider tho case 0, > 1. We describe here two plans, namely,
Py = (Py, ..., Pyy) and Py = (Py,, ..., Ppy) which can be derived through
the Mitra-Pathak algorithms. Later in Theorem 5 we rhow that if the two
plans are identical, that is, ), = P, = P, thon tho common plan P is optimal
for a general samplo size n.

Plan Iy : For a je &, we determine the valuc of Pj as follows :
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Consider the initial configuration ((Py))axy. Let ty denoto the column
of ((Py));x x which maximizes

{Perg+min(Pgy—Piyyys 03— 1)}
over j€8. Define

Py = P(au‘\-+P(:)tx-P(lu,v'if Pty Pany < O0,—1
=Py, +0—1, otherwise,
Similarly, if ¢ donotes tho column which attains
. N
Elt = l:‘““: ¥ [Pmu‘i‘m"‘{P(zlu—P(nu'Bz_l—"_fn(P(m,_Puu,)}]

UHF g,y
then define

r, =EI

]

N
as long as 0;—1— I-):ﬂ (sz,_ I’""}) >0
Let i, be an integer such that

N

Oy—1— ;-?:,u Py, —Puy) 2 0

and N

01— £ (P
+

—P, <O0.
Pl (m,)

@y

For 1 € k € my, if t; denotes the column which attains

£ = max P,
O acsex (P}
J#EN, I e
then define
Pl/; = E“ = P(au,'

Thus, we construct the plan Py as Py = (P‘x' P, . P, \,) where P‘l < P,2
N
€..< P,‘v and l:zl P'! =2-0,
Plan Py: e hero determine the values of Py’s as follows :
Let b, denote the column of ((Py))yyy which attains

&, = L in (P Peay— Ppg—min(Peyy— Puyg, 1—0,)).

Defino

Py =&,
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Since Pyyy—Pyyy € 1—0, for all 7, Pbl = min (Pquy). If by denotes the
1ejenN

column which attains

Eb. = l‘“:L"N [ PuyutPigyu—Payu—min { Piyu—Puy,
ugdy, ..., uztd,.,

k1
1-0,— l:l (Pmb,"Pum,)}]

then define

P, =¢,

£
as long as 1—0,— ,E‘ (Pu)b,"'Pmb,) > 0.
Let my denote an integer such that

my
1-0,— El (Pme_P(m) >0
and
mu«l
1~0,— [L:l (P(m,_P(m,) <o
For mp+2 & k < N, if by denotes the column which attains
£y, = min {Pay+Pis—Pug

& L 1€JEN
FFEb e RO

thon define
Py, =8y, = Py, +Pop,—Puyp,

Thus, we construct tho plan Py as Pp = (Pbx' v Py o where
4
Pbl < Pb, < L PDN and l§l Pn, = 20,

Theorem 2 ensures that the plans Py and Py ean be derived through the
Mitra-Pathak algorithms.
Suppose that the two plans are identical, That is,
Py=P, =D
Without loss of generality assume that

P* = (P}, Pg, ..., P})and my = mp = m.
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Then
Pigs I<ji<m

Py = Pyt Jj=m+l1
P+ Piyy— Py nt2< i N

N
where gy = 0,—1— Z"(I",,,—Pu,.)
a=m
myl
= I (Piya—DPma)—(1-0)).

1

Theorem 4 : Consider a slochastic matrix for 3 surveys with 6, > ).
Let Py = (P,l, I’,zu., P'N) le an ertreme point in P such that I’,l < P,‘
.. Py . Then

N

N N
2P XD, i=mt+2,m4s, .., N v (T
3=l -t Y
(R ‘ .

and b l’, € T I’,‘. i=1,2 .., m e (8)
3= 3=1

where P} is the j-th component of P*.

Proof : In order to save the space and avoid notational complexity we
here prove only tho particular case

N N
L Py5> X PpLi=N-2,N-1,N e (9
1=t g-1

of (7). The argument for proving (7) is exactly similar to the one for (9).
Write
A .
= 1=0,— }Jl (Poa—Pya). 7=12,....,m
aa

»
and Y= }:’ (Piya—Pua), j=m+2.., N
a=

We first prove that

Pe+ry > P +Pp (10)

Inay®
Since Py, = " it follows from the definition of Pl\. that

Py> P . (1)
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Py, > P‘\‘—n’ trivially (10) holds and so we assume that

P, <P e (12)

byt
Let A={1,2 ..., m+1}, By={, i+1, ..., N} and Dy = 8~(4 ) By).
Sinco Pf.v—: = Py_,, the definition of P‘”_l implies that

Pr_1 > Paygt+Pay—Puy > Py

for any je Dy. So the set {Iy, Iy_,} ¢t Dy otherwiso (12) will not hold.

Case i : \Vithout loss of generality assume that
Iygedandly =N,

Forany ke d,if Py i < P,‘, it follows from the definition of P‘,_l that

Py =Pay, > 0= 1-7s
and

Pha= P‘I—l

> P(;)x‘+0|—1_711‘
Therefore, (12) implies that
Pya> P(:,x,_,+01—1—71-

Since Iy = N, P,y = Pm,v and we have

Py1+ Py > P(;,g_\._l+P(,,,”+5|—l—71

which implies

Pya+Py > Py, +P

it Iy
because Py,y+yy = Py and from Lemma G,

Pty TPy =12 Py +P,, .

Case ii: Let {ly, g_,} C A and without loss of generality assume that
Iy, =4 <j=1y. Suppose that

Pgn < Poy.
Since Py = PbN' the definition of PhN implics that
Pow+Paw—Paw—m 2 Pon - (13)

Mog D Paw—Puy+75y (becauses,j6 4 and § <j). e (19)
B 3-13

where
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Adding (13) and (14), wo got
Py > Puyu+Paou—Puuti-
If j & m, then
P:v—x>P;=Pml
and
741 2 Payy—Puy

Combining (15), (16) and (17), we get
Py+Py_y 2 P+ Payy—Payg+Pay+Pau—Pau > P;,+P;S_l-
If j = m+1, then
P;i—l 2 P; = Puyy+Puayy—Puy—10s1
and adding (15) to (18), wo get
Pe+Pya > P,,+P

by—y'
We now suppose that

Payy 2 Pyt (8 = Invy)-
The assumptions that Iy € 4 and Py_, < P’u imply that

Py > P gyt 0i—1-74.
Thus, as in the case i, adding (19) and (20), we obtain
Py+Pyoy > Py +P

byt
We noxt show that

PiostPii+Py > Py 4Py Py,

by-2
(21) holds obviously if Py_, > P'v-t' So, we let

Py <Py,

(15)
(16)
(1)

(18)

(19)

(20)

(21)

(22)

Notice that, under the assumption (22), nono of tho units Iy, Iy.y Ix_y is from

the sot Dy_,.
Case i (a): With loss of gonerality assumeo that
In=N,Iy,=N—1and Ing€eA.

Sinoe P‘s- =P, < P,N_4, the definition of P“'_2 implics that

2
P}J-! > P(I)IN_'+01—1 —7NA

(23
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and from the above assumption
Pow+Piy-y = Py +Ppy o . (29)
Adding (23) and (24), wo get
Phoet PawtPowat¥ioy 2 Puy 4Py, +Pay, 01

which implies
Py st Pya+Py > Pry +Py  +Pp,

since Py y+Pegyw-y+7x-1 = Py+ Py ond from Lemma 6

Pt +Poy, +Poy o +0:—1 > Py+Py, +Py, .

Case ii (a): Ve here assume that
ly=Nond {ly_;, 1y} CA
Iy = N implies that Py > Py.
Using a similar argument as given in case (ii) it can be easily shown that

Pyat+Pys > Py Py,
and so

Py+Py+Phy > Py APy, APy,
Case iii: Let {ly_g ly;, Iy} €A and without loss of generality, let
lya=1 Iy =4, ly=Fkand i <j <k Suppose that
Py < Py

Since Py = Pn,,' it follows from the definition of Pb, that

Pay+Piyw—Pow—m > Pon we (26)
where
M-y 2 Pow—Puyyit+Pay—Pays+iea - (20)
(because i,j,ked, i <j<k)
Adding (25) and (26), we have

Py > Pyy+Peoyu—Puyt+ Pioy— P+ . (27)
for k < m,
Py > Py= Py
Py s 2 Py= P, . (28)
and

ey 2 Pa—Pun-
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From tho inequalitics given in (27) and (28), it can bo easily scen that

Py+Py+Pyy > Pyt Py P

Iy-1 Ix—g’
For k = m+1,
P;l-l>P;=Pl1)I
P;'-l > P; = P4 Piae— Piyk— Mk e (29)
and combining (27) and (29), we get
PL+Py+Pye 2 P,‘v+P,’_|+P,N_g.

Suppose that Py > Py and Pyyyoy < Piy.

Again using o similar argument as given above, it can be ecasily shown
that
Py 2 Payt+Pay—Puyy e
and for k ¢ m+1
Pya+Pye> P

+P (30)

In—y 77 Iy-e’

Thus, from (11) and (30), we have
PytPy + Py P‘,,+P‘A'-1+P'N-z'

Finally, as tho case Py,g > Pyt 0nd Piyy_y > Py is similar to case i(a),
we omit the proof of this case.

We now show that
[] [}
ZP;< I Py, i=12..,m
J=1 g1 Y

For tho same ressons given carlier, we prove only the particular case

[ 4
I P P,, i=1,23.
PR 2 ]2-1 i '
We first prove that
Pl+P; g P11+P'z . (31)

Sinco P} = Py, from tho definition of Pb, it follows that

Pi< P, - (32)
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Inequality (31) holds obviously when Pj g P,. and so let
Pi>P,. . (33)
Let 4;=1{1,2,..,,i}. Sinco P} = Py, is the minimum of Pg'a (2 € j < m),
under tho assumption (33) the set {I;, I}t {23, ...,m).
Case I: Without loss of generality, let I, =1, I, € Bp,,. For any
Iy € By, if PD' > I’,‘. then the definition of Pb. implies that
Py —Poy, > 1=0,—(Pen~Pun)

and
Pb. < P‘,,,'-FP(,,,_—P"”‘—(1—01—1’(”‘—}-}‘“,1).

Sinco P, = P;, (38) implies that
P g P(mz‘}'P(m,"Puu,—(l‘01—P15)1+P(1)1)- . (34)

As h =1, Pup = Py, Pay—Puyy = Py — Py, e (35)
Combining (34) and (35), we get

2
P3+Pyy € Pmll'l'Pml,‘\' ,Elel,—'P(nll'-(l—ol) ... (36)
which implics that
Py+P; g P,‘+}“,2
since P} = Py, and from Lemma (6) the r.h.s. of (36) is less than or equal to
P,|+P,g.
Case 111 Let {§, L} € Bpy,. Without loss of generality assume that
L, =8<j=1. Wo first suppose that

N
Pay—Pun > 0,—1— X (Prya—Pua)
a={+1

= Oy—=1=%j4y.

Sinco P} = P‘x

, according to tho plan P, we have
Puy+0,—1—7112 € Pyt Peayy—~Puns .. (37)
and as § € Bpy,y,

P; & P = Pyy+Pigt—Puat- . (38)
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It follows from (37) and (38) that

Pi+P; € PayytPiytPay— Pyt Pan—Paw—(0s— 1—714).

If + > m+-2, then
Pyi—Puys+Pioy— Pyt € 03— 1—7141
and so from (39), we get
Pi+Py € Pyt P < P:;"P;‘-

If § = m+-1, then
Py € Py = Piyyt+0— 171y

03—1—Y1,1 2 Payy—Payy+(0:—1—ve,)-
Adding (37) and (40), and using (41), we obtain
PuntP; = Pi+ Py < Pyt Pt < P +Py .

We now suppose that

and

Py —Puyy < 0,—1—75,1.
According to the plan P,
Pup+Pan—Pun € Pys+Pay—Puy
and since i € Bp,,, according to the plan Py,
Py = Puys € Puy+Poy—Payu—(1—0,—Pan+Pyn)-
Adding (42) and (43) and after some simplifications we get

2
Pi+P} = Py +Pap < P“"l+Pm'2+;§1 (Pai—Puy))—(1—0)

< Py +Py, (from Lomma 6).
e next prove that
Pi+P3+P; < Py +P +Py
which holds obviously whon P§ g Py So lot

P3> Py,

Noto that under the assumption (45), tho sct {Ij, I, L} ¢ {3, 4, ..., m}.

CaseI (a): Vithout loss of gonerality assumo that
Lh=1,5L=2and e Bny.

(30)

(40)

(41)

(42)

(43)

()

(45)
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According to tho plan Py,
Py = Po, < Pml,"‘Pml,—Pml,—(l—01" ’{:" (Peayy— Pyyy)).

Adding Py Py to both sides of the above incquality, we get

Pi+Pan+Puy < ’é P+ Py~ Pay)—(1—01)
which implies that

P}+P+P; P,l+P,2+P,’ (from Lemma 6).

Case II (a) : Let 1, € Ay end {I, I} C Bypyy. Further, without loss of
generality let ;, =¢<j=1. Sinco } ¢ 4;, we have
P Py

Using a similar argument as givon for tho case 1, it can bo easily shown that

P} € Piys+Peayy—Payy— (63— 1—7111)
and for & > m+1
P3+P; P +Py
and hence
Pi+P3+Py < P,l+P,2+P,'A
Case 11T : Let {I, 1;, 1} C Bp,y ond without loss of generality assume
that I, =4, L, =4, L =% and i <j <k Further, let
Puy—Puy 3 Op~1—Yin.
According to the plan P,

Pupn+0;—1—¥e1 € PartPar—Pan o (46)

which implies
P} € PaietPop—Pupe—(0,—1—7r4)- . (47)

Since j € Bmyy,
P; < Py= Puy+Poyy—Puy. o (48)

If i » m+2, then
Py < P} = Pigyu+Pionu—Puy . (49)

8;—1—Yr41 2 Poyt—Poyyt+Payy—Puys+ Por— P .« (80)
Adading (47), (48) ond (49), and using the relation (50), we get
P;+P;+P; < Pagy+Poay+ P
= P(s)xl‘f'P(:)lz"l'P(s)l, w (81)

and
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If § = m+1, then
P < P{ = Py (0,—1—101) e (52)
O3—=1—7Yk4y > Paiy— Payy+Poa— P+ (03— 1—7141)- - (63)

Adding (47), (48) and (52), and using (53), we can cstablish (51). We now
supposoe that

and

Pun—Puy < 03—1—Yin
Pay—Pun 2 04—1—714-
As in tho abovo case ono can easily show that

Py < Piyyt+Pay—Payy—(0—1~Y141)

and

and for § > m+1.
Py+P; € Poyy+Pan € Py+P,,.
Sinco P} € P,‘ (always holds), we have
Pi+Py+Py P+ P+ Py
Finally, we consider the case
Pon—Pun < O3—1—¥14
and
Piy— Py < 0,—1—¥44.
Thon, according to the plan P, we have

Payt+Pan—Pun & Py +Puy— Py, . (54)
and
Pt Pen—Pun & Pay,+ Py, —Puy, . (85)

Sinco Py = P, , tho dofinition of P, implies that
P} < Py +Prgt,— Py, — (10— ,z (Pay—Puy) )- e (56)
Adding (54), (65) and (56), we get
Pi+Pi+P} & ;%:1 (Pt P gy~ Py )—(1=0)
< P'|+P‘2+P’s (from Lomma 6)

Wo now aro in a position to prove the following theorem.

Theorem 6: The plan P* is optimal in the context of a general sample
aize .
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Proof : Let # denote the st of extremo points in tho class X, Since
P is complete and convex, to prove that I is an optimal plan it is enough to
show that it is optimal in tho set X",

Let P = (P,, Py, ..., Py)e . The incqualitics (7) and (8) are equiva-
lent to

N N
X Py » X Py, i=23,..,N.
=t =t

which together with

L ope 2 opo &
L Pi=3XPrPi= 2D
3= 3=t 1-1

imply that P* majorizes any P ¢ ©'. Since (1—z)» is a convex function of
z(0 < z € 1), from Theorem 1, we have

N N
X (1-P)"> % (1-Py) =
11 =

y ¥
T (1—(1=P}j") < E (1—(1—Ppn)
=1 §=1
for all Pep'.
We conclude this paper with the following examples.

Example 1 shows that any arbitrary plan derived through Mitra-Pathak
algorithm need not be better than the usual one if the surveys were carried
out independently.

Example 1. Consider the following stochastic matrix for 3 surveys.

TABLE 1

volues of P,,

j 1 2 3 4
i
1

0.0 0.6 0.0 0.6_ 8 = 0.0
2 0.6 0.0 0.2 0.2 03 =1.2
3 0.4 0.4 0.2 0.0 6y = 1.8

Mitra-Pathak algorithm gives the following plan :

. Py = 0.1, Py, = 0.3, Pyyy = 0.2, Ppyy = 0.2, Pyyy = 0.2
and
P, =06, P, = 0.5, Py = 0.4, P, = 0.5 v (67)
where Py denotes P(X, =i, X, = j, Xy = k).
B3-14
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If the surveys were carried out independently, then for tho integrated
plan, obtained as the product of the marginal distributions of X;, X, and X,,
it ean bo seen that

Py=1—(1=P)(1—Py)(1—P,)), j=1,2,...,N.
Therefore, for the present example,
P, =076, Py =0.1, Py =036, P, =0.. .. (58)
For n > 17, tho valuo Ev, of the plan (57) is greater than that of the plan (58).
In Example 1 note that the plans P, and P, arc identical. That is,

P‘ = P”‘ = 0.8, P'a = Pba = 0.5, P” = P“ = 0.5, Pl = Pb = 0.2

4 1 1

where =1L =2{=4andl =3
Wo next givo an example where the plans Py and P, are not identical.
Ezample 2 : Consider tho stochastic matrix given in Table 2.

TABLE 2

valuea of Py

1 0 0.0 .16 0.0 .20 .20 0.0 .05 .30 6, =0.0
2 0 .10 0.0 .20 .15 0.0 .15 .30 0.0 6,=1.15
3 0.0 .12 RIS 0.0 2 .91 0.0 .10 0, = 1.85
Plan : Py
P =.10,P =.12, P =.157D 20,P, = .20,
by by b, b, b
=9 = = .35 =
I’b. = .21, Pb., = .27 P"l = .33, Pb. = .40
where by =, i=12..,0
Plan Py :
P'l = .10, P“ =.12, I", = .15, P“ = .20, Pla = .20,
Py=2,P =30P =.30,P, =42

where =g, forj=12..06t =8 =0and ty=1.
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Wo computo the value Ev, of the plans P and P for n =2, 3, ..., 10 and

present in the following table.

TABLE 3

vuluea of Ey,

n Plan Py Plan P,
2 3.4736 3.47206
3 4.56787 4.6773
4 5.4214 5.4201
5 6.0738 6.0732
] 6.5802 6.5863
7 8.9033 6.0042
8 7.3208 7.3221
] 7.8803 7.5881
10 7.8040 7.8057

The above table values show that Ev, of tho plan Py is greater than that of
the plan P, for 2 § » < 5 and less than that of the plan P, for = > 8. Also
note that the absolute differcnce between them is numerically insiginificant

for all n > 2.

The following example shows that the plans P, and Py are not identical
but the valuo Ev, of tho plan P, is smaller than that of the plan P; for all

n>2

Ezample 3: Consider tho following stochastic matrix for 3 surveys.

TABLE 4

values of Py,

\{ 1 2 3 4 5 8 7 8 0
)
' .10 00 .5 00 .2 .20 00 .05 .30
2 .0 .10 0.0 2 .5 0.0 a5 .30 0.0
300 a2 .18 6 0.0 .22 28 0.0 .10

6, = 0.0
0, = L15
0y = 1.85

Plan Py : P, =.10, P, =.12, P, =.165, P, =.20, P, =.20,

=.22, P, = .26, P, =.35 P, =.40
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where by=j for 7=1,2,..,9.
Plan Py : P‘l = .10, P,= = .12, Pl, = .15, Ph = .20, P's = .20,
P, =22, P, = .30, P, = .30, P, = 41

whore fy=jforj=1,2..,6 4,=8, f{=0and =17
Numerical computation shows that
L] L
I (1—(1—Py)") < T (1—(1—Py)")
g1 3-1
and the difference between them is numerically insignificant for all n > 2.

RerERENCES

AntmavaR T. 8. and Donoe (1981) :  Math ical Prog ing in Statistics, Wiley, Now York.

Carszy, B. D, Cox, L. H. and Eryst, L. R. (1985): Applications of transportation theory
to statistical problema. J. Asmer. Statist. Assoc., 80, 903-909.

Kusayavoontny, K. and Mrraa, S. X. (1086} : Coat robustness of an sigorithm for optimal
integration of surveys. Sankhya, Ser. B., 48, 233.245.

Kesntz, N. (105)): Sampling with probability proportional to size : adjustment for changes
in probabilition. J. Amer. Statist. Assoc., 48, 105-109.

Lanmr, D. B. (1854): Technical paper on some aspocts of tho dovelopment of the aanple
design. Sankhya, 14, 261.316.

Mansuare, A. W, and Ovxm, 1. (1979): Inequalitica : Theory of Majorization and its Applica-
tions, Acodemio preas, New York.

Mrrea, 8. K. and Pataax, P. K. (1984): Algorithma for optimal integration two or three
surveyn, Scand. J. Statist., 11, 257.263.
RaJ, D.(1057): Onthe mcthod of overlapping maps in sample surveys. SankAya 17, 89-98.

Paper received : August, 1986.
Revised : May, 1987.



	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024

