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SUMMARY. This is » equsl to Mathow and Bhimassnkaram (1983). We oconsider
singular covarianos structure snd study the robustness of LRT in s linoar modsl with reapeat
to specification errors in the dispersion martix.

1. INTRODPUCTION

Tn an earlier paper (Mathew and Bhimasankaram, 1983) we considered
the robustness of LRT under specification errors in a linear model with positive
definite covariance structure. In this paper, we comsider the singular co-
variance struoture snd study the following problem. Consider the model
(Y, X8,6%7,) where V, is poseibly singular, the hypothesis H,:A4f =0
where A is estimable and the corresponding LRT statistic. We obtain
the olass of all models (¥, X8, 0*V) for which the LRT statistic remains the
same for testing H,. Unlike in the case of positive definite covariance strue-
ture, here it turns out that eventhough the LRT statistics may be the same
with probability one under alternative models, the corresponding F distribu-
tions (null) need not have the same degrees of freedom. These problems are
di d in detail in Seotion 3 where we assume multivariate normslity for Y.
Khatri's (1981) msin resalt comes out a8 & corollary to one of our results.

Consider (Y, X4, 0%7,) where ¥, may be singular. Let 48 be estimable.
In Section 2 we obtain the class of all models (Y, X8, 0¥) such that a speoifio
lincar representation/some linear representation/every linear representation of
BLUE of Ag under (Y, X8,0*V,) remains its BLUE under (Y, X8, aV).
The corresponding problem: for X# was solved by Mitra and Moore (1873).

For a matrix B, M(B), N(B) and r(B) denote the column space, nuil
bpace ond rank of B respeotively. B~ denotes sny matrix satisfying
BB-B=B. B+ denotes a matrix of maximum rank satisfying B'Bt = C.
For any n.n.d matrix ¥, , Pp,xy denotes B(B’NB)~B’'N and Pp stands for. Pg; y.

For matrices X and 4 we donote X, = X(I—A4A~4). Zand Z,=(Z :%,)
are semiorthogonal matrices such that Z = X+ and Z, = X
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2, RoBUSTNESS OF BLUXES

Mitra and Moore {1873) have established that under the linenr Mode)
(Y, X8, a*V,) every linear representation of the BLUE of an estimable Par.
metrie function Af is of the form A(X'GX)-X'GY where Gis o n.nd g-inverse
of 7,+XX'. In fact, it can be shown that if we vary over nnd -inverses
of V+XX' with any specified rank, wo get all possible representations of the
BLUE. We now proceed to characterise nn.d matrices ¥ such that o Riven
linear representation/some linear representation/everv linear representatip
of the BLUE of 44 vnder (Y, X8, 0%V,) continues to be its BLUE unger
(Y, XB.0tV) also. The characterisations aro given in Theoreme 2.1, 29,
2.3 oand 2.4. Wo state o lemma given in Mathew and Bhimasankaram (1983)

Temmn 2.1 : Let X,, Z, and Z, be as defined in Section 1. Then
MA) = MX'Z,) = M(X'Z,).

Theorem 2.1 :  Lel @ be a given g-inverse of Vi+ XX’ and iet W be such
that M(W) = N(X'G). Then A(X'GX)~X'GY is BLUE of Af under (¥, Xp,
o2V} if and only if

V = XD X'+ WD, W' +X D'+ WD' X',

where Dy, Dy and Dy are arbilrary malrices subject to the condition thal V is
n.nd.

Now consider the spectral representation of V relative to V,+XX' s
defined in Mitra and Moore (1873) given by

V = LB +2AE, ...+ AgEp
W+ XX =B Byt...+Be, v &2
where Ag are sealars and E; are n.n.d matrices such that
M(E,: E,: ... Eg) = Rw,
Let @ he a p.d. p-inverse of V,+ XX’ entisfying B(GEy = dyB Wo now atale

Theorem 22: Lel @ be the class of all p.d. g-inverses of V,+XX'. For
G @, let W salisfy M(W) = N(X'Q). Then Af has a common BLUE under
(Y, Xf.a%V\) and (¥, X8, 0?F) if and only if V = Vg for some G 6 @ whert

Vo= XD, X'5 WD W'+ XDy W'+ WDy X',

Dy, D, and D, being arbitrary matrices subject o the condilion that Va €& mnd
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Theorem 2 3 :  The condition on V given in Theorem 2.2 ia equivalent to
cach of the following conditions

() MO:0:4YCMVZ:V,Z: Ay
(i) M(VZ:V,Z; () M(4) = {0

w m(Zy) =m(zy,) 4

Theorem 24: Kvery linear represeniclion of the BLUE of Af under
(Y, XB, 0*V,) conlinues to be ita BLUE under (Y, X, 03V) if and only if
M(VZ) C M(X,: V,2) or egquivalenily

V= XD, X'+ V,ZD,Z'V,+ XDy Z'V,+ V, ZD' X',

where Dy, Dy and Dy are arbilrary. malvices subjec lo the condition that V is
nnd,

We shall prove Theorem 2.4 only. Applying Lemma 2.1 the proofs of.
Theorems 2.1, 2.2 and 2.3 are seen to be similar to the proofs of Theorem
2.1(b), Theorem 3.1 and Theorem 3.2 in Mitra and Moore (1973).

Proof of Theorem 2.4: Using Lemma 2.1, we see that we want to

charactoriso V such that L'(X :V,Z)=(ZX :0)=>L/'VZ = 0. Using
Theorem 2.3.1{0) in Rao and Mitia (1871p, p. 24), we got

VZ=(X:7,2)K = XK,+V,ZK,
for some K = (K; : Ky)'. Hence
LVZ=0&SL(X: VDK =0&3(ZX:0Kk=0
& LXK, = 069 XK, = XK,
for some K, Henoce
VZ = X, Ky+V, ZE, & M(VZ) C M(X,: V,2).
Bince M(VYC M(X : VZ) C M(X : V,Z), we can write
¥ = XD,X'+V,2D,%'V,+ XDZ'V,+V,ZD'X’
for some Dy, D, snd D. Using M(VZ) C M(X,: V,Z), wo get
ViZD,Z'V, Z+XDZ'V,Z = XU+ V,2U,,
for somo U, and U,
=3 XDZ'V,Z = X,U,, using M(X) (Y M(V,Z) = {0}
== M(XDZ'Vy) C M(X,)
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d
end horioo XDZ'Vy = XoDyZ'V: for some Dy,

The proof of Theorem 2.4 is thus complete.

Corollary 2.1 : The BLUE of Ap under (Y, XB, 0%} is its BLUE unde
(Y, X8, 037) if and only if Z'V%; = 0 or equivalently

V = XD, X'+ ZD,Z'+ X Dy Z' + ZD' X",

where D,, Dy and D, are arbitrary malrices subject to the condition that V
nad.

Remarz 2.1: I r(d) =nX), then X, =0 and Theorems 2.1; 2.2, 23
and 2.4 reduce to the results of Mitra and Moore (1973)

3. ROBUSTHESS OF THE LET-STATISTIC

In this section we shall derive the necessary and sufficient conditions
under whioh the LRT statistio for testing H,: Af = 0 under (¥, Xf,0%7)
ooincides with probability one with the LRT statistic under (¥, 38,0V,
Since M(4’) = M(X'Z,), the above hypothesis is equivalent to H, : ZeX8 = 0.
Under (Y, X8,6%V), the BLUE of ZXf is u= ZX(X'GX)-X'GY with
dispersion matrix 03D, where D = ZoX(X'GX)-X'GVGX(X'GX)-X'Z, where
@ =(V4+XX')~. The hypothesis is consistent with the model if and only
if ue M(D) [See Rao and Mitra (1971a) p 300, Rao (1872), p 371 or Mitrs
(1973) p 680). They observe that if this condition is violated then the null
hypothesis stands rejected. It can be shown that wu e M(D) if and only if
YeM(X,:V) Hence, when we consider the LRT statistic for testing Hy
we will consider only those ¥’s which satisfy Y ¢ M(X,: V). For testing
H,, the LRT statistio is given by

Ly = (HBETZI LY )

TZZ Vo) Z Y
_ 5 TI=Pr) U= Px) PU—Pay I~ Py Y
= vr—rmr=rove—rara—ror ")
for ¥ 6 M(X, : V), where

= V2
HVZo)—1(V2)

It oan be shown thot Ly as dofined above ooincides with the F-statistio gived
by Rao (1072, equation (4.8)), whenover Y e MX,: V)
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Under the model (Y, X8, o'7,) the LRT statistic for testing H, is defined
only for YeM(X,:V,) Honce, if we want the LRT statistio under
(¥, XB,0*V) to coincide with probability one with tho LRT statistic under
(Y, X8, 0*V1), we should necossarily have M(X,: V)G M(X, : Vy) or equiva-
lently M(V)C M(X, : V).

Khatri (1881) gives nocessary and sufficient conditions under whioh
Ly = Lyforall ¥ Tt turns out that when Ly = Ly for all Y, then the degrees
of freedom sssociated with the F-distributions (null) of Ly under (¥, X4, 02¥)
sod Ly under (Y, X8, 0%) are the same. In other words tho F-test: for
testing Hy under (Y, Xf,0%V) and (Y, X8,0%I) are the same, However,
if we want Lp = Ly for ¥ e M(X,: V), then eventhough the F-statistica
uder Y, X8,0%7) and Y, Xp,a%]) coincide with probability one, the
associnted F-distributions (null) will have different dogrees of frecdom under
tho models and hence the F-tests are no longer the sgame. But Ly = Ly for
Y e M(X,: V) together with the condition r(VZ} = r(Z) and r(VZ,) = r(Z,}
will imply the F-statistics coincide with probabilitv one and the essocinted
F-gistributions (null) have the same degrees of frecdom under (Y, XA, 0%V)
and (Y, XB,021). These facts are stated in Theorem 3.1 and Corollary 3.1,
Wo also consider the oquality Lp == I"x for ¥ ¢ M(X, : V) in Theorem 3.2
and Theorem 3.3.

Lemma 3.1: Lel Hy: Af = 0 be a hypothesis consistent with the model
(Y, XB,0%V) Then for lesting Hy, +f the LRT-slatistic under (Y, Xf, 0*V)
coincides with provabilily one wilh the LRT-slatistic under (Y, X8, 0%V,) whers
M(V) C M(X, : V,), then the BLUE of Aff under (Y, XB, 03V)), irrespechive of
ils linear representation, confinues fo be its BLUE under (Y, Xf, 0*V) also.

Progf: Let

_ HVZ) _ "v,2) )
8= ivzg—nvz " T VzAVZ)

Thon for testing H,, the F-statistios under (¥, X8, 03V) and (¥, XB,0*V)
%incide with probability one if and only if

(Y‘ Zy(ZoV Zo)~ZoY —1)
Y UZ VI ZY

' n( l') 1 D) 0 H N .es 3.1
=8 IZ, (Z’XIZ) Z“,I —1),-\;&}’6M(X,.V) \3.1)
A%-7
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In view of Theorem 2.4, the lemma will be proved if we show that (3.1) impliy
M(VZ)C M(X,: V,Z). For arbitrary 0 putting ¥ = VZ6in (3,1) we ™

Z'VZ\ZV, %) 2V Z = Z'VZ(Z' V 2y Z'V 2. - 3y
Since V satisfies the condition M(V) C M(X,: V) = M(X,: V,Z)), L™
wite VZ = XK+ V,ZE+-V,Z,K,, - (33
Substibuting in (3.2) snd simplifying, we get

KL Zy(VaZo( ZoV 1 Zo)ZoVy—Va Z(Z' YV, 2)-Z' V) Z,K, = 0

& V2ol 2oV 1 Zo)- 2oV 2, Ky = VL Z(Z' V22V, Z,K,

&= TV, 2K, = 2V, U2V, 22V, ZK,

& Z\V\Z,K, = ZV\ U2V, 22V, Z,K,

& 2V -V ZZ' V22 V)ZK, =0

= V,Z,K, = V,%(2'V,Z)"2'V,Z,K,

=) M(V,Z,K,) G M(V,Z).
Hence from (3.3) we get M(V2Z) C M(X, : V,Z) and this concludes the proof
of Lemma 3.1.

Remark 3.1: For V, = I, Lemma 3.1 is proved in Mathew and Bbim+
sankaram (1983).

Theorom 3.1: Lef r(VZ) = r and r(VZ,) = o and let Hy be consiss
with (Y, XB,0%V). Then under (Y, Xp,0%V), Ly = Lr wilh probablity o*
if and only if V suisfier Z'VZ == kU, U}, Z3V%, = IU,Us where U, and 0y
are semiorthogonal malrics of ranks r and & respeciively and Z'sz'—’o;'
equiralently V = XD X'+ hZU,U,2'+X,D,Z + ZD,X;, where D, asd D
are orbilyary subject lo the conditions V is nnd. 2nd ZyXD\X'Z = 00»
k and 1 beina positive renl numoers satisfying ;f- .-: = :((_Zz%)_
Proof : We want oonditions under whioh
V' ZUZVZ)2Y  \  , YV'ZZY L7y .. 8
(YUZTHTY —)= gy ¥ Ve MEo: )

where

- nV7Zz) nZ)
§= mund & = m
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From Lemma 3.1 and Theorem 2.4, we seo that (8.4 holds if and only if
MVZ)CM(X,: Z) &= ZiVZ = 0.
Henoo (3.4) simplifies to

nVE) YZABVLYZY _ nZ) TZEY
Az TUZVIZY g TEZT ¥ TeME:V) . (5

putting ¥ = V264 VZ,8, in (3.5), we get

NVZ) GZVIS _A2) GHVEZVIZE
VZ) CZVZ0 ~AZ,) GCZVIZVZo

GZVZZVZO  GZLVZ0,  nVE) D)

STV GIVLIVIE = %) VD) (e
A necessary and sufficient condition for the above to hold is
Z'VZ = kU,U;
and
2,V Z, = 1U,Us X))

where U; and U, are cemiorthogonal matrices of ranks 7 and 4 reapectively,

for some positive scalars k and /. From (3.6) it is olear that & and ! ehould
. kE_ s r2) . b

satis{y T= 7 Wy Using Theorem (2.3), we ge

¥V = XD, X'+ ZD, %'+ X D, Z'+ ZD; X

for some D,, D, and Dy. The conditions on D, and D, given in the theorsm
sre neoessary and sufficient for (3.7) to bold.

Corollary 3.0 : Let n(VZ) = r{2), 1{VZy) = r(Z,) and let Hy: Af =0 be
consisten’ with (¥, XB,a3V). Then under (Y, XB,0%V), Ly = Ly with proba-
bility one if and only if any one of the following equivalent conditions holds :

(i) (I—Pg H7—RINI—Pg ) = 0 for some k>0
{ii) (’;;‘) (V—HI{I—Px : P2L') =0 jor some k>0

vliere L is o mairik satisfying LX = A.

(i) V = XD, X'+k(I—Px)+X,DyZ'+ZDsXo, where D, and Dy are
arbitrary malvices and k is an arbitrary posilive real number subjech Lo the eonds-
liong
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(a) Visnnd and
() (Px—Pz)XD,X(Px—Py )= MPx—Py).

Proop: Bince nVZ)=n2Z) asnd nVZ)=nZ,), from the proof of
Theorem 3.1 it i clear that Ly = Ly with prooabilitv one under (¥, Xp,a%p)
if and only if 2'VZ, =0, Z'VZ = kIr and Z,'VZ; w= kI, which are ogi.
valent to the condition

ZoVZy = kly,s,
which proves part (i) of the corollarv, since ZyZo = F —Py,. The equivalence
of (i) and (ii) is easily eatablished. Since Px—Py = Z,Zi, the equivalencs
of (i) and (iii) is also olear.

Remork 32: The main result proved by Khatri (1881) states that
Ly = Iy for all Y if aad only if (’Zlf;’) (V—kI\I—Py :PzL) =0 [
some & > 0, or equivalently the covariance matrix of (1;;:) Y under
(Y, XB,0%F) is & scalar multiple of its covariance matrix under (¥, X8, oUl).
This equivalent form of the condition is & conjecture of J. K. Ghosb stated in
Khatri’s paper.

Remark 3.3 : For o positive definite ¥ Corollary 3.1 (i) and (iii) have been
obtained by Mathew and Bhimasankaram (1883),

Theorem 3.2 : Let (VZ) = {V, ), (VZy) = (V,Zo)}and lel Hy: Af =0
be consistent with (Y, XB,0%V) where M(V) C M(X,: V,). Then for teshing
Hyunder (Y, Xf,0°V), Ly = L, _with probability one if and only if anyone of
the following equivalent conditions holds :

i) (I—Pg ) (V—kV\I—Py ) =0 for some k> 0.

. (I—Px,q
(“)‘ ( LPx. a
L is any matriz satisfying LX = A and G is any g-inverse of V;+XX'.

@) V= XDX ARV, ZZ V,2) L'V -+ XoDyZ'V, + V,ZD,X; where Dy
and D, are arbilrary matrices and k is an arbitrary posisive real number subject
to ihe conditions

(8) Visnand

(b) Z.XD\X'Z, = kZ(V,—~V,Z(Z'V,2)-Z' V)2, and

(©) M(XDX)GM(X,: V).

J(7—RV0I—P%, 6,: PraL) = 0 for some k>0, where
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Proof: Since n(VZ) = r(V\Z), r(VZ)=r(V,Z,) and H, is consistent
with (¥, Xfro*V), wo see that Ly = Ly, with probability one under (¥, X4,
AV) if and only if

VEAZVZY ZY _ Y Z(ZoV.Z)-ZY
YULVIrTY ~ YUZVZ 7T Y eME:T). .. (38

Let V = 00'. Writing Z,Y = Z,0 in {3.8) we get

0C 2ol 2oV Zo) 200 _ 0'C"Zy(ZoV, %) 2,00

FCUZVIIZ08 — GCUZV,2)Zc0 VO - (39)
Using Lemme 3.1 we see that o necessary condition for (3.9) to hold is V
sdmits the representation given in Theorem 2.4. Using this observation it
oan Dbe shown that tho matrices C'Zy(ZoVZ,)-Z,C, C'Z(Z'VZ)-Z0,
C'Z( ZoV1 Zo)~ZoC and C'2(Z'V,2)-Z'C commute pairwise and hence can be
reduced to disgonal forms using the same orthogonal matrix P. Let the

Ipy O I, o
corresponding diagonal matricea be (0 0), (0 0), A, and A where

¥ =nV,Z) and r48 = r(V,Z,). Writing P'0 =1 = (l, 4y, ..., },), Ao = disg
(Aow Aggs -1 Apryas 0, ..., 0) and A = diag(Ay, Ay, ..., A, 0, ..., 0) we get, (3.9)
holds ¥ @ if and only if

rgd '5.‘:
‘i:‘.‘ﬂ oy

T r
PP ]
EX‘, =1 ‘a

€EDig=M=2, i=12..r+¢

i=12,..,r
4 S VUZVI»Z'V =AVIZV,Zy 2V . (310)
[
VZZoV Zo)~ZoV = AV Z(ZoVy 2oy 2oV . (311

(3.11) &= ZyVZ, = AZV Zo( Zo V1 Zo) ZoV Zo
&= overy g-inverso of—l/‘— Z,V.Z, is ag-inverso of Z, VZ, Since (VZ)=
nv,Zy), oapplying Theorem | in Rao, Mitra and Bhimnsankaram (1972), we get
ZoV 2y = kZyV,Z, for some k > 0 ... (3.12)
= (I~Px (V—kV,){~Pg,) = 0, since ZoZo= I—Pg,
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This proves (i). Observe that (i) implies the condition M(V) C MX,: v,

asrequired. 'The equivalence of (i) and (ii) can be established by showing that
M{V—EV WPy )} = M{(V—kV)(I—Px,q : Py, oL")}.

To prove (iii), observe that ¥ should necessarily be of the form

V = XD X'+-V,ZD,Z' V4 XD Z' V, + V, 2Dy X, for some Dy, D, and D,
(3.12) then gives

Zf XD, X'+ V, 2Dy 2'V,) 2y = kZyV,Z, for some k> 0.

E(ZV,2)D(Z'V,2) = kZ'V, . (313

and
ZiXD,X' ZA BV ED, TV, Z, = kZ,V, 2, . (314

(3.13) gives Dy = k(2Z'V,Z)~. Then from (3.14) we got
2 XD\ X'Zy = kZ(V,— V\ 2 Z'V,Z)"Z'V,) Z,.
The condition M(XD,X') C M(X, : V,) guarantecs that M(V)C M(X,: V).
Remark 3.4: Matrices D, satisfying

MXDX)YCMZX,:V,)
and

Zi XD\ X'Z, = kZ(V,—V\ HZ'V,Z)yZ'V,) 2,
could be characterised as follows. Let @ denote the parallel sum (see Rao
and Mitrs, 19710, p. 189) of XX’ and V,+X,Xo. Then
MZXD,XYCMX,:V,)& XD X' =QDQ'.
D is obtained from
ZQDQ'Z, = kZ{V,—V,Z(2'V,Z)-2'V,) 2.,
Theorem 3.3: Let V, = 0,01, TT' = O\Z(Z'V,Z)"2'C,,

and

QQ' = O1Zy(ZoV, Zy)~ 240, — CLA( Z'V, Z) Z°Cy.
Then under (¥, Xp,0%7) where (V) C M(X, : V), for tesling  hypoihesie
Hy: A= 0 consistent with the model, L, = Ly, with probability one if @
only if V = CC’ with € = X,B,{C\ By, where B, is arbitrary and By is obloined
from the equation

(@)BBar:@ = (M0 0
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U, and U, being semiorthogonal matrices and k and | are positive scalurs satisfying

nPE_,  AVZ)
Ty ey o S A A

Proof : Using arguments similar to those given in the proof of Theorem
3.2, we gebt Ly = LV!. with probability one if and only if

OUTVISLC = A TZV,2)-2'C . (3.15)
d
o O 2BV BTl C 2L VI 2O
= A.%(C”Zo(z;V-,zo)-Z;G—O'Z(Z’V,Z)-Z'O) . (319)
where PRSI 14t Y S 1 £
' = V2T AVE %)

Since the metrices on the left hand sides of (3.16) and (3.16) are symmetric
and idempotent, they can be represented as PyPj and PPy respectively,
where P, and P, are seriorthogonal matrices satisfying PyP; = 0. Bince
we want M(V) G M(X, : V,), we can write 0 = X,B,+C;B,. Then (3.15)
and (3.16) become

AB{TT'B, = P,P;

AL BeeB, = PR,
1

Using Lemmsa 2.2 of Bhi karam and Majumdar (1980), we seo that the
above equations are equivalent rospectively to the equations

T'B, = kU, P; v (317
snd

Q'B, = I"U,P, v {318)

whero U, and U, ore somiorthogonal matrices with
. [
M(P}) G M(U}), M(P}) G M(Uy), k™ = A and |- = "g-

{3.17) and (3.18) are together equivalent to

kO, 0y 0 )

T .
(Q')’B'B‘(T:Q)=( 0 0,0

whoro b and 7 sotisfy k8; = I3
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