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ASYMPTOTIC THEORY OF ESTIMATION IN NON-LINEAR
STOCHASTIC DIFFERENTIAL EQUATIONS FOR THE
MULTIPARAMETER CASE
By ARUP BASU
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SUMMARY. Strong i and asymp lity of the m.l.o. for multi-dimen.
sional in Lin, h di inl i s proved, using Kolmogorov
type inequalities from the thoory of diffusicn prooceesss.

1. IRTRODUOTION

Statistical analysis of diffusion processes has received considerable
attention recently. Dorogovohev (1876) has studied weak consistency of
least square estimates for parsmeters of diffusion pr which are soluti
to non-linenr stochastic differentinl equations. Asymptotic normality snd
asymptotic effioiency of these estimutora is investigated in Prakasa Rao (1878).
See also Tbragimov and Khasminskii (1875), Kutoyants (1877), Lunska (1079)
and Prokasa Rao (1980, 1981) for further work. A survey of the recent litera-
ture is given in Basawa and Prakasa Rao (19880).

In a recent paper, Prakasa Rao and Rubin (1881) studied limiting pro-
perties of a procoss related to a L.s.e. and disoussed the asymptotio properties
(strong i ¥ and asymptotia normality) of the m.le. derived from the
limiting process. Their study is based on Fourier anslytic methods.

In the present paper we genoralize the results of Prakasa Rao and Rubin
(1981) to multi-dimensioual pars s, but using o different approach.
Instead of the Fourier analytio methods used in Prakass Rao and Rubit
(1981) for Qeriving bounds for certsin probabilities, we use Kolmogorov tyP®
inequalities from the theory of diffusion processes,

2, Tm» mopm,
Let {X(¢) : 4 >» 0} be a real-valued, stationary, ergodio process satisfying
the stochastic differential eguation
dX{t) = f(G, X(¢))dt4-ds(t), X(0) = X, 8 3 0

where {3():¢> 0} is o standard Wiener process and K(X}) < (Seo
Fricdman, 19755 and Stroock snd Varndhan, 1979 in this oconneotio)
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(6, %) is & real-valued funotion on QX 2, whore (1 = {06 ¢ : [0} < 1},d > 1
(finite) and 0, 6 Q° (the interior of ) is the unknown. “true-value”,
Wo shall assume the following conditions on f. Not all of them will
be used always.
(A1) f{0, z) is continuous on QX R
(A2) () [f02] <UD+ |z|)0eD. ¥V ze R
where sup {L{f) : 0 6 Q} < 0
(i) 1S, 2)—f0.0)| K LO)|z—y| ¥ 0¢Q, ¥r.ye R
(iii) |18, 2)—f($.2)|  J(=)|0-| ¥ O.pe DY z6R

where (a) J(*) is continuous and
(b) B(] J(X(0))| 6+%) 0 < co for Bome d+ay » 2.
(A3) 1(8) = B(f(0, X(O)—f(By, XONN > 0470 5 6,

(A4) The partial derivatives f§? of f w.r.t. 64 (where 6 =(f,, ...,04))
exists 41 =1,2, ...,d.

Denote by f§(0°, z) the derivative evaluated at 6°.
(A5) 150, 2)—f§g, 2)| K cl)|N—@|° ¥ 0, 4eQ, e R
and B([(X(0))]*T™) < oo for some dtay > 2, =1, ..., d
(88) E(ff%6, (O <0 ¥i=12,..,d

(A7) ‘2“.‘ 1£§0,2)| < M(@)1+]z|)% 6 in & neighbourhaod ¥, of G,
and {sup M(0):0¢ V,o} < 0.

3. A L8.E. AND A PROCESS RHLATED TO IT
Assume that the process X is observed over [0, T] at the time points
hk=0,1,...,n with 0=f <{ <..<ly=7T. Form the “Sum of
Squares” QI(0) as
"= — —
q76) = z’ [X(tesa) X(lk)N (60, X(a))AnT
A0 %

where Afy = bey—, k=0,1, ..., (n—1).
An estimator 9,.,7 which minimizes QT(f) is & least squares estimator.
Even if such estimator exists, it is not consistent in general.

Result 3.1: Fix 7> 0. Supposo Ap— 0 ps n— 0

(An = max Af).
VGGt
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Then under (A2), 88 7—» 0,

Q7(6)—QZ(05) — Rel0) in probability
whore

Ral0) = [ 2. Xpi—2 § o0, KON

w0, 2) = (6, 2)—f(0y, z).
Proof : This is proved in Prakasa Rao and Rubin (1681).

Lot 20 = | 6, XM

22(0) = = 730)

12(0) = | w0, Xt

Remark:; Undor (A2), w.lg. we can assume to have chosen a version
of (X(t):t>» 0} so that 6§ 5 2(0):0 ¢t T is & function from 0 into
@[0, T] and is a.6. & continuous funotion of . This is beoause of Lemma 6.1
and the fact that Zyf,) = 0.

We now prove the wesk convergonce of {Zx(f) : 0 ¢ Q).

Theorem 3.1: Under (A2), {Zr{0): 06} as a process in 0, converges
weakly (a2 T — c0) lo a mean zero Gaussian process with covariance funclion
R{Dy, 6y) = E{v{0;, X(0)}v(0y, X(0))).

Proof : The process {X(t) : ¢ > 0} is stationary and ergodio. Hence by
the C.L.T. for stochastic integrals (see Basaws and Prakass Rao, 1080) thero

is no problem of convergence of finjte dimensionsl distr Thus it
suffices to prove tightness.

By Lemma 6.1
B| Z2(0)— Zr()| ***0 < e, 16—4]* BIJ(X(O)) *

whioh i diatoly gives tight
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4. STRONG CONSISTENCY OF THE MIXL.B

Denote by &z, the m.le. of § when the process X is observed over [0, T].
(See Gikhmsn and Skorchod (1972) for the existence eto. of the relevant
Radon-Nikodym derivatives). It can be shown that By is the same as 5,
which minimizes Rp(@) over § ¢ (see Gikhman and Skorohod, 1881 and
Prakasa Rao and Rubin, 1981 for details).

We prove the consistency of the m.le. 67 through a series of Lemmas.

Lemma 4.1: Under (A2),

dtay

pE

Plop oup |230)] > cl/\”“"} <aj

gic?

Proof : Now
|90, z)—v($, 2)| < J(x)]0—4]|.

Apply Lemma 6.1 (with g(0, ) = {0, z)), Lemma 6.3 (with r = d4-a,) and
Cor. 6.2 in successjon to get tho result.

Lemma 4.2: Under (A2), for any y > 1/d+¢«, there exials H > 0 such
that
. Z3{0)|
I 1Z50)| 4
TP P mmeg Ty < H o

Proof : The proof is similar to Lemms 4.2 of Prakasa Rao and Rubin
(1981), Define

A={,. wp 5 SRl ZHO) > Haw)n 1

Then by using stationarity of {X(t) :¢ 5 0},
Pdy) = " gwgr}
(dp) =P {o <‘:“E,..,°‘3P|Z7(a” >H 2-4'1.'}
&+

)

= by Lemms 4.1,
{ 5,2,.,%,_)“'0

By the ohoico of v, §.l P(Ay) < 0. The lomma now follows by applying
Borel-Cantelli lomma.
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Lemms 4.3: Under (A2} and (A3),
m Ir(o)
10—601 ¢
Jor some A > 0, depending on 8
Proof: Same as in Prakasa Rao and Rubin (1981),

Theorom 4.1: Under (A2) and (A3),
Or— 0, as. a3 T—oc0.

ads.
—> Aa ToHcw

Proof :  Combine Lemms 4.2 and 4.3 as in Prakasa Rao and Rubin (1081),

5. ASYMPTOTIO NOEMALITY OF THE M.L.E.
In this seotion we assume all the conditions (AI}-(A7). Since dp is
sonsintent by Theorem 4.1, fre Vg with probubility one for largs 7.

Around a neighbourhood of 6,, we have
16, %) = f(Oq, 2)4-00—0,)Afy(6°, z)

where |6°—8)| < |6—6,| and
0", =)

Af0°, %) =
e
Lemma 5.1: For any Ap> 0,

T .
sup | Ip(0)—T7 [ [Y'Af {0, X dt| € M AF*T>as
IVikdp [

Jor some constant M.l'-> 0; where 0 = 0,,+‘—/£-T__
Proof :

In(6) = {10, X016, XOOP &
T
= uI [(0—065)'ViylGo, X

T
+ {(O— 00y ufl0*, X(O)Ydi—[(0—O0)wfyl o, X(1))]% dt.

Now integrand in the 2nd expression
= (0—6Y(/3{0°, X)+Vf5l0u ZINO— o) (0fy(0°, X)+V/y00, X))
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Honco using (A5) and (A7),

T Ed
|IT(0)_£ [(O—00Y gl XN ] < 2M|0—0o|“‘{ XN +1Xm]) &
Let
¥ = vT(0—-6).

By using the ergodic theorem (note that E{e(X(0))(1+ | X(0)|)] < co) we have
the result.

Lemma 5.2: Let
vp(y, @) = f(Op+ Y T4, 2)—f(6,, ’)_WT_'Vfo(oon z).
Then

P{Iw

e ApTH)Hdre
vi&dp A :

T
| vr(y, Xtthase) ’ > cuwa"o} <

Proof :
el ©)—va{y, ) = (Y—¥) yonlt, 2)

where { lies between yr and y;,.

Hence, if ||, |¥,| < A7, we have by using (A5),

lexl, 2)—ve(y, @) & |¥—v | (A7) clz).

Now the result follows a8 in Lemma 4.1.

Theorem 5.1 :  Assume

1(80) = ((BLA(E, XONJH {0, XON) 4,5 =1, ..., d

is non-singular,

Under (A1){A7),

VT (0r—0,) f N0, I7(6y).
Proof: By the ergodic theorem,

T
%. { VfelOo XONVS,(0a, XOYEL—> 1(By) 08, 88 T — 0

$nd by the OLL.T. for stoohastio integrals,

1

T L
T { Viol0o, X(1))ds(t) - N(0, 1(0,)) sa T~ co.
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Choose Ap =1log T in Lemma 5.1 and 5.2, and let T — o, we then have
that the asymptotio distribution of 87 which minimizes Rx(0) ie same as @

where ;5 is that which minimizes y'I{0,)¢—2y’Z, and Z is normal with mean
zoro and variance-covariance matrix I{6,).
But

a

¥ = YOy ~ N(0, I}(8,)).
£
Hence it follows that +/T(0p—0,) = N(0, I-1(0;)).

Remark: One might have tried to extend the results of Prakssa Rao
and Rubin (1881) by genoralizing the Fourier analysia results to many dimen.
sions. For example, o generalization of Lemmsa 1 of Appendix in Prakes
Rao and Rubin (1981) was conveyed to the author by Professor Q. J. Bahu
of Indian Statistioal Institute.

AppENDIX
Let {X(): 4 > 0} and {4(): ¢ > 0} be as in Scetion 2.
Lemmn 0.1: Letl g be a function on QXA such that

16(0, 2)—glé, 2)| < J(=)|0—¢) o
Suppose

T
Yoi0) = { 00, X{thde), T > 0
is defined as a stochastic integral.

Then if dtay > 2,

d4-ay
dieg d+ay digg
E( oup_ IYEO~Yid)|" " ) < ogre 0917 T T EIIXON!

Proof :

Sy » d4
E( o YO YUl ) KequnsB [ § 100, X)—gig K| ]—’ﬁ

(8es Prakasa Rao and Rubin, 1981)

d+% _y o
SoueT T E[ 1000 X)—gtd, X0 %

(By Hulder'= Inoquality)
dta,

K Cgra, P T |0—4]9%%0 E|J(X(0))| 4.

(By (s) and stationarity of {X(}) : ¢ > 0})
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Lemma 8.2: Suppose p, ¥ are condinuous functions on [0, c0)
PO} =y{0)=0 and U Pit) =
-

[ 78— L (where L is a normed lincar space) ia a funcion which is sirongly
continuous on Bla,p), p>0 where B (a, p) denotes the ball of radius p
around a6 | A%, B(a, p) denotes its closure.

Suppose furiher that

e Sl
D(r{,n B(c{o)¢ ( p(16—¢1) ) didg < B.

Then 36,4 ¢ B(a, p),

sl 441 B
WO—fN < B1" 9 (Zaie ) 2l
where
. 1B(6, p))B(0, 1}
=, B St
SeBiOM) 1</C R
nud |A| denotes the Lebesgue of A.

.-

Proof : For proof see Stroock and Varadhan, 1878, p. 60 or Stroook,
» -7

Corollery 6.1: In particular if ylz) =af, plz) =2, r>0, y> 2
in Lemma 8.2, then
=24

IO—F) < clr.y, d)1O—¢] T B,

Lemma 0.3: Suppose {Y(0):06 729 is a class of random variables
laking values in a normed linear space,

Suppose (8) Nw, 0 — Y0, w) ts conlinuous on Bla,p)
(b) EIYO) Y@ < o|0—¢|4+¥0,¢ ¢ B(a, p).
Then ty 6 (24, 2d+a) and A >0

11Y10)— Yl c4
P LA LA 2/ ) W il
{6.!‘:ga_n) 1o—gps 2> M '} <2
where

B=TR 4= g g lo—glerdods

T Bia,») Bia,p)
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Proof : By (b)
YO —=Y(SN \" 40, od
[ma,n)mu,p)( “Ta=grr ) d¢] <
Henco

17O = YA \" 45 N d
P{n(u,n)mam( |0=gT7r ) dg > }< S

and whenever
WO-Y@I Y g0 < 5
Bia,e) Big,®) ( [0=g17r ) dédg < A,
we have by Corollary 6.1,
IF@)— YN < . 7. 4)|0—9]* 17 6,4 ¢ Bia, p).
Hence the lemma follows.

Corollary 6.2: Suppose in additions to conditions of Lemma 6.3, there
exists a 0, ¢ B(a, p) such that Y(6,) = 0.

Then

B{ 17O > @oetry, i } < <%
l,
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