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BOOTSTRAPPING STATISTICS WITH LINEAR
COMBINATIONS OF CHI-SQUARES
AS WEAK LIMIT

By GUTTI JOGESH BABU*
Ruigers University

SUMMARY. Chaadra aad Ghosh (1979) comsider a olass of statistics and obtain Edge-
worth oxpansions with chi-square aa tho loading torm. Very littlo scoms to be known about the
statistios which aro aaymptotically distributed as linoar combinations of chi-squarcs, In thia
papor wo atudy bootstrap approximation to a claes of such atatistics,

1. INTRODUOTION

Lot s ¢ R¥ and let H be a thrice continuously differentiable function on an
open subset S of R¥ containing . Let Y{y) denote the vector of first partial
devivatives of H at y in 8 and L(y) denote the matrix of second partial deriva-
tives of H at yin 8. Let {Z,} be a sequence of i.i.d. random vectors in REF
with mean g and nonsingular dispersion . If {x) = 0 and L{g) is non-null,
then it can be shown that n{H(Z)—H(x)) is asymptotically distributed as
linear combinations of chi-squares. Here Z denote the sample mean of
Zy, ..., Z,. Chandrn (1980) and Chandrs and Ghosh (1979) have obtained
Edgeworth expansions for distributions of such statistics under some condi-
tions. These expansions are known ondy when L{z) is positive semidefinite
(or negative semidefinite.) Not much seems to be known about the asympto-
tie distribution when L{z) has both positive and negative eigen-values. In
this paper, we shall show that a modification of Efron’s (1979) resampling
pracedure called “bootstrap” would give & good approximation for the dis-
tribntion of »{H(Z)—H(x)).

Let F, denote the empirical distribution of Z,,..., 2, and Yy, ..., ¥,
denote  wequence of i.id. random varisbles from F,. Let I, denote the

dispersion of ¥,. Clearly the mean of Y, is Z. Let ¥ = % £ ¥ Under
[=
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some condijtions, it is shown in Babu and Singh (1984) that, if i) # 0 then
uniformly for sll real u,

P(ValR(Y)-H(B) < uVTZE,UD)

= P(VMB(Z)—Ap) < uy/Fp Zhm)+oln~14).
The result is proved by approximativg - a(H(Z)— H{;)) by

VAGE-p+ o B U E )

Note thit the asymptotie distribution of the first term /nl{u)Z—p) is
Gaugsian. If Yu) =0 and I{p) ix non-pull, then n({A(Z)—H(z)) con be
approximated by w(Z —p) LipiZ —p).

If, further, E = I and L(g) is dingonnl with the diagonal elements either
zero or 1, then w(Z —p) I{g)(Z —p) bas asymptotically chi-square distribution
with degrees of freedom = rank of L{g). If l{z) = 0, this suggests the possi-
bility of closoncss of distributions of a(H(Z)— H(p)) and the bootstrap statistio
w(H(¥)—H(Z)). The following cxample shows that this is false.

Fxample 11 Let {Z,} e a sequence of i.i.d. standard normal varinbles.
Tet B(v) = *. Sinco \/nZ has standard normal distribution, nH(Z) = w2
has chi-square distribution with one degree of freedom. But if Z> 0, wo
have for any u > 0,

POUET)—H(Z)) < w) > PO H(T)~H(Z) < 0)
=DP(yvn|Y| < \nl3])
> P> ¥ -Z)> —2ynd)
Sinco w8, 4/n(F—2Z) is asymptotically normslly distributed sud
-E:H sup 4/nZ = oo, it follows a.s., that

lim sup P(r(A(P)—B(Z)) < u) > }
for all 4> 0. Ho the distribution of n(H(¥)—H(Z)) cannot converge to the
vhi-squaro distribution with one degree of freedom, So the bootstrap approxi-
mation fails.

Ono possible reason for this is that in general ai(Z) is very large, even
whon {u) = 0. This suggests that, a computable modification of the boot-
strap statistio might give & good npproximation, This ia the content of the
following theorem.



BOOTSTRAPPING BTATIBTIOS g7

2. MmN BREULT
X
Lot for any y = (g, ..., ye) 6 RE, [yl = (Ex ﬁ)m~

Thearem :  Let i, H, {2y}, { ¥4} be as defined in the inlvoducltion. Suppose
L) is non-null and E|Z,|* < 0. Let a, = (nfloglog m)™'%,
& = wl&(T) BTN D)
t = a{H(Z)—H(p) -V y)E —p)
and 4y > 0. Then a.s.

P(* < u) = P(t < u)+0(a,) e (1)
uniformly for all |u} > u,. If L{p) has ot least two non-zero eigen-values of
same sign, then (1) kolds uniformly for all 4, a.s.

Remark 1: If {{(#) = 0, the theorem gives an approximation for the
distribution of w{H(Z)—H(x)). The error term O(a,) in (1) cannot be improved
even if ¢* is replaced by b#*, where b, = b,(Z,, ..., Z,) & 1 a.s. This can be
eent from example 2 given at the end of this section. If the rank of L{) < 2,
it follows from the proof that (1] holds uniformly in w if O(a,) is replaced by
{\/a,). We require the following lemma.

Lemmw : Let > 1. Ve have uniformly for alf ¢, d and 0 <b < a,

that
BlaMr J . ple)dr+0fa,), ... (2)
o

o~banlz|? <PI<d+baglz|? —al gy <z?<d+a%as

where ¢ is the density of the standard normal disiribulion on the line,
b
Proof of the lemma : By ohanging the variable w = i—g ax|z|, we

wet thet

)l 1401 3,
=’<i+bja.|=['¢(l) =< w’<d+a'a{,lw|< log n gt +0(] %))

X (1-+0(a, | w| )dw- O(n-?)
J o plwidwtOla,). )
wi<d+ataoy

Similarly, by ehanging tho variable z = x+g @, z|2[we obtain that

d: -
AN L N L O .

Now (2) follows from (3) and (4).
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Proof of the theorem: For any symmetric positive definite matrix B,
let ¢ denote the norinal density with dispersion B, For any y = (g, ..., 4}

E
and 1 <5<k, let f,,,(y)=an(1+‘_2l |x‘l‘) and f,(y) = fyq(y). Recall

that a.8. for suffleimtly targe n, the disporsion T, of Y, is positive definite.
Note that I, is the sample dispersion matrix of Z,, ..., Z,. By the law of
iterated logarithm the (i, j)-th elemonts of L(Z)—L{x) and £,—Z are 0O(a,)
as, for 14,7k So

195 (x)—¢r (@) | de = Ofa,). )
From now on let us write L for L{z). As the fourth moments of v | F—Z|

are bounded a.s., it follows from Theorem 1 of Sweeting (1977), that uniformly

in %,

P <) = [ By (hint] pe (2
Yz +OU<w Tyl log n An

+P(V#| ¥ —ZI > log n)+0(n12), . (8
where /7, = O(1) and
4, ={reR¥: |lx—y| < 8,, for some y with |y <log »
and a{H(Z+yn)—HZ)]— vy h D) = u).
Note that 4, C{y ¢ R¥ :|ly| < O(log ») and y'Ly—u = O(f, )}
Another application of Theorem 1 of Sweeting (1977) yiclds that

PwY-Z|>logm & [ ¢ (y)du+0(n)
llgil>log s ~®

+1 ¢z, )y
Bn

= O(n'”’), o
where B, = {y : tor some z with [jx—u| = O(n~'%) and |iz| = log n}. From
(5), (6) and (7), we have

P <uy= [ ¢ lydy+c,+0(a,),
y'Iy<s

where

¢ (y)dy.

= J
y'Iy—u=0{fsly))
By using & similar argument for i, we obtain uniformly in «, 8.5.,

P <u)— Pt < u) = 0(a,)+0(c,).
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Sinoe L is symmetric and X is positive definite, there exist & non-singular
matrix 4 and a diagonal matrix D with diagona) elements ¢,, ..., ex such thst
A’Z4 is identity matrix and A’LA = D. We have a.s. uniformly in

P < w)—P(t < u) = Olo,)+OKd,),
where

d, J $riydy.

" ¥Dy—um 0L

To complete the proof it is enough to show tbat d, = O(a,) uniformly for all
|u] > 4y, and d, = O(a,) uniformly in , il L bas at lesst two non-zero eigen-
values of same sign. We oonsider severs) cases.

Case 1. L has only one non-zero eigen-value. In this case all but onse
¢ ore zeroes. Without loss of generality we assume that €, > 0 and ¢y =0
for j 521, By tbe lemma we have for any %, > 0,

d=0[ 1 4yy]+0e

o130t 1y n @)

V400 VE| (oxp(— Z3))dvec-dn]-

3=2

= 0(a,)+0[I

= 0 +0(1unlt) (ox0(—5- 3,48) b -n) = Ot

uniformly in |%| 3 4.

Case 2. The rank of L is 2 and L has one poaitive and one negative eigen-
value. Clearly, all but two ¢ are zeroes and these two non-zero ¢ are of
different sign. Without loss of generality assume that ¢;> 0, ¢, < 0 and
eg=0for j# 1 or 2. By applying the lemma twice we get that

d,=0[ I
o brogdu—ctsy o

If u > uy, then for any real number y,, u—esyf » % » 4. From (8), it follows
a8 in case 1, that d, = O(a,) uniformly in % > 4. If 4  —u, then for
any real y,, —u+eyl » u,. 8o by o similar argument, as above, we have
d,=0(a,) uniformly for % —u, Puttiog these together we obtain
d, = O(a,) uniformly for |u| > %

Al-12

$ily)dy | +0(@,). - ®)
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Case 3. The rank of L > 2. In this case rank of D> 2. 8o at least
two of the non-zero ¢4 are of same sign without loss of generality assume that
¢, > 0, ¢, > 0 using the lemma twice we obtain

a,,=0(a,)+0[ ¢x(y)dfy]. e (9)

)
ebropd- (> 5 ead)-ocry a0

On changing the variables y, = rainf, y,=rcosd, r >0, 0 0 < %, we
get, uniformly for all ¢, d that

e_i(y’w;)dyl dy, = Tdo ! re Vg
oceybtonice B ocr¥e sntetecdn<a

=0[(d—c) sup (e,sin’ﬂ-{-e,cos’ﬂ;"]
0Gg<tr

= O[(d—c)/min(e, &,)]. e (10)
It follows now from (9) and (10) that d, = O(a,) uniformly in .

Case 4. The rank of L = 2 and both the eigen values of L are of same
sign. 1n this oase rank of D = 2 and both the non-zero ¢ are of same sign.
Similar arguments as in Case 3 yield that dy, = O(a,) uniformly in u.

This completes the proof of the theorem.

Remark 2. lnstead of taking the empirical distribution a5 an estimate of
the distribution of Z,, any istent estimate @, of distribution of Z, based
on Z,..., 2, can be used. In this case Y,,..., Y, would be i.id. random
vectors from G,. The theorem still holds if g,,—> sy for all | 8] € 4 and
if the error term O(a,) is replaced by

1
—_ z -, ,
O[Vn +n‘u|‘: |ms ,u,|]

where A =(f,...0), [f] = ;: B, B are non-negative integers,
=1
»
#np=Eg( YY) and gy = B(Z§). Here forany y == (31, ... 92), ¥ = 21 V"‘-

The following example shows that the error term in the theorem oannot
be improved,
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Erxample 2: Let H(a,b) = (a-+b%), Let the distribution of 2, bo the

bivariate standard normal. Noto that the distribution of n(H(Z)—I(0)) is

samo a8 that of (X-i— %)'. whero X and Y aro independent stondard
variables, It is not difficult to show, uniformly in u, that

Pl < 1)+ P((X 40314 < w) = P(X? < u)+0(n7).
Obsorve that the disporsion matrix I, of Y, is

o o

( ' ") = L% z-2xz-2,
oy o} ™ i

and by the law of iterated logarithm oy = 140@,), § =1,2 and

p = 01Jo,04 = Ofa,). Using Theorem 1 of Swecting (1977) as in the proof

of the theorem we oltain, uniformly in %> 0, that

P <udl) =P ([(Yl—zl)‘fl-l'i"/ﬁl’: (yl—zl)’ai"l'gzﬂ(yt—zl)ﬁl]’
+22( Py—Z,)07 +0(log nn™) < ) +0(n~1)

= 21 | St tot=2oa) g, gy
7 Dy

+o( § U H—20w0) gy L O(nt),
En
whero ¥; and Zq aro respectively the sample means of i-th coordinatea of
{¥} and (z));
13
D,= {('0. v): (w+ \%ﬂ=+2z,,v)’+2u’2, < 14}

and

E = {y =(1w,v): (w+ V%+2Z,v)’ 2027, —u = O((1+|y|:)/¢n)}.

3
If wo make tha chango of variable 8 = w4 —

V/n
of proof of the theorem wo obtain uniformly for all % » 0:5 that
1

P < wol) = Toss I ¢‘“"+""[ l+‘%: +2Z,va+¢r.,va] drds+0(n~1)
5 9<u

+2Z,v, and uso tho arguments

1

. ~§(+v%)
== e de dvtofa,).
7 "+2I:-,v=<u +olt,)
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The last equality bolds because ¢~ is an 0dd funotion of 5. Noto that if
k,~ 0, then wo have uniformly in « > 0-5, that

w, wihy
'f zd et gy = e-ub ! =140, )iz

= bt vt OS), {1

By (11) it follows that uniformly for &> 0-5
V2P <uol) = j" -t ez dr—2Z -t e vt yo(a,). e (12)
[)

Now let b, =b,(Z,, ..., Z,) > 1 a8, Lett, =boi*~1. Then by (11) and
(12) we havo uniformly in 1 <u <2,

2yERPU® < ub) = [ sletitdn-H,/Te94O(l)
L]

~lut

—2Z,[u{l )] hewrte "~ tola,)

=2y/20P(l < u)4 /e ¥, — 20w 14-ola,)
+oft,)
since lim sup Z,232 > 0, a5'[ut,—2Z,] can nover tend to zero for oll %¢(1,2).

This shows that the error term in the theorem cannot be improved even
if we replace ¢ by #°/b, for some b, = b(Z;, ..., Z,} > 1.

3, CONCLUDING REMARES

In almost all tho results on tho bootstrap method (Babu and Singh, 1983 ;
1984) the distribution of the population is assumed to have at least the second
moment. This condition used mainly in approximating the bootstrap distribu-
tion by Gaussian distributions. Suppose {X,} is & seq of i.i.d. random
variables, F, is tho empirical distribution of X,, ..., X, and Yy, ..., Yy i8
a sequence of i.4.d. random varlables from Fn. Suppose X, has finite mean
£ Sinco Y—X and X—p are well defined, it is natural to enquire whether
tho distribution of X—p is closo to that of ¥—X uniformly. Tho following
examplo shows that in general it is false.

Example 3: Let tho characteristio function of X;be ¢~ M1 <ca<

It is well known that E|X;| <, EX}=00 and EX;=0. Clearly
PR < xnt+0) = P(X, < z)for all . TFor anys,and z, nl(Y,—s, < zn'®)
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is an integer. So this cannot converge to c|z|~* a3 n— oo for all 2 <0;
¢> 0 is a constant. Henco by Theorem 4 (sco Kolmogorov and Gnedenko,
1954, pago 124), for any scquence &, P(¥P—s, < azn-14ve) s P(X, < 2).

Thus sup | P(¥—X < u)—P(X < u)| $0.

Acknowledgement. Tho author wishes to thank Dr. Kesar Singh for somo
helpful comments,
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