BOOTSTRAPPING STATISTICS WITH LINEAR COMBINATIONS OF CHI-SQUARES AS WEAK LIMIT

By GUTTI JOGESH BABU* Rutgers University

SUMMARY. Chandra and Ghosh (1979) consider a class of statistics and obtain Edgeworth expansions with chi-square as the leading term. Very little scents to be known about the statistics which are asymptotically distributed as linear combinations of chi-squares. In this paper we study bootstrap approximation to a class of such statistics.

1. Introduction

Let $\mu \in \mathbb{R}^k$ and let H be a thrice continuously differentiable function on an open subset S of \mathbb{R}^k containing μ . Let l(y) denote the vector of first partial derivatives of H at y in S and L(y) denote the matrix of second partial derivatives of H at y in S. Let $\{Z_n\}$ be a sequence of i.i.d. random vectors in \mathbb{R}^k with mean μ and nonsingular dispersion Σ . If $l(\mu) = 0$ and $L(\mu)$ is non-nul, then it can be shown that $n(H(\overline{Z}) - H(\mu))$ is asymptotically distributed as linear combinations of chi-squares. Here \overline{Z} denote the sample mean of Z_1, \ldots, Z_n . Chandra (1980) and Chandra and Ghosh (1979) have obtained Edgeworth expansions for distributions of such statistics under some conditions. These expansions are known only when $L(\mu)$ is positive semidefinite (or negative semidefinite.) Not much seems to be known about the asymptotic distribution when $L(\mu)$ has both positive and negative eigen-values. In this paper, we shall show that a modification of Efron's (1979) resampling procedure called "bootstrap" would give a good approximation for the distribution of $n(H(\overline{Z}) - H(\mu))$.

Let F_n denote the empirical distribution of $Z_1, ..., Z_n$ and $Y_1, ..., Y_n$ denote a sequence of i.i.d. random variables from F_n . Let Σ_n denote the dispersion of Y_1 . Clearly the mean of Y_1 is \overline{Z} . Let $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$. Under

^{*}On leave from Indian Statistical Institute.

AMS (1970) subject classification: 62005; 62015.

Key words and phrases: Chi-square, bootstrap, empirical distribution function, Edgeworth expansions.

some conditions, it is shown in Babu and Singh (1984) that, if $l(\mu) \neq 0$ then uniformly for all real u,

$$P(\sqrt{n}(H(\overline{X}) - H(\overline{Z})) < u\sqrt{l'(\overline{Z})}\Sigma_{\kappa}l(\overline{Z}))$$

= $P(\sqrt{n}(H(\overline{Z}) - H(\mu)) < u\sqrt{l'(\mu)}\Sigma l(\mu)) + o(n^{-1/4})$.

The result is proved by approximating $\sqrt{n}(H(\bar{Z}) - H(\mu))$ by

$$\sqrt{nl'}(\mu)(\overline{Z}-\mu)+\frac{1}{\sqrt{n}}[n(\overline{Z}-\mu)'L(\mu)(\overline{Z}-\mu)].$$

Note that the asymptotic distribution of the first term $\sqrt{nl'(\mu)(\bar{Z}-\mu)}$ is Gaussian. If $l(\mu)=0$ and $L(\mu)$ is non-null, then $n(H(\bar{Z})-H(\mu))$ can be approximated by $n(\bar{Z}-\mu)'L(\mu)(\bar{Z}-\mu)$.

If, further, $\Sigma = I$ and $L(\mu)$ is diagonal with the diagonal elements either zero or 1, then $n(\overline{Z} - \mu)'L(\mu)(\overline{Z} - \mu)$ has asymptotically chi-square distribution with degrees of freedom = rank of $L(\mu)$. If $l(\mu) = 0$, this suggests the possibility of closeness of distributions of $n(H(\overline{Z}) - H(\mu))$ and the bootstrap statistic $n(H(\overline{Y}) - H(\overline{Z}))$. The following example shows that this is false.

Example 1: Let $\{Z_a\}$ be a sequence of i.i.d. standard normal variables. Let $H(v) = v^2$. Since \sqrt{nZ} has standard normal distribution, $nH(\bar{Z}) = n(\bar{Z})^2$ has chi-square distribution with one degree of freedom. But if $\bar{Z} > 0$, we have for any u > 0,

$$\begin{split} P(n(H(\overline{Y}) - H(\overline{Z})) < u) &\geqslant P(n(H(\overline{Y}) - H(\overline{Z})) < 0) \\ &= P(\sqrt{n} \mid \overline{Y} \mid < \sqrt{n} \mid \overline{Z} \mid) \\ &\geqslant P(0 > \sqrt{n}(\overline{Y} - \overline{Z}) > -2\sqrt{n}\overline{Z}). \end{split}$$

Since a.s. $\sqrt{n(\overline{x}-\overline{z})}$ is asymptotically normally distributed and $\lim\sup_{z\to\infty}\sqrt{n\overline{z}}=\infty$, it follows a.s., that

$$\lim\sup P(n(H(\overline{Y})-H(\overline{Z}))< u) \geqslant \frac{1}{4}$$

for all u > 0. So the distribution of $n(H(\overline{X}) - H(\overline{Z}))$ cannot converge to the whi-square distribution with one degree of freedom. So the bootstrap approximation fails.

One possible reason for this is that in general nl(Z) is very large, even when $l(\mu)=0$. This suggests that, a computable modification of the bootstrap statistic might give a good approximation. This is the content of the following theorem.

2. MAIN BESULT

Let for any
$$y = (y_1, ..., y_k) \in \mathbb{R}^k$$
, $||y|| = \left(\sum_{i=1}^k y_i^2\right)^{1/2}$.

Theorem: Let μ , H, $\{Z_i\}$, $\{Y_i\}$ be as defined in the introduction. Suppose $L(\mu)$ is non-null and $E[|Z_i|]^4 < \infty$. Let $a_n = (n/\log \log n)^{-1/2}$,

$$t^{\bullet} = n[H(\overline{Y}) - H(\overline{Z}) - l'(\overline{Z})(\overline{Y} - \overline{Z})]$$

$$t = n[H(\overline{Z}) - H(\mu) - l'(\mu)(\overline{Z} - \mu)]$$

and $u_0 > 0$. Then a.s.

$$P(t^{\bullet} < u) = P(t < u) + O(a_{\bullet})$$
 ... (1)

uniformly for all $|u| > u_0$. If $L(\mu)$ has at least two non-zero eigen-values of same sign, then (1) holds uniformly for all u, a.s.

Remark 1: If $l(\mu) = 0$, the theorem gives an approximation for the distribution of $n(H(\overline{Z}) - H(\mu))$. The error term $O(a_n)$ in (1) cannot be improved even if t^* is replaced by $b_n t^*$, where $b_n = b_n (Z_1, ..., Z_n) \to 1$ a.s. This can be seen from example 2 given at the end of this section. If the rank of $L(\mu) \leq 2$, it follows from the proof that (1) holds uniformly in n if $O(a_n)$ is replaced by $O(\sqrt{a}_n)$. We require the following lemma.

Lemmu: Let a > 1. We have uniformly for all c, d and 0 < b < a, that

$$c - b \, a_n |x|^2 < x^2 < d + b \, a_n |x|^2$$
 $\phi(x) dx \leqslant c - a^2 \, a_n < x^2 < d + a^2 a_n$ $\phi(x) dx + O(a_n), \dots$ (2)

where \$\phi\$ is the density of the standard normal distribution on the line.

Proof of the lemma: By changing the variable $w = x - \frac{b}{2} a_n x |x|$, we get that

$$\int_{x^{2} < d + b} \int_{a_{n} \mid x \mid^{2}} \phi(x) dx \leq \int_{x^{2} < d + a^{2} a_{n} \mid w \mid < \log n} \phi(w) (1 + O(\mid w \mid^{3} a_{n}))$$

$$\times (1 + O(a_{n} \mid w \mid) dw + O(n^{-1})$$

$$\leq \int_{x^{2} < d + a^{2} a_{n}} \phi(w) dw + O(a_{n}).$$

$$\dots (3)$$

Similarly, by changing the variable $z=x+\frac{b}{2}|a_nx|x|$ we obtain that

$$\int\limits_{\mathbf{s}^{0}+b} \int\limits_{a_{\mathbf{s}}|\mathbf{s}|^{0}} \phi(x)dx \geqslant \int\limits_{\mathbf{s}^{0}<\mathbf{o}-\mathbf{a}^{2}a_{\mathbf{s}}} \phi(z)dz - O(a_{\mathbf{s}}). \tag{4}$$

Now (2) follows from (3) and (4).

Proof of the theorem: For any symmetric positive definite matrix B, let ϕ_B denote the normal density with dispersion B. For any $y=(y_1,...,y_k)$ and 1 < j < k, let $f_{l,n}(y) = a_n \left(1 + \sum_{l=1}^k |x_l|^3\right)$ and $f_n(y) = f_{l,n}(y)$. Recall that a.s. for sufficiently large n, the dispersion Σ_n of Y_1 is positive definite. Note that Σ_n is the sample dispersion matrix of $Z_1,...,Z_n$. By the law of iterated logarithm the (i,j)-th elements of $L(\overline{Z}) - L(\mu)$ and $\Sigma_n - \Sigma$ are $O(a_n)$ a.s. for $1 \le i,j \le k$. So

$$\int |\phi_{\bar{x}}(x) - \phi_{\bar{x}}(x)| dx = O(a_n).$$
 (5)

From now on let us write L for $L(\mu)$. As the fourth moments of $\sqrt{|\vec{x}|} |\vec{Y} - \vec{Z}|$ are bounded a.s., it follows from Theorem 1 of Sweeting (1977), that uniformly in u,

$$\begin{split} P(l^{\bullet} < u) &= \inf_{\mathbf{y}' L(\bar{x})\mathbf{y} + O(f_{\mathbf{n}}(\mathbf{y})) < \mathbf{u}; \ \|\mathbf{y}\| < \log n} \phi_{\mathbf{x}_{\mathbf{n}}}(x) dx + \inf_{A_{\mathbf{n}}} \phi_{\mathbf{x}_{\mathbf{n}}}(x) dx \\ &+ P(\sqrt{n} \|\bar{Y} - \bar{Z}\| \geqslant \log n) + O(n^{-1/2}), \quad \dots \quad (6) \end{split}$$

where $\sqrt{n}\delta_n = O(1)$ and

$$\begin{split} A_n &= \{x \in R^k: \|x-y\| \leqslant \delta_n, \text{ for some } y \text{ with } \|y\| < \log n \\ &\text{and } n[H(\bar{Z}+yn^{-1/2})-H(\bar{Z})] - \sqrt{n}y'l(\bar{Z}) = u\}. \end{split}$$

Note that $A_n \subset \{y \in \mathbb{R}^k : ||y|| \leqslant O(\log n) \text{ and } y'Ly-u = O(f_n(y))\}.$

Another application of Theorem 1 of Sweeting (1977) yields that

$$\begin{split} P(\sqrt{\hat{n}} \| \overline{Y} - \overline{Z} \| > \log n) &\leqslant \int\limits_{\|y\| > \log n} \phi_{x_n}(y) dy + O(n^{-1/2}) \\ &+ \int\limits_{B_n} \phi_{x_n}(y) dy \\ &= O(n^{-1/2}), \qquad \qquad \dots \quad (7) \end{split}$$

where $B_n = \{y : \text{for some } x \text{ with } ||x-u|| = O(n^{-1/2}) \text{ and } ||x|| = \log n\}$. From (5), (6) and (7), we have

$$P(t^{\bullet} < u) = \int_{y'Ly < u} \phi_{\Sigma}(y)dy + c_n + O(a_n),$$

where

$$c_n = \int_{y'Ly-y=O(f_n(y))} \phi_{\Sigma}(y)dy.$$

By using a similar argument for t, we obtain uniformly in u, a.s.,

$$P(t^{\bullet} < u) - P(t < u) = O(a_h) + O(c_n).$$

Since L is symmetric and Σ is positive definite, there exist a non-singular matrix A and a diagonal matrix D with diagonal elements $e_1, ..., e_k$ such that $A'\Sigma^{-1}A$ is identity matrix and A'LA = D. We have a.s. uniformly in u

$$P(t^{\circ} < u) - P(t < u) = O(a_n) + O(d_n)$$

where

$$d_n = \int_{y'Dy-u=O(f_0(y))} \phi_I(y) dy.$$

To complete the proof it is enough to show that $d_n = O(a_n)$ uniformly for all $|u| \geqslant u_0$, and $d_n = O(a_n)$ uniformly in u, if L has at least two non-zero eigenvalues of same sign. We consider several cases.

Case 1. L has only one non-zero eigen-value. In this case all but one e_i are zeroes. Without loss of generality we assume that $e_1 > 0$ and $e_j = 0$ for $j \neq 1$. By the lemma we have for any $u_0 > 0$,

$$\begin{split} d_n &= O\Big[\int\limits_{e_1y_1^2-\cdots o(f_{\mathbf{k},\mathbf{n}}(y))} \phi_I(y)dy\Big] + O(a_n) \\ &= O(a_n) + O\Big[\int \left|\sqrt{\frac{u}{e_1} + O(f_{\mathbf{k},\mathbf{n}}(y))}\right| - \sqrt{\frac{u}{e_1}} \left|\left(\exp\left(-\frac{1}{2}\sum_{j=2}^k y_j^k\right)\right)dy_1...dy_k\right.\Big] \\ &= O(a_n) + O\Big(\int f_{\mathbf{k},\mathbf{n}}(y)\left(\exp\left(-\frac{1}{2}\sum_{j=2}^k y_j^k\right)\right)dy_2...dy_k\Big) = O(a_n) \end{split}$$

uniformly in $|u| > u_0$.

Case 2. The rank of L is 2 and L has one positive and one negative eigenvalue. Clearly, all but two e_i are zeroes and these two non-zero e_i are of different sign. Without loss of generality assume that $e_i > 0$, $e_i < 0$ and $e_i = 0$ for $j \neq 1$ or 2. By applying the lemma twice we get that

$$d_n = O\left[\int_{a_1 x_1^2 + a_1 y_2^2 - u \rightarrow (f_{n-n}(y))} \phi_I(y) dy \right] + O(a_n). \quad ... \quad (8)$$

If $u > u_0$, then for any real number y_2 , $u - e_3 y_0^2 > u > u_0$. From (8), it follows as in case 1, that $d_n = O(a_n)$ uniformly in $u > u_0$. If $u < -u_0$, then for any real y_1 , $-u + e_1 y_1^2 > u_0$. So by a similar argument, as above, we have $d_n = O(a_n)$ uniformly for $u < -u_0$. Putting these together we obtain $d_n = O(a_n)$ uniformly for $|u| > u_0$.

Case 3. The rank of L > 2. In this case rank of D > 2. So at least two of the non-zero e_i are of same sign without loss of generality assume that $e_1 > 0$, $e_2 > 0$ using the lemma twice we obtain

$$d_{n} = O(a_{n}) + O \left[\int_{a_{1}y_{1}^{n} + a_{2}y_{2}^{n} - \left(\frac{1}{n} - \sum_{i} a_{i}y_{i}^{n} \right) - O(f_{2,n}(y))} \phi_{I}(y) dy \right]. \quad ... \quad (9)$$

On changing the variables $y_1 = r \sin \theta$, $y_2 = r \cos \theta$, r > 0, $0 \le \theta < 2\pi$, we get, uniformly for all c, d that

$$\int_{0<\epsilon_1 y_1^2+\epsilon_2 y_2^2<\delta} e^{-\frac{1}{2}(y_1^2+y_2^2)} dy_1 dy_2 = \int_{0}^{1\tau} d\theta \int_{0<\tau^2(\epsilon_1 \sin^2\theta+\epsilon_2\cos^2\theta)<\delta} re^{-\frac{1}{2}\tau^2} dr$$

$$= O\Big[(d-c) \sup_{0<\epsilon_0<\delta x} (\epsilon_1 \sin^2\theta + \epsilon_2\cos^2\theta)^{-1} \Big]$$

$$= O[(d-c)/\min(\epsilon_1, \epsilon_2)]. \qquad ... (10)$$

It follows now from (9) and (10) that $d_n = O(a_n)$ uniformly in u.

Case 4. The rank of L=2 and both the eigen values of L are of same sign. In this case rank of D=2 and both the non-zero e_i are of same sign. Similar arguments as in Case 3 yield that $d_n=O(a_n)$ uniformly in u.

This completes the proof of the theorem.

Remark 2. Instead of taking the empirical distribution as an estimate of the distribution of Z_1 , any consistent estimate G_n of distribution of Z_1 based on $Z_1, ..., Z_n$ can be used. In this case $Y_1, ..., Y_n$ would be i.i.d. random vectors from G_n . The theorem still holds if $\mu_{n,\beta} \to \mu_{\beta}$ for all $|\beta| \leqslant 4$ and if the error term $O(a_n)$ is replaced by

$$O\left[\frac{1}{\sqrt{n}} + \sum_{0 \le |\beta| \le 2} |\mu_{n,\beta} - \mu_{\beta}|\right]$$

where $\beta=(\beta_1,\ldots,\beta_k)$, $|\beta|=\sum\limits_{i=1}^k\beta_i$, β_i are non-negative integers, $\mu_{n,\beta}=E_{G_n}(Y_1^{\delta})$ and $\mu_{\beta}=E(Z_1^{\delta})$. Here for any $y=(y_1,\ldots,y_k)$, $y^{\delta}=\prod\limits_{i=1}^ky_i^{\delta_i}$.

The following example shows that the error term in the theorem cannot be improved.

Example 2: Let $H(a,b) = (a+b^1)^3$. Let the distribution of Z_1 be the bivariate standard normal. Note that the distribution of n(H(Z)-H(0)) is same as that of $\left(X+\frac{Y^2}{\sqrt{n}}\right)^3$, where X and Y are independent standard variables. It is not difficult to show, uniformly in u, that

$$P(l < u) + P((X + n^{-\frac{1}{2}})^2)^2 < u) = P(X^2 < u) + O(n^{-1}).$$

Observe that the dispersion matrix Σ_n of Y_1 is

$$\begin{pmatrix} \sigma_1^{\bar{z}} & \sigma_{1\bar{z}} \\ \sigma_{1\bar{z}} & \sigma_{\bar{z}}^{\bar{z}} \end{pmatrix} = \frac{1}{n} \sum_{i=1}^{n} (Z_i - \bar{Z})(Z_i - \bar{Z})',$$

and by the law of iterated logarithm $\sigma_i = 1 + O(a_s)$, i = 1, 2 and $\rho = \sigma_{12}/\sigma_1\sigma_2 = O(a_s)$. Using Theorem 1 of Sweeting (1977) as in the proof of the theorem we obtain, uniformly in u > 0, that

$$\begin{split} P(i^{\bullet} < u\sigma_{1}^{\bullet}) &= P\left(\left[(\bar{Y}_{1} - \bar{Z}_{1})\sigma_{1}^{-1} + \frac{1}{\sqrt{n}}(\bar{Y}_{2} - \bar{Z}_{2})^{2}\sigma_{2}^{-2} + 2\bar{Z}_{2}(\bar{Y}_{2} - \bar{Z}_{1})\sigma_{2}^{-1}\right]^{2} \right. \\ &+ 2\bar{Z}_{1}(\bar{Y}_{2} - \bar{Z}_{2})\sigma_{2}^{-1} + O((\log n)^{5}n^{-1}) < u\right) + O(n^{-1}) \\ &= \frac{1}{2\pi} \int_{n} e^{-\mathbf{i}(w^{2} + v^{2} - 2\sigma_{13}wv)} \, dw \, dv \\ &+ O\left(\int_{E_{n}} e^{-\mathbf{i}(w^{2} + v^{2} - 2\sigma_{13}wv)} \, dw dv + O(n^{-1}), \end{split}$$

where Y_i and \bar{Z}_i are respectively the sample means of *i*-th coordinates of $\{Y_i\}$ and $\{Z_i\}$;

$$D_n = \left\{ (w,v) : \left(w + \frac{v^2}{\sqrt{n}} + 2\overline{Z}_1 v\right)^2 + 2v^2\overline{Z}_1 < u \right\}$$

and

$$E_{n}=\Big\{y=(w,v):\Big(w+\frac{v^{2}}{\sqrt{n}}+2\overline{Z}_{2}v\Big)^{2}+2v^{2}\overline{Z}_{1}-u=O((1+|y|^{2})/\sqrt{n})\Big\}.$$

If we make the change of variable $s = w + \frac{v^3}{\sqrt{n}} + 2\overline{Z}_2v$, and use the arguments of proof of the theorem we obtain uniformly for all u > 0.5 that

$$\begin{split} P(t^* < u\sigma_1^2) &= \frac{1}{2\pi} \int\limits_{s^3 + 2j_1 v < u} e^{-\frac{i}{2}(s^3 + v^3)} \Big[1 + \frac{sv^3}{\sqrt{n}} + 2\overline{Z}_2 vs + \sigma_{12} vs \Big] \; dr ds + O(n^{-1}) \\ &= \frac{1}{2\pi} \int\limits_{s^3 + 2j_1 v^2 < u} e^{-\frac{i}{2}(s^3 + v^3)} \; ds \; dv + O(\tau_n). \end{split}$$

The last equality holds because $se^{-\frac{1}{2}s^2}$ is an odd function of s. Note that if $h_n \to 0$, then we have uniformly in u > 0.5, that

$$\int_{u}^{u+h} x^{-i} e^{-x/2} dx = e^{-u/2} \int_{u}^{u+h} x^{-i} (1 + O(\bar{h}_n)) dx$$

$$= h_{-u}u^{-i} e^{-u/2} + O(\bar{h}_n^2), \quad ... \quad (11)$$

By (11) it follows that uniformly for u > 0.5

$$\sqrt{2\pi}P(i^{\bullet} < u\sigma_1^{\bullet}) = \int_{1}^{u} x^{-1} e^{-x/2} dx - 2\bar{Z}_1 u^{-1} e^{-u/2} + o(a_n).$$
 (12)

Now lot $b_n = b_n(Z_1, ..., Z_n) \to 1$ a.s. Let $t_n = b_n \sigma_1^{-2} - 1$. Then by (11) and (12) we have uniformly in 1 < u < 2,

$$\begin{split} 2\sqrt{2\pi}P(i^{\bullet} < ub_{n}) &= \int_{0}^{u} x^{-1}e^{-x/2}dx + t_{n}\sqrt{u}e^{-u/2} + O(t_{n}^{2}) \\ &- 2\bar{Z}_{1}[u(1+t_{n})]^{-1}e^{-u/2}e^{-1ut_{n}} + o(a_{n}) \\ &= 2\sqrt{2\pi}P(i < u) + \sqrt{u}e^{-u/2}[t_{n} - 2\bar{Z}_{1}u^{-1}] + o(a_{n}) \\ &+ o(t_{n}) \end{split}$$

since $\limsup \bar{Z}_1 z_a^{-1} > 0$, $a_a^{-1}[ut_a - 2\bar{Z}_1]$ can never tend to zero for all $u \in (1, 2)$.

This shows that the error term in the theorem cannot be improved even if we replace t^* by t^*/b_* for some $b_* = b_*(Z_1, ..., Z_n) \to 1$.

3. CONCLUDING REMARKS

In almost all the results on the bootstrap method (Babu and Singh, 1983; 1984) the distribution of the population is assumed to have at least the second moment. This condition used mainly in approximating the bootstrap distribution by Gaussian distributions. Suppose $\{X_n\}$ is a sequence of i.i.d. random variables, F_n is the empirical distribution of $X_1, ..., X_n$ and $Y_1, ..., Y_n$ is a sequence of i.i.d. random variables from F_n . Suppose X_1 has finite mean μ . Since $\overline{Y} - \overline{X}$ and $\overline{X} - \mu$ are well defined, it is natural to enquire whether the distribution of $\overline{X} - \mu$ is close to that of $\overline{Y} - \overline{X}$ uniformly. The following example shows that in general it is false.

Example 3: Let the characteristic function of X_1 be $e^{-|t|^2}$, $1 < \alpha < 2$. It is well known that $E|X_1| < \infty$, $EX_1^2 = \infty$ and $EX_1 = 0$. Clearly $P(\overline{X} < xn^{-1+1/2}) = P(X_1 < x)$ for all n. For any s_n and x, $nP(Y_1 - s_n < xn^{1/2})$

is an integer. So this cannot converge to $c|x|^{-a}$ as $n\to\infty$ for all x<0; c>0 is a constant. Hence by Theorem 4 (see Kolmogorov and Gnedenko, 1954, page 124), for any sequence s_n , $P(\overline{Y}-s_n< xn^{-1+1/a}) \not\to P(X_1< x)$. Thus sup $|P(\overline{Y}-\overline{X}< u)-P(\overline{X}< u)| \not\to 0$.

Acknowledgement. The author wishes to thank Dr. Kesar Singh for some helpful comments.

REFERENCES

- Basu, G. J. and Sixon, K. (1983): Nonparametric inference on means using bootstrap. Ann. Statistics., 11, 999-1003.
- ——— (1984): On one torm Edgeworth correction by Efron's bootstrap. To appear in Sankhyā, Series A.
- CHANDRA, T. (1980): Asymptotic Expansions and Deficiency. Ph.D. Thesis, Indian Statistical Institute, Calcutts.
- CHANDRA, T, and GROSE, J. K. (1979): Valid asymptotic expansions for the likelihood ratio statistic and other perturbed chi-square variables. Sankhyā, Series A, 41, 22-47.
- Erron, B. (1979): Bootstrap-another look at Jackknife. Ann. Statist., 7, 1-20.
- KOLMOGOROV, A. N. and GNEDENKO, B. V. (1954): Limit Distributions for Sums of Independent Random Variables, Addison-Wesley.
- SWEETINO, T. J. (1977): Speeds of convergence for the multidimensional central limit theorem.
 Ann. Probability, 5, 28-41.

Paper received: March, 1982.