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SOMMARY. Ghosh's reault (1909) in tho caso of univariato normal distribution based
on two paramotrio poiots is extonded to bivariate normal distribution basod on (hree paramotric
pointa establishing Khatri's j {1986) for bivariate situation. Thia rosult was established
by Khatri {1086) undor some reatrictions on covariance matriccs. The general multivariata

situation is under considoretion.

1. INTRODUOTION
Let & be a p-vector variable and g(x) be a bijective and bimeasurablo
transformation of 2. \When p = 1, Ghosh (1969) proved that if z ~ N(y,, o})
implics g(z) ~ N, ¥¢) for £ = 1, 2, and u; 5 u,, then g(z) is essentially linear
in z. For the p-variate normal distribution, Khatri (1086) established that
if z ~ N(p, Zy) implies g(x) ~ N(n,, Vi) for i =0, 1, ..., p, where =X,
for §=0,1,...,r (> 0) and Z¢ = Xp for § = r+1, ..., p with I, # Z;, and

[Z7 (o=t} 25 (o= s +oes B3 (10— p25))
is nonsingular, then g(x) is essentially linear in a. Further, he conjectured
that this is true even without the conditions on Zy's as in Khatri (1086). This
conjecture is established here for p = 2 and this can be mentioned as
Theorem 1 : Let &~ N(p, Zi) imply glx) ~ Ny, Vo) for ¢ =0,1,2
and p = 2. Assume that
ET (= o) 277 (21— o))

is nonsingular. Then g(z) s essentially linear in x. Here T, X,, Ty, Vy, Vs, Vo
are all 22 positive definite malrices and Z,, X,, X, may be all distinct.
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Further, the following result is established :

Theorem 2 :  Let @~ N(0, Z;) imply g(x) ~ N(nt, Vi) for i =0,1,2,3,
where p = 2 and Z¢ and Vi (§ =0, 1, 2, 3) are positive definite. Let

4t Ay
A= E T T = )
Qg Ay

fori =1, 2,3, and assume that
&y an dyy
G On A3y
@y Gy Ay
is nonsingular. Then w =, for £ =1, 2, 3, and there exists a non-singular
malrix P such that
(g(x)—n,) (g(x)—mo)' = Pax'P".

2. SOAME LEMMAS AND PROOFS OF MAIN TIIEEOREMS
We shall first prove somo results necessary for tho proof of the main
theorem mentioned in section 1.

Lemma 1: Let Ag and By (i=1, 2,..., k(> 1)) be 2X2 symmelric
malrices and

x
I+ T wd;
=1

k
I+ % B l
{=1

Jor all real vy, vy, ..., vr. Then there exists an orthogonal matriz P such thal
A¢=PBP' for i=1, 2,..., k.

Proof : The given equation implies that for cach ¢, |I+wvd| = |T+vBi]
for every real ¥ and this implies that 4¢ and By have tho same eigenvalues.
Henco, if A = al for some a, then By = al. Then any orthogonal matrix
will be suitable for the result. From this point, we shall assume that none
of the A/s is proportional to J. Without loss of generality, assume that

Iy 0
AI=B|= ):le?él‘x-
o h,

. Gy ay by b
Taking Ay = ( ) and By = ( . b for j=2,3, .., k,
ax Qg by by



BIJECTIVE AND BIMEASURABLE TRANSFORMATIONS 407

the given equation is equivalent to

(l+hlv.+ié N (l+h,v,+’:“t’ o,a,,)_(li.,,aﬂ)a =

(1+IH”A+1_£. ”lbu) ( 1+ho + é’ ”lbal) - ( ,E_’Wbu) .

for all vy, v,, ..., vr. Equating tho coeflicients of v/'s, v}’s, vv/'s, we get

aygtasg = byy+bag yagythatyy = Rybyy+hebyy forj= 2,3, ..,k ;

ayjayy—aly = bybyy — b, forj = 2,3, ..., k;

2,1 033+, 5038 —2a @y = byibyy+bygba—2bybyy

foralls s£5,¢,5=23,..,k
From the above equalities, we get
a1y = by, ayy = by, afy = by, auazy = byiby,
forall s %3,¢,5=2,3,..., k. This shows that
A, = VB,V forj = l, 2, aeay k,

1 0 —1 O —1 0
where V= I,or V = )or7=( orV = .
0o —1 01 0 —1

This proves the lemma.
3 k
Remark 1 : Suppose [I,,+‘Zl vdg|=[Ip+ Z By for all real
- i=1

Yy, Vg, .oop Uk, Whero 4,, ..., Ay, By, ..., By aro pXxp symmetric matrices and
p » 3. Consider for example,

hy, o o a z o a o y
Ay=B,=|o h o , Ay = x a z |\Byg=[o e w |,
o o Iy o z a y w a

whero by > h, > Iy > 0. Noto that 4, and B, will bo positive definite if
a >0, a® > 23422 and a® > y¥+w?t It may be seen that

[Iy+94,+4v,d, | = | Iy +0, By 40,8, |
holds for all real v,, v, provided
22 = (hy—hy)y?|(hy—g), 22 = ((hy—hs)uw?+(hy—D3)y?)/(hy—hs).

Considering non-zero choices of z, z, ¥, w, satisfying the above conditions,
it follows that Lemma 1 doos not hold for »p > 3 and & > 2.
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Lemma 2 : Let 4,, Ay, B,, B, be nonsingular 2 X2 symmelric matrices on

the real space and g, pa, V1. v, be 2 X 1 vectors such that
('3.31 wAty-a)' (1+ ‘2:"-‘0(114)_‘(‘% v«A«H)
= (‘é t“B‘w)' (!+ ‘)::‘ wB() - ( ‘%lwl?(w)

and 2 2
|I+‘).“1 wd =1+ ‘Xl vBy|

Sor all real vy, v,. Then there exists an orthogonal matrix P such thal py = Pv,
and Ay = PBP’ for « =1, 2, provided (A,p,, A,u,;) = A s nonsingular.

Proof: By Lemma 1, there exists an orthogonal matrix @ such that

A= QBQ for i=1, 2, or (I+v,4;4+v,4,) = QUAv,B 40,8,

real v, v,. Then, defining
ag=A py, Br=QBw (i =1,2),

the first equation yields
1 vy +vgae

1 0,03+v,8;
2
B, +v,B, 1+ ,21 vdi

2
v, +va, I+ 2ol
=1
for all real v, v;. Hence for all real v, v,,

2
|1+ & v =it )t osey ‘

2
= | I+(§1 UIAG—(vxpl+vzpz)(”|px"l"v‘z/)z)'

Now, directly equating the cocfficicnts of the powers of v/’s, we
following equations :

ajay = BBy, aya, = By, e, = BB,
Ay = BiATB,,
aydglay = BiA7'R,
2| 4| aiATay+ | Ap|aidita; = 2| A;| BA7B,+ | 4, B14 Ry
2| dylazdztay+ | Ay | oA ay= 2| 4, B A7)+ | 4, [ B 41’ Ba

for all

get the

o (20)

(2.2a)
(2.2b)
(2.2¢)
(2.2d)
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Tho solution of (2.1) shows that
(ay, &3) = R(By, B,), e (2.3)
whore R is an orthogonal matrix and (B,, B;) is nonsingular. Using this in
(2.2) and dofining Cy = | dy| (RAT'R'—A4[Y) for i =1, 2, wo got
@;Ciay = 0 (3 = 1, 2), 2a,Cya,+a;Cya, = O,
(2.4)

2a;C,a,+azCha, == 0, tr Cy =0 (5 = 1, 2).
Let us write

ay ayy 5 I N Y%
.,=( ),«,:( ),c,= . Cy= .
3 a5 T3 =% Ya —%

Notioe that givon a, and a,, (2.4) roprosents a system of lincar equations in
;, Zy Yy, Yy and can bo writton as

Td =0, e (2.43)
whore d = (2;, 2,, ¥y, ¥,), ond
ah—aj, 2a3,2,2 0 0
0 0 a}—aj, 2ay,02,
Te= »
ay ap ah—al, 2a,ya;,
a}—af; 2a3,8;5 aj a;

with a) = 2(a),8,,—a,,a5,), a; = 2(2,,8,,+a,,a,,). Noto that by routine
oxplicit calculation, |T'| = 4(a;,05—0a,,85)* > 0. MHonce, (2.4a) shows that
2=0, io, C,=Cy=0. Theroforoc, wo have
QBQ" = A¢ = RAR’ and Ay = RQBv; (s =1, 2).
From theso, wo got g¢ = Pv¢ and Ay = PBP’ with P = RQ and 4; = RAR’
for ¢=1, 2, whore P, R and @ ore orthogonal matricos. This proves
Lomma 2/
Remark 2: Is Lomma 2 truo for p > 3¢ In viow of Romark 1, it
appears that Lomma 2 will not be truo for p > 3 and k> 3.
Proof of Theorem 1: Since g(x) is bijectivo and bimoasurable function
of x, using Thoorom 1 of Khatri (1986), wo have
(—p0) (2;“—23’)(2—]‘0)-{-2([!0—]‘() I (@ — o)
= (g(x)—no)’ (V7 — V' Mgle) —no)+20m—m0)’ P (g(x)—no)s -.. (2.5)
for all roal & and for s =1, 2,

1_415‘.1 wW(EP—E31) £, | =| z_z‘z':l WV =V V| o (260)
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and
-1

(£ v Z0u—p0) { Za'—t Eoe @ —250) " ( £ 0 Er0u—m)

=( Zeviin—n) (Ve'—E wVir=ven) (£ wVitn—n9)... (.b)
Phar} [ 3] 0. 0 (=1 ¢ [ =1 [ (] 0/ ) = 3
for all real ¢, v, v;. Taking

A¢ =Sy I7ELBo= VAV, pay = Z5iue—p0)) ng = Viltme—n),
for § = 1, 2, and defining &, = Z5H@—g,), Yo = V5Hg(x)—n,), we can rewrite
(2.5) and (2.8) as

A~ DTy2pmd Ty = Yo Bi— Do+ 200Bio i =1,2), ... (27)

and

|1+ 3 vd, |=’1+ SRAR . (280)
=1 {=1

for all real vy, v,,
(& i) (14 & 0 (§ )

v

2 , 2 ¢ 2
= ( b3 V(Bmm) (1+ % by ) ( z v;Bm,.,), . (2:8D)
=1 =1 (=1
for all real v;, v,, By Lomma 2, (2.8) shows that thero oxists an orthogonal
matrix P such that
£y = Pnyy, A¢=PBP' (i=1, 2), e (2.9)
whon p = 2. Using theso in (2.7), wo havo

(xo—Py) (2A+H) =0 e (210)
for all real z, whoro

28+ = [24,p00+H(Ay—I)(@o+ PYo), 2451000 +(Ads— 1)@+ PYyo)).
Thon, arguing as done by Ghosh (1969) or Khatri (1986), we got
Py, =z, or g(x) = 0o+ VP Sz —p,),
for almost all renl &, which proves Theorom 1.

Proof of Theorem 2: Sinco g(x) is bijoctive and bimoasurablo function
of a, by Thoorom 1 of Xhatri (1086),

@I = (gl@)—n) (V7' — V&) (a(x)—70) 6 = 1, 2, 3), ... (21D)
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for oll roal x, and for all roal vy, vy, v;,

and =7, (i =1, 2, 3), e (212)

’ I4 é vAg
(=t

= | 14 Zsi vy
i1

whore A¢ = SYEPSi—1, By = V{Vi'Vi—I (i=1, 2, 3,). Using Lomma 1
in (2.12), thoro oxists an orthogonal matrix P such that
A¢= PBP' (i =1, 2, 3).
Using this in (2.11), wo have
(E5izy AlZgixz) = (PV5Ha(@)—no)) APV g(x)~ng)), ... (2.13)
for all roal & and i =1, 2, 3. Taking

(Z3'2) (5542) —(P V3 g(@) —1a) (PV3ia@—n'= (22 72)

ay  ax
A= ( ) (1=1,2,3),8 = (2, 2, 75)

ax ast
and
ay 2ay, Ay
T= dyz 2ay, a2 |
a3 20, A3y

(2.13) givos 76 = 0 and henoo § = 0, or
(9(x)—np) (9(x)—7,) = Axz’A’,
with 4 = V§P’E5}, for all roal &. This proves Thoorem 2.
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