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SUMMARY. The classical Poisson limit theorem studies the limit laws of Sn where 

n 
Sn = 2J Xjn and Xln, ...,Xnn is a sequence of{0, 1} valued, independent, identically distribu 

id 1 

ted random variables. In this paper we will weaken the independence assumption and investi 

gate the possible limit laws for certain types of dependent sequences. This leads us to the study 

of the limit of (An(s))n where s is a real parameter and An(s) is a finite dimensional (the 

dimension being fixed) matrix of the form An(s) 
= 

R(s)-{-n~1(Q(s)-\-Bn(s)) where lim Bn(s) 
= 0. 

n?>oo 

This problem seem to be of independent interest but does not appear to have been treated 

in the literature. 

1. Introduction 

Let Xln, X2n, ...,Xnn be independent Bernoulli random variables with 

P(Xkn 
= 

1) 
= 

l-P(X*n 
= 

0) 
= 

pn for h = 1, 2, ..., n. Let Sn 
= 2 Xjn. 

The well known Poisson limit theorem states that lim P(Sn 
= 

j) 
= 

q?, 
W?? 00 

where (q0, qv ...) is a probability distribution on Z+ if and only if lim npn 
n?> oo 

= ? ;> 0 exists, and that in this case the limit distribution is Poisson with 

mean ?, i.e. qj 
? A^ exp (?A)/(j!), j 

= 0, 1, 2, ... In this paper we examine 

the limit behaviour of the distribution of Sn while allowing a certain type of 

dependence among the Xj^s, which still take values 0 and 1. 

A natural way to relax the independence assumption is to assume that 

{Xln, X%n, ..., Xnn} is stationary. (A sequence {Xl9 X2, ..., Xn} is said to be 
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stationary if the joint distribution of {Xx, X2, ..., X^-J and {X2, X3, ..., Xn} 
are the same. This is equivalent to the condition that there is a stationary 

process {7X, 72, ...} such that {X1? X2, ..., Xn} and {Yl9 Y2, ..., Yn} have the 

same joint distribution.) Ifpl9 ...,pn is any probability vector, we may set 

P(XX = xv ..., Xn 
= xn) 

= p, 
( 

. 
J 

, ... (1) 

n 
for every vector # = 

(a?!, ..., xn) e{0, l}n such that 2 x^ = 
j,j =0,1, 2,..., n. 

k=*l 

This is a stationary sequence since if x1+...-\-xn_1= j, then 

P(XX 
= 

x1? ..., Xn_x 
= 

xn_v Xn 
= 

0) 

+P(XX 
= 

zx, ..., Xn_x 
= 

^_1? Xn 
= 

1) 

-?(?) +Mi+i) 
= 

P(Zi 
= 

0, X2 
= 

a?!, ..., Zn 
= 

xn_t) 

+P(X1=l,X2 
= 

x1,...,Xn 
= 

xn_1) ... (2) 

For this distribution it is clear that P(Sn 
= 

j) 
= 

pj. It is therefore apparent 

that one can obtain any limit law if one only assumes stationarity, and that 

we need to add more restrictions on the sequence {X#n} to obtain meaningful 
results. 

In section 4, we shall assume that for some fixed integer d ^ 1, {Xln, ..., 

Xnn} is a so called unitary process of dimension d (see section 4). The case 

with d = 1 is just the case where {Xln, ..., Xnn] are independent and identi 

cally distributed as above. The finitary processes form a fairly rich class of 

processes ; in particular they include all functions of finite state Markov 

chains. To begin with we first consider this latter special case in some 

detail below. 

Consider a ?-state (2 ̂  d < oo) Markov chain {Yjn} with a stationary 

one step transition matrix P given by 

Pn 0 

-*21 -*22 ~" 
(3) 

where the kxk Markov matrix Pu corresponds to the states {1, 2, ..., k}, 
1 ̂  k < d, which is assumed to form an irreducible aperiodic (necessarily 

positive recurrent) class, while the remaining states {&+1, ..., d} correspond 

ing to the (d?k)x(d?k) matrix P22 are all assumed to be transient. Thus 

starting from any of these transient states the process will move to the 

recurrent class {1, ..., k) in finite time with probability one. For i = k-\-l, 
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let Ti be the first passage time to the class {1, ..., k} given that the process 
starts with state i at time zero ; with the corresponding probability genera 

ting function (p.g.f.) given by 

Gi(s) 
= 

E(s?), i = k+1, ..., d, \s\ < 1. ... (4) 
h 

Again let (ttx, 7t2, ..., 7Tk), with m > 0, i = 1, 2, ..., h, and 2 777 
= 1, denote 

*-i 

the stationary distribution corresponding to the matrix Plv By a well known 

property of irreducible aperiodic finite state Markov chains we have 

lim (Pn)n 
7T, 7T? 

77*! 77? 

"k 

TTjcJ 

= II* (say). 

In fact, if we introduce the dummy variable s and define 

B(s) = 

[ 

11 0 

S- ?22 
?' 

, M <i> 

(5) 

(6) 

then it can be easily shown that 

lim B(s)?= lim ((B(s)n)tj) 
\ ?> oo n ?> oo 

7T, 

7T, 

"k 0 0 

tfiG*+1(?) 

7Tk 0 ... 0 

7TlcOk+1(s) 0 ... 0 

= U{8) = 

7TkGd(s) 

H[fcX*] 
.. (?) 

0 ... 0 

n?W[(?-*)x*i. ?i(?-*)x.(?-*)] 
- 

where at the end we have conveniently written the limit matrix H(s) as 

displayed. 

Suppose now that the true situation is such that the transition matrix P 

is perturbed a bit in an ^-dependent manner, creating thereby a sequence Pn 
of transition matrices given by 

Pu(w) P12(n) -, ... (8) 
"21 ^22 J 

Pu(n) 
= 

Pu+r^u+ofni and Pia(w) 
= 

n-^+ofo-1). 

Since for each n, Pn is a stochastic matrix, we must have 

0 

where 
Pn 

= 

(9) 

$11 Qn 

0 0 

1 

L I J 0 J 
(10) 
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where 1 = 
(1, 1, ..., 1)T. This means at each step we do allow the corres 

ponding Markov chain {Yin} to move from the states in the set {1, ..., k] to 

those in the set {k-\-l, ..., d} but with increasing rarity with increasing n. 

Now if for j 
= 1, 2, ..., n, we define Xjn 

= 1 if Yjne{k+1, ..., d), and 
n 

Xjn 
= 0 otherwise, then Sn 

= 2 Xjn represents the number of visits the 

Markov chain {Yjn} pays to the set {k-\-l, ..., d} during the first n steps. We 

will be interested in the limit behaviour of the distribution of Sn as n ?? oo or 

equivalently that of the corresponding p.g.f. To this end, once again by 

introducing the dummy variable s in (8), we define 

Pn(?) 
Pu(?) s.Pi2(n) 

P%\ 5.Pa2 

= R(s)+n-HQ(s)+Bn), ... (11) 

given t 

Q(s) = lim n(Pn(s)?R(s)) is given by 

where R(s) = lim Pn(s) is as given by (6), Bn is such that lim Bn = 0 and 

Qifl) 
' 

0 J 
For lc= 1, 2, ..?diet 

re, 

L 0 (12) 

gkn(s) = E(sS? I F0n = h), I ?|< 1 ... (13) 

be the p.g.f. of 8n given that the process starts at h. Then it can be easily 
seen that 

&?!.(?), ..,^(?))r = 
(P.W)?l. - (14) 

Thus in order to study the limit behaviour of (14) as w-> 00, we must 

study the limit behaviour of (Pn(s))n, that is of 

(R(s)+n-i(Q(s)+Bn))n. ... (15) 

Again if R(s) were the identity matrix / the limit behaviour of (15) is well 
known (see Kato, 1982, 35-36). On the other hand, if R and Q were commut 

ing with each other, using the result for the identity matrix case and the limit 

behaviour of (R(s))n as given by (7), one could easily establish the limit result 

for (15). Unfortunately in general R and Q do not commute and in order to 

establish the result in this generality a lot more work needs to be done. This 

is precisely the content of the next section. A similar matrix power limit 

question arises for the more general case of finitary processes. This will be 

taken up in section 4 as an application of the key result to be established in 

the next section. 
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2. AN OPERATOR LIMIT THEOREM 

Here we shall prove the key result (Theorem 2.1) which helps answer 

the questions raised above and is of independent interest. We shall present 

the result in the general setting of operators in a complex normed linear space 

of finite dimensions. 

Let X be a ?(finite) dimensional complex normed linear space, and let 

?8(X) denote the normed linear space of all linear operators in X equipped 
with the operator norm, denoted by ||. [|. All convergences of operator 

sequences in what follows will be in this norm. We shall also denote by p(A) 
the spectral radius of A e ?8(X) so that 

p(A) 
= lim \\An\\n-i 

= inf ||.??||n-i 
= max | A; |, ... (16) 

n??oo n j 

where {Xj} 
are the eigenvalues of A. 

We state the theorem first and prove it with the help of a series of lemmas. 

Theorem 2.1 : Let B and Q be in &(X), and let D be a bounded region in 

?(X). Suppose furthermore that Bn :D-*f?(X),n =1, 2, ..., be such that 

\\Bn(Q)\\~~> 0 uniformly in Q eD as w? oo. 

(a) // lim Bn = II exists, them 

lim lR+n-HQ+Bn(Q))]? 
= Il.exp([l.Q.Il)) ... (17) 

n?> ? 

the convergence being uniform in Q e D. 

N 

(b) // lim N-1 n? = n exists, then 

Km i 
?[B+n-1(Q+Bn(Q))]n 

= U.exp(n.Q.U), ... (18) 
jy_>oD IV n=1 

convergence being uniform in Q e D. 

We shall ?need the Jordan canonical form for any member of ?(X) 

(see section 5, ch. 1 of Kato, 1982). Thus any A in &(X) admits the 

unique decomposition 

A=i (AtPi+Di), ... (19) 
?=i 

where A? is the i-th distinct eigenvalue of A, Pi and Di are the corresponding 

eigenprojection and eigennilpotents respectively, and r is the number of distinct 

eigenvalues of A. It is also known that (see pages 41-43 of Kato, 1982) 

PiPj 
= 

SijPi, Pi D} 
= 

DjPi 
= 

SyDi 

Mi-m.+l 

Df 
= 0, DfDj 

= 0 if # j, ... (20) 
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where Mi equals the algebraic multiplicity of ??, which is equal to the dimen 

sion of the range of Pi, and m? equals the geometric multiplicity of Ai, which 

is equal to the dimension of the space of all eigenvectors corresponding to 

the eigenvalue A$. We shall also use the important property that 

Pi,Di,D\, ...,Dt 
i~mi are linearly independent in the vector space of all 

r r 

dxd matrices. Note that 2 Mi = d, 2 P{ = I, and 1 < mt < M^ Thus 

Di = 0 if and only if m? = M i. 

The next lemma studies the structure of an operator R satisfying the 

hypotheses (a) or (b) of Theorem 2.1. 

Lemma 2.2 : Let Re ?(X) have the Jordan form (19). Then 

(a) Rn?> II as n-+ oo if and only if for each i (i 
= 1, 2, ..., r) either Ai = 1 

with corresponding Di 
= 0, or |A$| < 1. Furthermore, in the former case 

P< II = II P| 
= 

P< while Pi?l = n Pi = 0 in the latter. 

N 

(b) N*12 i2w?> n as N?> oo if and only if for each i(i 
= 1, 2, ..., r) 

n-l 

either ( A? | =1 with corresponding D{ 
= 0 or |A$| < 1. Furthermore, 

Pi II = n Pi if Ai = 1, and otherwise Pt .U = U Pi = 0. 

Proof : By (19) and (20) we see that fovfn > max? (Mi?mi) 
r r 

?MrmJ ?nx v 

fi? = S (AjPj+D,)? = L 
( S A?~* ?*+A?P, , ... (21) 

j=i j=i 
> fc=i v#/ / 

so that if mi < J/<, then 

rf .R* = 
Rn.lF*-mt=X?EFr*,t, 

... (22) 
ai.d 

P,#? = R*Pi = 
AfPi+ S ( 7 A?~* 2)?. ... (23) 

k=i * k f 

From (22), (23) and the linear independence of P?, Di, Df, ..., Di i"m%^ for each 

i, it follows that Rn-> II if and only if for each i, either \Xt\ < 1, in which 

case Pill = 
IlPi 

= 0, or Xi = 1, in which case D% = 0 and Pill = IlPi = 
Pt. 

This proves/part (a). 

Since in (21) the terms corresponding to those j for which | A?? < 1 con 

verge to zero as n?> oo, their Cesaro-limit will also be zero. Consequently 

the proof of the cif 
' 
part of (b) follows by averaging (21) over n and observing 

that 

N n=1 
* 

N(l-?i) 

as 2V-? oo, for | A< | 
= 1, A* ̂  1. 
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N 
For the 'only if part of (b), from (22) we have that N*1 S A? must 

w=l 

converge as N?> oo, for all A?. This necessarily means that |A?? < 1, for 

all i. Again from this and (23) it follows that 

1 JN Mi-mi 

-2 2 / A?-* D* 

must also converge for each i as N-+ oo. However we show below that if 
N in\ 

| A? | =1, then N~x 2 (, ) Ay~* does not converge as JV-> oo, implying 

thereby that the corresponding D% = 0. Here we have again used the linear 

independence of Pu Du Df? ..., 
Dff^i. 

Since N'1 2 ( ,) 
?> oo, as N ?? oo, for k > 1, we may assume that 

|A?| =1 and A? ̂  1. Furthermore a simple calculation shows that 

-I 2 H A*-* = -i- * 
( 2 aO 

- _J__ _^ /Af+^Af v "~ 
N(k\) ?A* V Af?1 / 

= 21 ai(?i,N,k)W, ... (24) 

where for ?1 < j < i?1, the aj(?i, N, k) are absolutely bounded with res 

pect to N. In particular 

XN+l?k 

ajc^Ai, N, k) = 
?^rjy; 

1 < * < M^m^. ... (25) 

Because in (24), the power of N varies from term to term, it is enough to note 

that for k > 2, ak_x ^ 0, and aQ oscillates as N?> oo. Thus the left hand side 

of (24) does not converge for every k = 1, 2, ..., Mi?mi ; i = 1, 2, ...,?". 

Bemark 2.1 : It is clear from Lemma 2.2 that if n ^ 0, then there is 

one i with A* = 1 and this i we set equal to 1 by convention, so that Ax 
= 1. 

With this convention we can write n = 
Pl9 the projection corresponding 

to the eigenvalue 1. Thus in the case (a) of Lemma 2.2, we can write 

B = 
Px+A, with Px A = A Px 

= 0, and p(A) < 1. ... (26) 
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Similarly in case (b) of Lemma 2.2, we can write 

P = P0+Ase? A?P?+A, 

65 

(27) 

where | A* | =1 for i = 
1, 2, ..., s (s < r), B0 A = ? R0 

= 0. It follows 

from Lemma 2.2 that 

||i?0|| = 0 or 1, and p(A) < 1. (28) 

We note that in this case that R0 
= 

R-P0 where P0 
= 2 Pi. Also observe 

% = i 

that A is not necessarily diagonalizable in either case, and from (16) it follows 

that there exists a positive integer n0 such that 

||A?|| < 1 and \\R*\\ <ly^>% ... (29) 

On the other hand, II = 0 in case (a) if and only if | Ai | < 1 for all i without 

any A$ being equal to 1. 

Lemma 2.3 : Let A e ?(X), R be as in Lemma 2.2, and A(n) 
= 

n?1 

n~x 2 R3 A Rn~1~i, where nis a positive integer greater than or equal to one. 
?-0 

Then 

(a) in both cases (a) and (b) of Lemma 2.2, II A(n) II = II A II, 

(b) In case (b) of Lemma 2.2, given any e > 0 there exists a positive integer 
n = 

n(e) such that 

1 n-i 
? 2 E?-n n 

y=o 
<e, 

where R0 is as in (27), and 

Furthermore 

and 

l|A?|| < 1. 

||P0-4(?).P0||<||4|| 

\\(P0.A(n).P0-U.A.U).U\\<tU\\^ 

(30) 

(31) 

(32) 

(33) 

Proof of (a) : By Remark 2.1, II = Pv Hence II. R = R. U = II and 

the result follows. 

Proof o/ (b) : Since jB0 
= 

RP0 
= 

PqR, we consider j?0 to be an operator 

acting on the space P0X and set R% 
= 

P0. Then 

1 71-1 1 n~"1 - s J?? -n = S (? S A{ )p 

A 1-9 
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and thus 

1 71-1 
? 2 Bl-U n 

;=o 

1 

n 
sup 

f I n-l i i ?-1 h 
IS A4,..., S A' 

} 

But 

1 n-l . ? S Ai 
?i-o 

(1-A?) < 2 ( inf ll-Ajfcl) Y1 0 
l*(l-A*) 

as n?> oo uniformly in &, and we have (30). Inequality (31) is the same as 

inequality (29). That ||P0. A(n) . P0\\ < \\A\\ follows from the relation 

P0 . A(n) . P0 = 1V P?. 4 . JBS-W *0 

and the fact that ||?0|| = 1. Finally, 

p0.^(^).p0-n.^.n).n 
= / 

1 i?T1 
2" iy 

. a . 
i^-w?n. 

-a. 
n). 

n 

1 n-l 
? 2 i??-n) .-?.n 

and (33) follows from (30). 

Bemark 2.2 : It is clear from the proof of Lemma 2.3 that even when 

d is countably infinite, the lemma will be valid if 1 is not an accumulation 

point of the eigenvalues of B0. On the other hand if 1 is an accumulation 

point of the eigenvalues of B0 in a separable Hilbert space X, then a simple 

application of the dominated convergence theorem shows that the strong limit 
n-l 

of n'x 2 B? as n-> oo is n. 

Lemma 2.4: Let An(Q), G n(Q), e & (X), n = 
1,2,...,QeD Q?(X) be 

such that \\An(Q)\\k < M for all n, QeD,k < w, and \\Gn(Q)\\ -> 0 as n -> oo 

uniformly in QeD. Then \\(An(Q)+n~1 Cn(Q))n?(An(Q))n\\ -> 0 uniformly in 

QeD. 

Proof : The proof follows from the inequality 

\\(An(Q)+n-iCn(Q))?-(An{Q)n< S ( 
* 

) 
n~l \\A%{Q)\yH \\Cn(Q)Wf 

n 

J=i \ 3 

<Jf.||(7n(?)||.exp(||?7n(?)||). D 

It is clear from the above lemma that it suffices to prove Theorem 2.1 

in both cases with Bn(Q) 
= 0. Lemmas 2.5 and 2.7 are approximation results 

preparing the stage for the proof of the main theorem while Lemma 2.6 is 

an auxiliary result used in the proof of Lemma 2.7. 
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Lemma 2.5 : Let A e ? (X<) such that A = 
A0-\-Ax with A?.AX 

= 
AVA0 

? 0, ||40|| ?^ 1 and \\A-j\l < 1. Also let P0 be a projection in X such that A0 
= 

A.P0 
= 

P0.A. Then ||(?+n-1P(Q))?-(?o+?""1 P<>-B(Q)-P0)n\\ -> 0 as 

n-> oo, uniformly in Qe D, where B(Q) e M (X) is such that \\B(.)\\ is bounded 
on D and (I-PQ).B(Q).P0 

= o! 

Proof: For brevity, set B00 
= 

P0.B(Q).P0, B01 
= 

P0.B(Q).(I-P0), 

B10 
= 

(I-P0).B(Q).P0 
= 0 and Bu 

= 
(I-P0).B(Q).(I-P0). Then we write 

A+n-WQ) 
= 

(40+?-iJB00)+(41+?-1JB11)+?-1501. ... (34) 

Set 

An^(A0+n-1B0O)+(A+n-1Bu). 
... (35) 

It ia easy to see that (A*n. B01. A*n). (A\. B01. Aln) 
= 0 for all i, j, h, I > 0. 

Therefore 

(A+n-i B(Q))?-(A0+n-i BJ* 

= 
(An+n-iB^-Al+^+n-iB^ 

= n* Al-i-1.(n-*Bo?). A?MAi+n-iBn)? 

=i- S* (A0+n-iBJ*-i-l. B01. {A^nr* Bn)i 

+(?1+nr1Bn)^. ... (36) 

Since pill < 1, it follows that ||^11+^-1 Pn|| < 1 for all Q e D and suffi 

ciently large n so that IK^-frr"1 -Bn)w|| -? 0 as n-+ oo. The norm of the 

first term in the right hand side of (36) is bounded by tt^H-BoiII exP (ll^ooll)' 
00 

2 (||41||+7?~1||511||)^ showing that this term also converges to 0 in norm as 
i-o 

w->oo. 

Note that Lemma 2.5 is essentially a special case of Theorem 2.1(a) where 

B(Q) 
= Q and (I?P0)B(Q)P0 

= 
0,YQeD. This latter condition will be 

removed in Lemma 2.7. 

* U 
Lemma 2.6 : Let d, a > 0 and I, N positive integers. Then II (1+?far) 

attains its maximum (subject to the conditions : ij is a positive integer for j 
= 

i 

1, 2, ..., I and 2 ij 
= 

N) when all the if s except one are equal to unity. 
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Proof : Without loss of generality we may assume that a^l, For 

I = 2 it is equivalent to maximizing aiJraN~i over 1 < i ̂  iV^?1 which can 

be easily seen to occur at i = 1 or i = N?l. Continuing by induction on I, 
we have 

tl+l i, l+l A 

max n (l+daj) : 2 ?, 
= iV, il9 ..., ?z+1 > l} 

?i=i ?=i J 

= max {(1+da*) max ( U (l+0as) : 2 ij = N-fc, ?1? ..., k > ll 
l <*<#-* I V=i ;=i 1 

= 
(l+day-1 max (i+^)(i+0atf-*-i+i) 

l^?^iV-Z 

= (l+day(l+da*-i) 

as desired. 

Lemma 2.7 : Let A, PQ, A0, A? be as in Lemma 2.5 and B(Q) e ?8 (X) 
be such that \\B(.)\\ is bounded on D. Then |p+7i-1?(?))^^o+^~1 P0. 

B(Q). PQ)n\\-> 0 as n-> oo uniformly in QeD. 

Proof : We define Bn, J501, B10 as in the/proof of Lemma 2.5 and note 

that now B1Q 
= 

(I?P0). B. PQ is not assumed to be 0. Then A+n'1 B(Q) 

=/w+^~ljBl0' 
where An=(A0+n-1B00)+(A1+n-1B11)+n-1B01. By Lemma 2.5 

\\A%?(AQ+n-^Qo)*1]] -> 0, uniformly in QeD as n-> oo. 

Expanding (?n+n^B^) and observing that B% 
= 0 we have 

[(?H-3)/2l 4 

(A+tr*B(Q))? 
= A*+ 2 2 /#), ... (37) 

fc=2 j=l 

where [a] is the greatest integral part of the positive real number a and 

*i(*) 
= 

S(? 41- in-1 B10). Il2, (?-i ^o)...!;*-1. (?-1 JB10), 

/".(*) = S(? i?"1 *io)- il2. (?-1 ^-ii*-1. (n-1 B1Q). 11*, 

/,(*) 
= 

S?, (?I"1 510) 
. i?* . (71-1 Sm) ... 

Jfc-l 
. (n-l ?io)) 

/,(*) = 2<4) X1. (?-1 ?10) - il2 (n-i 2?10) ... i^1 . (n-i 510). il*.... (38) 
In (37) k? 1 is the number of times i?10 appears in the expansion, and each 

sum in (38) runs over the corresponding ?'s taking values greater than or equal 
to one and adding up to n?k+l for each k. By convention 73(2) 

= 0. It 
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n?k\ 
(3) 

(ft_j??\ , 9J while 2 

(ft_Ja \ I/y%_Ja \ 

, q j 
and (, ) terms respectively. The desired result shall 

follow if we show that the sum in (37) converges to 0 uniformly in Q e D as 

n?> oo. 

A simple calculation shows that 

I* = 
(Ao+nr1 B00)^+(A1+n~1 Bn) 

1 m-i 

+- S (Ao+n-1 BMY 
. 
B01. (A^n-i Bn)m-^, ... (39) 

n <=o 

?%.B10 =(A1+n~iBnr.B10 

i m-i 

+? 2 (A0+n~i BJ*. B01. (^i+n-^u)?-1-' Bw. ... (40) 
n ,=o 

Thus as in the proof of Lemma 2.5, we have for all m < n and QeD 

||4j?||< Jft aud Uly.BwIK -Ml+na*), ... (41) 

where Mv M2 are two absolute constants and a = 
sup (||-4il|+?-1||-Bn||) 

< 1 for sufficiently large n. 

By (38) and (41) we have 

llAWIKf*!*)^"1'15"1^"1^"1 

Jf?-1 
< 

n(fc-2)! 

and similarly 

Mk-i 

where M3 and ikf4 are absolute constants. It is now easily seen that 2 

ll^(&)l|-> 0 as w-> ?o uniformly in Q e D for j 
= 1, 2, 3. 

Kn+3/2] 

fc-2 
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Finally from (38) and (41) it follows that 

||J4(&)|| < Jf^n-1)*-^ nVl' . BJ\ 
;=i 

n-zk+2 k-i 

< MxM^n- 
~* 2 2(5) n (1+W), ... (42) 

i=l j=l 

k-1 

where 2(5) for every fixed i (the value of ik) runs over {(iv ..., ik_x) : 2 ij 
= 

i=i 

, I terms. By 

Lemma 2.6 and (42) we conclude that 

?M\\< ?J 
S 

( ?_2 ) (l+nap-2(l+na?-^+3) 

< Mk Mh~1 ?~2*+2 r 1 an-2fc-i+3 

(k-2) 

K?i n?w+z r x (xn?^K?i-ro 
-. 

where M5 and Ji6 are suitable constants. Since a < 1, the above inequality 
[<*+3)/2] 

leads to the result that lim 2 \\I?k)\\ = 0. 
n?>oo &=?2 

Proof of Theorem 2.1 : In case (a) choose a positiveinteger v so that 

(29) is satisfied. In case (b) given any arbitrary e > 0 choose v ? 
v(e) as in 

Lemma 2.3(b). Having chosen this v we hold it fixed, and write n = 
lv-\-/i 

with I = 0, 1, 2, ... and /? = 0, 1, 2, ..., v?1. Since /i is bounded, we note 

that w->oo if and only if i-^ oo. Thus as in Lemma 2.3, defining Q(v) 
= 

v^S BlQB^-^we find that 

=[(B+(fr+/*)-ie)|v-(B?+?"le(v))']. fl? 

+(JB+(iv+/e)-iQ)iv- (jB+{^+/,)-i?)M_jBit]. _ (43) 

Note that 

(E+(Zv+/?)-1C)v=i?v+(^+^)-"1 2 BfQRi-i-t+Oil-*), 

where O(-) is uniform in QeD as Z?> oo. Furthermore since (?v+/?)_1 
= 

(?v)_1?/?(Zv)~1(fo+/^)~1> from the above we obtain 

(?+^+^)-iC)v=Bv+i-ie(i;)+l-iC,(v, ?), ... (44) 
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where Ct(v,Q) -? 0 uniformly in Q e D as l -> oo. Using (29), we have 

ll^+?-^WH* < (I+l^WQ?? II?ir1)* < exp (H?H UP)!*"1) < constant (depend 
ing only on v) for all k < I and Q e D. Using this and (44) we can apply 

Lemma 2.4 to the first term on the right hand side of (43) to conclude that 

its norm converges to 0 as I?> oo, uniformly in QeD. The fact that 

(Rv+l^Qiv))1 is uniformly bounded also tells us that ||(i?+(Zv+^)~1?)Zvll is 

uniformly bounded in I and QeD. Since ?i is bounded, we see that 

\l(B+(lv+fl)-iQr-R^ < S 
( J ) ll-Bir* ?fr+zO-1 WQW)k -> 0 as I -> oo 

uniformly in Q e D. Thus we arrive at the convergence of (R+n^Q)1*? 

(Rv+l-iQ(v))K Pv to 0 as I ->oo uniformly in Q. By the choice of v, Pv=Pg+Av 
with ||AV|| < 1 and an application of Lemma 2.7 leads us to 

\\(R+n-iQ)n-(R>0+l-ip0 . Q(v) . P0)l. fi{?||-> 0 

as I -> oo uniformly in Q e D. 

(45) 

Case (a) : In this case RQ 
? 

P0 
= 

Px 
= II and we get the desired result 

for Bn(Q) 
= 0 (and hence also for Bn(Q) =? 0 by the remark after Lemma 

2.4) Ijy applying Lemma 2.3(a) and the result that lim (I-\-l~xA)x 
== 

exp(^4) 
/-?CO 

uniformly for all iina bounded set of ?(X) (see Kato 1982, 35?36). 

Case (b) : Write N = 
Lv+J with L = 0, 1, 2, ..., J = 0, 1, 2, ..., v-1. 

Since PS+L^Po . Q(v) . P0|p < (l+i-1!!^ < exp(||?||), we get that 

v-l 

lim N-\R>0+L-iP0 . Q(v). P0)i< S i?{ 
= 0 

JV?>co H=J+1 

... (46) 

uniformly in Q e D. Thus by (45) one has 

1 
1?m TVT 2 (R+n-iQ)?- S (?J+HPo . COW V 2% 

n=i ?=o 0=0 

= 0 (47) 

also uniformly in Q e D. 

Given an arbitrary e > 0 we have fixed v so that (30) is satisfied and 

hence by Lemma 2.3(b) 

1 ̂  
^ 2 (Pj+HPo . Q(v). P0)1 - {- S RZ-PA < eexpdlQII). .. iv m I " #1=0 J j| 

(48) 
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Since P1 = U (see Remark 2.1), we have by (32) and (33) 

IPs+i-^o ?") Po)1 u-?i+v-m .Q.ny. u\\ 
= 

iik-Rs+z-^o GM PoY-W+i-m. q . n n. n \\ 

< 
~ 

s1 ik?j+^Po QM ^IMK^o ?M po-n. e. n). n ? 

. \\i+i-m .Q.n n?-w 

<||?||exp(2||?||)e. ... (49) 

Combining (47), (48), (49) and the standard result referred to earlier in case 

(a) we arrive at 

lim 
tf-?oo 

N 

w 2 (B+n-xQ)n-U,exio(U.Q n) <Ce, 

where G is a constant independent of Q and e. Since e is arbitrary, we have 

the desired result for Bn(Q) 
= 0 and by the remark after Lemma 2.6 we arrive 

at the general result. 

3. Markov chains 

Returning to the Markov chain example discussed in Section 1, in view 

of (10), using (7) with s = 1, it easily follows that 

Qn n*+Qi2. n0(ir 
= o. ... (50) 

In view of (7), applying Theorem 2.1(a) to (15) and using (12), we have 

lim (Pn(s))n = 11(8) . exp (II(*). Q(s). 11(8)) 
= Il(s). exp (Q(s).U(s)) 

ex?o(Q11.U*+sQlv.U*0) 0 

0 / 

nvexp^.n'+s^.n^)) o 

L U*Q(s) . exV(Qn . Tl*+sQ12 . Yl*Q(s)) 0 J 

Finally using this in (14) we have the desired limit result for the distribution 

of Sn in terms of its p.g.f. given by 

n?>?o 

= nw 

(51) 

n* 

Ln;(S)J 
n* 

Ln?J 

exp (Qu 
. 
U*+sQlz. n*(?)). ifcxl 

dxk 

exp (-Qn . (n'g(l)-sTl'a(s))) 1 (52) 
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where at the end we have used (50) and where II^(l)--sII^(?s) is a (d?k)Xk 
matrix given by 

U'g(l)-sU*(s) 

n1(i-?flfK+1(?)) ... 
nk(i-sGk+1(s)) 

L iyi-*?(?)) '.'.'. Uk(l-sGa(s)) J 
(53) 

The above limit [gx(s)...ga(s)] gives us a matrix analog of the p.g.f. of a com 

pound Poisson distribution. Again instead of asking for the limit behaviour 

of Sn, the time spent in the set {k+1, ..., d\ during the first n steps, we might 
consider studying the limit behaviour of the joint distribution of the vector 

[Sn(k+l)...Sn(d)] where Sn(j) is the time spent in the state j during the first 
d 

n steps, with j 
= 

k+1,..., d and Sn 
= 2 Sn(j). The above analysis can 

be easily adjusted by introducing d?k dummy variables (sj?+1, ..., sd) instead 

of a single dummy variable s. An application of Theorem 2.1 as before, 
would this time lead to a matrix analog of the p.g.f. of a multivariate com 

pound Poisson distribution. 

4. FlNITARY PROCESSES 

4.1 Generalities. In section 3 we started with a Markov chain {Yin, 
..., Ynn} with state space <s = 

{1? > <fy and then studied the function of this 

process given by X^ 
= 

f(Yin) were / was the indicator function of the set 

{k-\-l, ..., <fy. We shall now describe the concept of unitary processes (see 

Robertson, 1973 for more details) which generalizes the notion of function 

of Markov chains and at the same time allows one to apply the matrix theory 
methods of Markov chains. 

Let S be a finite set (we will take S = 
{0, 1}). Let d be a positive integer 

(d will be fixed throughout this section) and y and ? e Rd. For seach i e S, 

let Ai be a d X d matrix. We assume the following axioms are satisfied. 

Axiom 4.1 

Axiom 4.2 

Axiom 4.3 

VT. f = 1, 

A . ? 
= ?, where A? S4 

ieS 

For every positive integer m and for all il9 ..., im e S we have 

A system (Rd ;r? ; ? ; Ai, ie S) satisfying Axioms 4.1, 4.2 and 4.3 is called 

a finitary system. This system is said to be stationary if 

7?T.A=yT. ... (54) 
A 1-10 
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For every finitary system (Rd ; i\ ; ? ; Ai, i e S) there exists a stochas 

tic process {Xv X2, ...} such that for every positive integer m and for all 

h> -.., im S we have 

ftX1 
= 

i1,...,Xm 
= 

im] 
= 

Vv.A.i...Aim.?. 

... 
(55) 

Such a stochastic process {Xv X2, ...} is called a finitary process. The follow 

ing summarizes several facts whose proofs can be found in Robertson (1973). 

Proposition 4.1 : (a) If (Rd ; ij ; ?j ; Ai, ie S) is a finitary sy tern, then 

there exists another finitary system (Rd' ; if ; ?' ; A?, ie S) (called a reduced 

system) with d' ^ d, such that 

(1) For every positive integer m and for all il9 ..., im e S, ifT . A\ 
... ?, ?' *1 *fW. 

*=f>v. A. ...A. .?. 1 ll lm 
b 

(2) {A'h 
... 

A?m 
. f : m > 0, iv ..., imeS} spans W. 

(3) {y'? .A'h... A?m 
: m > 0, iv ..., imeS} spans R*'. 

(b) Every function of a finite Markov chain is a finitary process, and a 

finitary process is a function of a Markov chain if and only if it has a finitary 

system (Bd ; i? ; ? ; Ai, ie S) such that all the entries of the vectors i? and ? and 

all the entries of the matrices Ai, ie S are nonnegative. 

(c) A finitary process is stationary if and only if its reduced finitary system 
is stationary. 

From the above proposition it is clear that without loss of generality 
we may assume that the system is reduced. However, the system with non 

negative entries referred to in Proposition 4.1(b) will in general not be 

reduced. 

We now take S = 
{0, 1} and suppose for each positive integer n that 

{Xln, ..., Xnn} is a finitary process given by the reduced finitary system 

(Rd ; 7jn ; fn ; Ai(n), ie S). We want to find the possible limit laws of 
n 

Sn 
= 2 Xin, as n^> oo. For this we look at the p.g.f., gn(s), of Sn, which 

?=i 

is easily seen, using (55), to be given by 

gn(s) 
= 

7)l.(An(s))n.Cn, 
... (56) 

where 0^< * ?< 1 and An(s) 
= 

A0(n)+sAx(n). 
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In the sequel we assume that r?n and ?n both converge as w-> oo. Con 

sequently it is sufficient to study the possible nonzero limits of (An(s)) as 

n-> oo. This we do in the next subsection for the case with d ? 2. 

4.2 Finitary processes with d ? 2. In Theorem 2.1 we studied the 

limit of (An)n with 

An = 
R+?(Q+Bn(Q)) 

... (57) n 

given that Rn converges and ||J3n(Q)||?> 0, as n?> oo uniformly in QeD. We 

now study the converse question (with d = 
2) namely that given (An)n 

converges as n-> oo for the same form of An as above, we prove that Rn does 

converge. This along with Theorem 2.1 will allow us to compute the form 

of the limit of (An(s))n as w-> oo for a finitary process with d = 2. 

Theorem 4.2 : Let An = 
R+n-^Q+B^O)) with R, Q and Bn(Q) as 

defined in Theorem 2.1. Assume furthermore that (An)n converges to a nonzero 

limit, say C. Then Rn converges to a nonzero operator, say II. 

Remark 4.1 : The proof of this theorem is given in the appendix. Note 

that our Theorem 4.2 is limited to An's specifically of the form (57). In fact 

if we only assume that An-> R, (An)*-> C( ^ 0) and P?-> II( ^ 0) hold, 

then (57) is not necessarily satisfied. For instance take 

^ = 
(1+?)pi+^p? 

- (58) 

with a real and Px and P2 are mutually orthogonal projections with their sum 

equal to the identity. 

Finitary systems with d = 2 can be given fairly explicitly. Consider 

the closed convex cone Q consisting of all limits of all linear combinations 

with nonnegative coefficients of vectors of the form AiX...Aim.\ where m ;> 0 

and iv ..., ime{0, 1}. This cone is clearly invariant under the operators Ai 
for all i e S. By Axiom 4.3, ? ^ R2 and the case were Q is one dimensisional 

is trivial. Thus there are two linear independent vectors, a and ? such that 

q = 
{aoc-\-b? : a, b > 0}. Since ? e Q, we may choose a and ? such that 

? = 
oc+?. We first express the matrices ?, A0 and Ax in terms of basis (oc, ?). 

The fact that Q is invariant under A0 and Ax implies that the entries of AQ 
and Ax are nonnegative. Next Axiom 4.2 states that A^A-^ is a stochastic 

matrix. From this it also follows that 

?* 
= 

[l, l],VT 
= 

[p, l-jp],for.0<p< L ... (59) 
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If the process is stationary then i? will be the invariant probability vector 

for A0-\-Ax. We thus have 

r I?a?c?(1?5)6 a+sc , - 
^ 

A(s) = 
A0+sA1=\ 

v ; ^ ... (60) t. d+se 1?d?e?(l?s)/J 

where all the parameters are nonnegative, a+b+c ^ 1, and d+e+/^ 1. 

The eigenvalues of A(s) are given by 

A? 
= 

Y^)+^)?V(^(^)-^))2+4(a+5c)(d+^? 
... (61) 

where a(s) 
= 

1?a?(1?5)6?c and /?($) 
= 

1?d?e?(1?s)/. 

Suppose now that the parameters a,b, c, ... depend on n with the matrix 

in (60) denoted by An(s). Since we are interested only in the nonzero limits 

of (An(s)) with An(s) of the form (57), in view of Theorem 4.2 and 

the Remark 2.1, the maximal eigenvalue of An(s), ?+n in (61), must converge 

to one as n?> oo. The next lemma gives the necessary and sufficient condi 

tions for this to occur. The proof of the lemma, being straightforward, is 

omitted. 

Lemma 4.3 : (a) 0 < | A__J < A+n < 1. 

(b) X+n ?> 1 if and only if at least one of the following three conditions holds 

(i) an, bn and cn-> 0. 

(ii) dn,enandfn->0. 

(i?) &?, cw, enand/n-?0. 

We will consider the three cases of Lemma 4.3 one by one, but first we 

consider a "case 0." Suppose that an, bn, cn, dn, ewand/n->0. In accord 

with (57) we assume that nan-> a, nbn-> 6, ncn-> c, ndn-> d, nen-> e and nfn 

-?/. Then 

B(s) = lim An(s) = J, n = lim B* = I ... (62) 
n?>oo n?>oo 

Q = lim n(An(s)-I) = 
-a?(l?s)b?c a-\-sc 

(63) 
d+se ?d?e?(l?s)f. j 

We can easily calculate the exponential of a 2 x 2 matrix B with trace r, deter 

minant S, and eigenvalues A^. The matrix satisfies its characteristic polyno 
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mial B2 = tB?8I. This can be used to obtain a difference equation for Bn. 

If the eigenvalues are distinct, the result is 

B? - 4^4=- B-A+A_ \ 
A- - /. 

A+?A_ A+?A_ 

If ? is the only eigenvalue, then 

Bn = 
nAa-fB?(ra? 1)A?J. 

From this we may calculate respectively 

exp (P) 
= 2 ~T= 

-.-<? 
B-^-^? I, 

n=0n\ A+?A_ A+?A_ 

exp (P) 
= 

eAP+(l-A)eA/. 

Thus from (63) we obtain 

^?B-'^-^y-^y 
... (e?, 

where 

V = 
??(?) 

= 
-g (?+j&?V(?-i$)2+4(a+5c)(d+^)), 

? = 
?(?) 

= 
?a-(l-?)6-c, ? 

= 
J5(5) 

= 
-d-6-(i-.?)/, ... (65) 

a, b, c, d,e,f^ 0. 

The conditions that the two eigenvalues of Q would be equal for all s implies 
that Q 

= 
?^(1?-s)J, which implies that the limiting distribution is Poisson. 

Thus we may assume that (64) is the form of exp(Q) except for the two values 

of s that are the roots of the quadratic equation (St?$)2+4(a-\-sc) (d+se) 
= 0. 

For exp (Q) as in (64) the limiting p.g.f. of Sn is given by 

lim j*\AJ?)Y> f - [p, 1-p]. exp (Q). { 
n?> oo 

JI+-3L 
" ( } 

where 8 = p(b+c)+(l?p) (e+f) > 0 and ?? 
= 

??(s) are as in (65). In 
contrast to the cases considered below we are not able to describe the distri 

bution of this p.g.f. in terms of well known distributions. In what follows 

we treat cases (1), (2), and (3), but assume that we are not in "case 0." 

Next consider the case 1 of Lemma 4.3b where an?> 0, bn?> 0 and cn-?0. 
We suppose that nan-? a, ribn-+ b, ncn-> c, dn-> d, en?> e and fn->f where 

d+e-\-f >0. Also we suppose that n(dn?d)-? x, n(e 
? 

e)-> y and n(fn?/)-> z. 
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One may then calculate the following matrices as before. For 0 < s ^ 1, 

we have 

1 0 
B(s) = 

Q = 

n = 

d+se l?d-e-(l?s)fJ 

?a?(l?s)b?c 

x+sy ?x?y?(l?s)z 

0 -, 

0 

a+sc 1 

?x?y?(1?s)z J 

1 

d+se 

n. exp(n. q . n) 

L d+e+(l-s)f 

~ 
e-v(s) o 

- 
S(s)e-ns> 0 

where 

y(s) 

(s) = 

(l-s)(ae+af+bd+be+cd+cf+ce+bf+s(ce-bf)) 
d+e+(l-s)f 

d+se 

(67) 

(68) 

(69) 

(70) 

d+e+(l-s)f 

Finally 

lim vT[An(s)]nl=[p, l-p].U.exp(U.Q.U).^=(p+(l-p)d(s))e-ns). ... (71) 

This distribution has a fairly nice interpretation. We will transform the 

parameters to make this more apparent. Set 

A = 
r(o)=.g??+!.+c>o 

? 
= / 

1?r 

d+e+f 

af(e+f)+c(e+f) (d+e+f) 
(d+e+f) [a(e+f)+(b+c) (d+e+f)] 

d 
i-s-w-i+zj 
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Note that q, r, r' all belong to [0,1) and y(s) = A 
(l-s( l?r+ 

\_ 
* 

) ) 
Then e-y(?> is the p.g.f. of 

r 

if iVT = 0 

I 2 XnifN>l 

where {N, X1? X2, ...} are independent random variables with N being Poisson 

with mean A and P[Xn 
= 

1] 
= 1?r and P[Xn 

= 
m] 

= 
r(l?g) gm"2 for m > 2 

and all w. The factor p-\-(l? p)8(s) in (71) is the p.g.f of a random variable 

Z for which 

P[Z = 0]=p+(l-p)(l-r') 

P[Z 
= 

n] 
= 

(1?p) r'(l-q)qn~\ n > 1. 

Thus the p.g.f. in (71) is the p.g.f. of the sum of the two independent random 

variables Y and Z respectively. 

The second case of Lemma 4.3(b) where dn-> 0, en -> 0 and /w?> 0 can be 

dealt with as in the previous case by interchanging the states and thus does 

not yield any new limit laws. 

Consider now the final case of Lemma 4.3(b) where bn,cn,en,fn-+0 as 

n?> oo. We suppose that an -> a and dn?> d with a ^ 0, d > 0 and a+d > 0. 

We also suppose that nbn-?b, ncn?>c, nen?>e, nfn->f, n(an?a)->x and 

n(dn?d) -> y. Then as before we obtain from (57) 

[1?a a 
~] 1 r ^ a "1 

d l-dl n=^M Ld J 

-[ 

-#-?C?(1 
? 

5)6 #+SC 

Q 
y+se ?y-e-(l-s)fJ 

u.Q. n = 
-(i-s)xn 

where A = (ae+af+bd+cd)/(a+d). Finally with y and ? as in (71) we have 

7?T 
. II . exp (II. Q . II). ? = 

e^*1-**, ... (72) 

which is the p.g.f. of a Poisson random variable with mean A. 

This completes the discussion of the two dimensional finitary case. 
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Appendix 

Here we give the proof of Theorem 4.2, for which we need a result about 

countinuity of eigenvalues, eigenprojections and eigenilpotents under conti 

nuous perturbation and some lemmas. 

Let Gn(n 
? 

1,2, ...) and G e ?8(X), dim(X) 
= d < oo, and let their Jordan 

forms be given as : 

Gn = 2 [Hn)Pi(n)+Di(n)], 1 

0=2 WPt+Djl. 

7n 
2 
t=i 

y 
? 

... (73) 

For each ?j(j 
= 1, ..., y) define ^(A; 

= 
{i | 1 < i < d, lim ?t(n) = 

?j}. Then 
ft?>oo 

we have the following version of a theorem in Kato, 1982, (Theorem 5.1, 

pages 107-108). 

Theorem A.l : Let Gn converge to G as w??oo. Then for j 
= 1.2, ..., y, 

(a) the sets S(Xf) are non-empty and mutually disjoint, 

(b) 2 Pi (n) and 2 Di(n) converge to Pj and Dj respectively as w-> oo. 

The following lemma is given without proof and will be needed in the 

sequel. 

Lemma A.2 : Let an be a sequence of complex numbers converging to a 

with \a\ 
= 1. Furrthermore, let (an)n converge toOas n-* oo. Then n \ an?a |-?oo 

as n->co. 

For d = 2, we write the Jordan forms for An, B, G of Theorem 4.2 as 

follows : 

An = \(n)Px(n) +A? P2(n)+D(n), 

B = 
A1P1+AtPa+A 

O =PiPi+P?P2+D 

(74) 

In (74) it is understood that D(n)9 D and D are zero respectively if the corres 

ponding two eigenvalues are distinct. 
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Lemma A.3 : Let An, B and G be as in (74) satisfying 

(a) An?>B, and 

(b) (An)?-*C 

as n-> oo. Then 

(i) A? -> ?v \2(n) -> A2, Px(n)-> Pv P2(n)-> P2, D(n)-> D, 

(ii) (?x(n))n -> />1? (X2(n))n -> />2, P, 
= 

P1? P2 
= 

P2, 

(iii) n[(X1(n))n^+(X2(n))n-^ D(n)-> D. 

The proof of this lemma is an easy consequence of Theorem A.l. Note 

that if | Ax | < 1 and | A21 < 1 then C = 0. The next lemma rules out one 

of the various possibilities for the eigenvalues of C. 

Lemma A.4 : Assume (a), (b) of Lemma A.3, equation (57) and also 

Pl 
= 

p2 
= o. Then G = 0. 

Proof: As mentioned above if |A?| < 1, i = 1, 2, then 0 = 0. On 

the other hand when ?x(n) ̂  A2(w) for sufficiently large n (which must happen 
if Ax ̂  A2 and may happen even when ?x 

= 
A2), D(n) 

= 0. This means 

2) = (7 = 0. 

The only remaining case is when |A<|=1, i= 1, 2 and ?(n)==\1(n)=?2(n) 
for sufficiently large n onwards. Writing ?(n) 

= 
X+an, using (a), (b) of 

Lemma A.3 and the result of Lemma A.2, we find that B = A+D, aw-> 0, 
n | an | ?> oo. Next by (57) we have 

An 
= 

A+an+D(7i) 
= 

A+D+n-tQ+ofa-i) ... (75) 
or 

(ocn+D(n)f = 
o5+2a|lD(n) - ^(DQ+CDJ+oin-1) 

or 

a*+2D(n) = 
(^J^P?+QDi+o^laJ )-*)-> ? 

as n?> oo and we conclude D = 0. Substituting this in (75) above, we get 

ocn+D(n) 
= 

w^?+ofa-1), and on multipllying both sides by n(X(n))n~x 
we find 

naJA?^^+n?A?n))?"1!)^) = Q(X(n)Y~x+o(l). ... (76) 

Note that Q(\(ri))n-x-> 0 and ̂ (w))?-1!)^)^ \D by Lemma A.3(iii) as 

w?> oo proving the convergence of van(X(n))n'"1 to /?, say. Thus D+2? 
= 0 

which implies D = 0. Hence 0 = ?> == 0. 

A 1-11 



82 PREM S. PURI, JAMES B. ROBERTSON AND KALYAIT B. SIHHA 

Proof of Theorem 4.2 : In view of Lemma A.4, we need to consider only 

two cases, case I : pi ^ 0, i = 1, 2, and Case II : p? ^ 0, p2 
= 0. 

Case I : Consider the subcase px ^ p2. Then it is essy to see that 

Xx(ri) 
= 

l+n'^+ofa-1) and X2(n) 
= 

l+n'^+ofa-1) where a? = 
log p?, 

i = 1, 2. Since Xx(n) ^ X2(n). we. have that D(n) 
= 0 = D and R = I, 

and (7 = 
ftPi+Z^^V Now if instead p1 

? 
p2=pz?07 we see that if also 

Xx(ri) 
= 

X2(n) 
== 

A(w), then A(w) 
= 

l+w^a+o^-1) with a = 
log p. On 

the other hand from Lemma A.3(iii), 2n(X(ri))n~1D(n)-+ D leading to 

nD(n)-> (2p)-1 D or D = 0 which implies that R = I. If Xx(n) ̂  A2(rc) 
for all n, then D(w) 

= Z) = 0 so that R = I again,. 

Case II : In this case Xx(n) 
~ 

l-\-n~1oL1-\-o(n'~1) and X2(n) 
= 

X2+an with 

ax 
= 

log px, |A2| < 1. Since by Lemma A.2, n\ocn\ ?> oo, A-^w) ^ A2(w) for 

sufficiently large n onwards, and hence D(n) 
= 0. Thus D = D = 0 and 

P = 
P-t+AgP^ If moreover |A2| < 1, then Pw?? Px. On the other hand if 

A2 
= 1, then R = I. 

Finally let | A2| 
= 1, A2 ̂  1 and P2 ^ 0. In such a case we show that 

(57) is violated. From (57) we have that 

(A?-1) [Pi(n)-PJ+anP2(n) = n~* [Q-^PMl+oin'1). (77) 

Using an orthonormal basis {ei}i=1)2 
of R2 such that e? is an eigenvector of Pi 

with eigenvalue 1, we find that 

(A2-l+aJ (ex, P2(n)e2) = nr1^ [Q-^P^nfteJ+ofa-1), 

leading to (ev P2(n)e2 
== 

Of^r1). Next the simple identity : 

"?'^?"Hr' 
- (,8> 

tells us that 

(e2, [P2-P2?]e2) 
= 

0(n~% ... (79) 

since (e2, P2(n)e2) -? 1. On the other hand from (77) one has 

(A2? l)n(e2, [P2(n)?P2]e2 

={(e2> Q%)?*i(e2, Pi(w)ea)}?rwxn(ea, P2(?i)e2)+o(l). ... (80) 

Since w|aw| ?> oo, clearly (79) contradicts (80). Thus P2 
= 0 which implies 
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