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ASYMPTOTIC EXPANSIONS OF PERTURBED
CHI-SQUARE VARIABLES

By TAPAS K. CHANDRA
Indian Statistical Institule
SUMMARY. Tho presont paper oxtenda the Theorom 1{b) of Chandra and Ghosh (197}

on portorbod chi-asquares. It is known that such thcoroms aro useful for gotting valid expansions
for tost istics whoeo null ¥ aro contral ohi-squarcs.

I. INTRODUCTION AND MAIN THEOREM
Let ¢y(x) and ®p(x) be respectively tho density and distribution functions
of the normal distribution on R*¥ with mean zero and dispersion matrix ¥.
In this paper, we shall assume that V is nonsingular. Also s will stand foran
integer s > 4. The central chi-square distribution with p degrees of freecdom will
be denoted by xI. For any multiindex of nonnegative integers (a(1). ..., a{f)),
Ja| stands for tho sum a(l)4...+a(k).

Consider a of k-di ional rand vectors {Up:np 1)

q

defined on some probability space (€}, 4, P) such that

n¥3(Uy—p) converges weakly to Op .o 1n
for some st ¢ Rt.  Lel gy be a Borel measurable real-valued function on R¥. Put
Uy = ga(n"(Un—p)), n > 1 o (13

We are interested in obtaining the Edgeworth expansion of Ua when its
asymptotic distribution is y3, 2 < p < k. This problem was treated by
Chandra and Ghosh (1879) under a sct of assumptions on g, and WY —ph
#eo their Theorem 1(b). Here we relax these ptions and give a plet
proof of this theorem. In the 1979 paper, the proof of Theorem 1(b). though
highly nontrivial, was only very briefly sketched; seo, in this connection,
page 21 of the 1079 paper and the remark following the statement of the
thoorom of the present paper.

In case
galu) = ITu+uTLuto(l)

AMSE (1080) eubject classification : Primary 63J02.
Koy words and pheases : Edg h oxpansi F d ohi-square.
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as % — o0, where L is a non-null positive somi-definite matrix of rank p, then
in order that the asymptotic distribution of W, be xI, it is nocessary and

sufficient that
1=0, LYL=1L. e (13)

Using 1¢.3(ii) of Rao (1973), we can and do, assume, without loss of generality,
that

V=1, uTLu = [juj?, e (14
where I is the kx k identity matriz, and for u = (u'V, ..., u'®), u' and u? sand
Jor (u'h, ., wP') and (u'PHY, .., u®)) respectively. Let T bo tho polar trans-
formation which sends u! to (r, 01, ..., 8-1) and keep u? unchanged :

' = rcos B ... cos G- cog (P-1
u'? = reos 6V ... cos 0P~ gin gip-1

P~ = y gog 'V gin 0(5)

(1.5)

u'?) = rgin 011,
where 0 < r < o0 and (0, u?) belongs to the set
A= {(G.u’)l— 21< o < % 1 €igp—2 0< 09D < 2m ute RE-? }
(1.6)

Here 0 = (07, ..., 6'P-1). The Jacobian of the fi tion T is rP1J(0)
where

J(0) = (cos 0V)p-3(cos OiD)P-3 .. cos §i7-D, e (LT
Lot 2% = cos G, yih = gin B0 i = 1,2, ..., p~2,
= (20, ..., 2PD), y = (y!, ..., y»-?),

By R'(r, z,y, u®), we shall mean an expression of the form
1 et 4 [ (grogpee rk] (0yett) . (1.8
(0 oo} (T gopol{ T @or), .. 0.8

where a, a(s), b(i) and c(s) are nonnegalive integers. By R(r, z,y, u?), with or
withow! suffizes, we shall mean a finile sum of constant multiples of lerms of the
Jorm R*(r, z, y, u?).
We say that R*(r, z, y, u3) is odd if at least one of the nonnegative inlegers
1), ..., llp—~1), alp—1). clp+ 1), ..., olk), . (19)
is odd. Then it is easy to see that
1 N
Joxo(— 1A%} R0, 2, y, b\ J(O)BG = 0 if R, z,y, w?)in odd,
e (110)
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for each r > 0; here [ju3|? is the usual Euclidean norm of u?. We say that
R(r, %, y, u®) is odd if every R°(r, z,y, u') appearing in il is odd.
A function f(u) is said to be a generalized polynomial in u if f(Tu) is a
polynomial in r, z, y and u3, i.c., if f{T's) can be written as some R{r, z, y, u%).
We 2oy that nU3Un—p) safisfies condition (Ay) if theve exiat generolized
polynomials {fyu): j=0,1,...,8—8}, fy=1, suchthat

sup |P(rUNU,—p)e By)— [ &y (u)du = ofn-t=27%)  __ (11])
BN:‘@) :/%
Jor every family @, of Borel subsets By of R* satisfying
sup [ gyluldu = o(—log 8)-4-V1). - (L1
Bye @, 2By
Hero Ernmltt) = l%’ w12 (w)) grlw). e L1y

See, in this connection, Corollary 20.3 of Bhattacharya and Ranga Rao (1973)
and Theorem 3 of Bhattacharya and Ghosh (1978); sce also Theorem 1.5 of
Bhattacharya (1977).

Let galn) =% n-113Q,(u)+o(n—te-2%) e (L)
1
where we M, = {ul i < dn~t log n} for some d > 0 o (LI5)
@i(u) = urlu

and other Qy are generalized polynomials in u. Put
-3
hegon = ? ”_’an

Wo = heoy, 20U, —p)).
We say that g, salisfies condition (d,) if

by o(Tu) = 12 {'5' A93Ry(r, 2, 9, w%)}, . (126)
a
for aome Ry(r,z.y, u?). We say thal g, satisfies condition (Ay) if for ue M,
ga(Tu) = r’{ b n 2R (r, 2, y, )+ O(n~1 log ﬂ)"""‘}. Re=1 .. (01
a

and —g; ga(Tu) = z,{'-z' =R (r, z, y, u%)+O(n~log ”)H[l}_ o (118
o
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We say that Ry(r, z, y, u3); 5 o enjoy the odd-even property if the degree of each
R(r, z, y, ud)[r"

appearing in Ry(r, z, y, ub) is odd or even according as j is odd or even.

We say that R*(r, z, y, u?) satisfies the property of modulo 2 if

a = |a|+|b| modulo 2;

here a = (a(l), ..., a(p—2)) elc. We say that Rir, z, y, u3) salisfies the property
of modulo 2 if every monomial R'(r, x, y, n®) appearing it salisfies the property
of modulo 2.

The lemma below shows that ‘‘the property of modulo 2" is preserved
under ususl analytic operations.

Lemma 1.1: La
-3
Bi=Ryr. 2z, y,u®) = T n98Ry(r, 2,5, u%), 11K Kk
1

and f be a real analylic function defined in an neighbourhood of the origin.  Write
SR, ..., Rh) = '5.}' n22Ruy(r, x, y, ud)toln-u-33),
L]

If {Ry(r,z, 5. u®), 1 < j < 86—3), satisfy the properly of modulo 2 for each
$=1,..k, then s0 do {Roy(r, 2, y, 4%, 1 < j  8—3}.

Proof :  Sinco f can be expanded in a Taylor’s series and each term can
be considered scparately, it suffices to prove the lemma for the special case

Sy, ...,uk') =ty Uy

Fixa 3.1 € j € 8—3and fix a monomial Ry of Ryy(r, z, y, u?). This monomial
I obtained by multiplying some monomials, R:! (r, z, y, u?), of R‘,‘.
0

Let the powors of r in these ials be respectively @® and a,. Then
LE]
a* =E‘ a. o (L19)
Let the powers of 2, Y0 of these ials be respoctively denoted by

@', () and (3,0, b, @), I =1,...,p—2. Then

a'l) = E ayfl) ]
- I=1,..,p-2 e (120)
b)) =T 8,0
=1
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Now since {Rlr, z,y, u?)} enjoy the property of modulo 2, for each
i=1, ..., 43 one has

a

=t -2
= 2 oy Z byh mod 2.

By (1.20), one can then write
‘T ay =T o'W+ B b°l) mod2.
$=1 =1 =1
Equation (1.19) now implies that
P
@ =T o'+ T bW mod 2.
=) (=)

This shows that Ry satisfies the property of modulo 2. This complates the
proof of the lemma,

The next lemma shows that ‘“‘the odd-even property" is also proserved
under analytic operations.

Lemma 1.2: Let

Ry = Ry(r, z,y,ud) =Fum Rylroz, g, ud), 1 <0 K &y
1
and leb f be real analytic function defined in a neighbourhood of the origin, Wrils
-3
SRy, .. Ry ) = 3 04 By(r, 2, y, u?)+-o{n=4=/2).
e
If (Ry:1 < j < 8—3) enjoy the odd-even property for each i = 1,..., k, thes
8o do {Ryjfr, z,y,u%): 1 < j < 83}
Proof : As in Lemma 1.1, it suffices to prove the lemma when
Sy ey )) = vy sty uy

To this end, fix a j, 1 {j g s—3 and nate that any monomial o
Byy = Byylr, 2, y, u%) is obtained by multiplying some monomials {(of degree
k(j1), say) of R‘,‘('. z,y, 4%, 0 ¢ 8—3, where

Jotdrt...ties =13 e (180)
also the degree, r say, of this monomial of Ry will be givon by
r = k(jo)+ ...+ k(a_s). (18

The proof will be complete onoce we have established that whenever
JorJu -es Jes BT® mONnegative integers eatisfying (1.81) and whooever
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k{jo), -+, k(de_s) are nonnegative integers satisfying (1.23) below, r given by
(1.22) will be odd or even according aa j is odd or ovon.

Foreachi = 0,1, ..., 8—3, k(j) is odd or cven
according as j; is odd or even. .o (1.23)

Put A ={jljcisodd, 0& i+
B = {ji|js iseven, 0 j2—3}.
Then sinec £ ji is always even, one gets in view of (1.21),
ieB

the number of clements of A is odd or even

according as j is odd or even. o (1.24)
Sinco for each i € B, k(j) is even (by (1.23)), X k{ji) is always cven. On the

fen

other hand if i € A, £(j) is odd (by (1.23)) and so it follows from (1.24) that
X k(ji) is odd or even according as j is odd or even. Equation (1,22) then
icd

implics that r i3 odd or even according as j is odd or even. This complotes
the proof of the lemma,

It follows from that above lemma that the polynomials appearing in the
Edgeworth expansions of normalised sum of i.i.d. random variables enjoy the
odd-even property; see, in this connection, Lemma 7.1 of Bhattacharya and
Ranga Rao (1975) and Theorems 2, 3 of Bhattacharya and Ghesh (1978).

Theorem : Assume the above set up. Let nV¥U_ —p) and g, salisfy
conditions (A4,) and (A,) respectively. Let
P(MS) = ofn-te=a12), v (1.25)

Then () there exist nonnegative inlegers ky, ..., ke and conslants ayy such that
-2 K
P(W,eB)= X% n‘l/’{ Lay | x“(z:p+-‘)dz}+o(n-“*"2). e {1.28)
0 i=-0 B
uniformly over all Borel subset B of @y satisfying
sup [ x¥zipMdz=O0l), €—>0.
6@, (35
Here x3(z; p-i) is the densily b z of X
(b) The conclusion of (a) holds with W, replaced by IV, with the same choice
of (k) and {ay).
(e) Let

Jiu) = Roglr, 2,y u®), 1 5 < 8—3 (of. (1.1B)) . (1.28)
Al-14
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If (Riglr,z, 9,48 :5 > 0}, i = 1,3, both enjoy the odd-even properly, then
ay=0foralli, 0 j<kyjodd
(d) If Roglr, z,9,u%) : 5 > 0, i = 1,3 both enjoy the properly of modulo 2,
ay=0 forallj=1,..,8—3,iodd
Remark : The parts (c) and (d) implies that the asymptotic expansion
of W, will be in powers of n-! (instead of in powers of n-V2), and that the
coofficient of #~ (r » 1) will bo a finite linear combination of chi-squares
with degrees of freedom p, p+-2, p -4 etc. (instead of with degrees of freedom
2, p+1, p+2o0to.). 1t is, also, easy to verify that Theorem I1(b) of Chandrs
and Ghosh (1979) is a special case of the above theorom.

2. PROOF OF THEOREM
To prove the theorem, we need two technical lemmas.
Lomma 2.1: Let g, satisfy condition (Ay) and let (1.13) holds with geners-
lised polynomials fy(u). Then

- k.
oo, n(u)du =% "_”2{ £ ay [ X P—i-i)dz}+a(n“'*”2)- e 20
7 1(8) = -t B
uniformly over all Borel subsets of R}
Proof : Put
B,=g¢"BIN XM, . (29

and apply the transformation T given by (1.5); we then get in view of
(1.28) and (1.28)

J E'-l,n(u) du
92'(5)

= [ Rir,z.yu% 'i‘ n13Ry(r, z, y, udrd0dud +o(n-u-272), ... (23)
T(B.) o

where Rir, z, y, ud) = (2m)=*k2rp-1J(O)oxp{—§ (r+ L) . (34)
Henceforth we shall adopt the convention that
Ry(r,z,pu?)=1 ifj=0,33 L

We apply next the transformation 7* which sonds (r, 6, u?) to (¥ 6,6
where
¥ = g (P-ir, 0, w8 (r, 0, u%) € T(RW. - 38
In the following
ue M, and (r, 6, u%) e T(H,).
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In view of condition (d,)
03
(rPE= r’{ E n=F2R(r. x. y. u?)+-O(n-og ,,)u—lu:}
(']
fmplying that

r=r { '}_:: 2 I3 Rylr, 2, 4, u%) +0(n" log ,,)u—im}'
[

[Here and in tho following. we have used the fact that any real analytic
-3
function, defined in a neighbourhood of the origin, of £ a~$3Ry(r, z, y, u¥)
o
can again be expressed in the form

-3
L nd2 Ry(r, 2, y, ut)+o(n-ts-2/2+)
a4

uniformly in (r, 0, u?) ¢ T(M,) for any € > 0).

One can then show that
-3
r=r { X amiRfRylr, x y, u')+a(n-"""3*")} .. (2.8)
0

wniformly in (r, 6, u?) € T(M,).
[To verify (2.6), let ry = " and dofine inductively r( 5 as follows
Fion = r'—r,.,.'g a2 Ryry .. 2.y, u?) 05§ s—4.
One then verifies that l
r'—rin '%a nFER vy, .y 43) = rto(n~eBMY 0 i< 8—4,6> 0,

uniformly in (r. 0. u%) ¢ T(3 ). and that ry , 5 can be expressed, after neglecting
terms of order o(n=14—912), in the form

3
v 4r' L Rylr', x g, ud).
1
Plainly, Equation (2.6) holds.]
In viow of (1.18), {2.5) and {2.0) we get

ar

= ";z‘.' n=IARy(y', 2, y, ut)-o(n-t—3).
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Thus (2.3) can be written as
| Eoralu)du
Lt
= | E(v'. EX u'){ 'i' n11Ru(r, z, y, u’)}d/dOdu’+o(n-"""‘)_
™8, )
Now T'T(B,) = T'T(B) () T'T(M )
where B, = {(r.0,u¥) ¢ T'T(RY)|(r')%¢ B). e (28

Using Lemma 3.2, page 183 of Edwards (1973), one can show that T'T(},)
contains the set

(0

{(r. 0, uh|(r)® < dlog n— ; log 2, iu¥2 < d log n}. . {29)

Consequently, Equation (2.7) can be writton as
J §o-aaluddu
e

= [ R,z v u'){ ‘i’ n=i1R(r, 2, Y, u’)}dr’dl)du+o(n""”").
B ° e (210)

One new integrates with respect to (6, %) and obtains (2.1). This completes
the proof of Lemma 2.1.
Lemma 2.2 :

(a) { dluidu < 2 { ¥z pldz+o(n=11-33),
B,iB) B

where E (B) = ("M'-l.-(") € B}
and the o{n=~913) lerm does not depend on B.

(b) I $luydu < ) XNz Pz +o(n—-21), 0<e<],
to(En(Bn* (3By((20—3) log m)*1*

where the o{n—18—312) term does not depend on B or 6.

Proof : (s) The firat part of the proof is based on the arguments similar
to those givon in (2.3) through (2.10) of the proof of Lemma 2.1, with the
excoption that r’ is to be replaced by

7 = (he_y n(Tu))

Ono then integrates with respect to (0, u3) and ropeatedly uses the following
estimato
[ roxp(~ L-) dr = Oflog nY¥-'a=4n, 1> 0, > 0.
(tlog n)tn 2

(b) For notational convenionce, put
B(s) = (9B)* and 4, = ABE(B)).
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Note that for any » > 1,
4,C E,(@B).
Got an ny > 1 such that the Euclidean norm of the gradient of A,_,(u),
restricted to the sphere of radius ono around M no 18 less than
((26—3) log n)'"3 = g, say
Then if # > m,, 0 < & < 1, one has
(AN M, CE(B,)) A,

An appenl to the part (a) (with B replaced by B{¢,)) now cstablishes the part (b).

Proof of theorem : (n) The proof of Purt (a) is immediate from (1.25)
and Lemma 2.1 (with g, roplaced by ,_, ) and from the fact that n'3U, —x)
satisfies Condition (4,).

(b} It suffices to note that (i) for # > 0
(W8 " N Y, C (W, e By N M, C(W, e B"Y N M,

whero 8, = hn-a-on2
wnd (8" = Ufz| 8(z: 8,) C B):
Hero 8(z; 8,) is the sphere of radius 4, with centre z.

(ii) the relation

BB = @B)™

which is true in any motric space, every open sphere of wheh is connected.

The proofs of (o) and (d) now follows from Lomma 1.2 and (1.1) respectively.

3. COUNTER-EXAMPLES
Example 1: Let {Z}as be iid. two-dimensional veotors and let
ZY) and Z bo indopendont N(0, 1). Let
W, = n8(Z,), Zy=nt i:: z

where Hz) = fal*-+ ()l

Here Theorem 1(b) of Chandra and Ghosh (1970) is not applicable. As W,
has tho same distribution as that of

X04 Y2 4n- 1 X3 X2 Y
where X, ¥ aro iid. N(0, 1), it follows that our Thoorom ia applicable.
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Ezample 2: This examplo points out that in the part (c), ono nood
to bother about tho odd-even property.
Lot {Z,}an be iid. N(0. 1) on R and put
W, = n(Z)3) +n-13).

Then PW, <) = § X |)(|+-; (:=—|)n-"=)d:+o(n-"2)

o
30 that the coefficient of n-1/2 does not vanish.

Example 3: ‘This cxample points out that in the part (), onc needs
to consider for property of modula 2.
Let Z; be as in Example 1. Put
HE) = l® -+

Then the Fageworth exansion up to o{n~1) holds uniformly over all Borel
subset of 1t} but the coellicient of n=! i3 a finite linear combination of i, 3
and i
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