Sankhys : The Indian Journal of Statistics
1055, Volumo 48, Sorica B, Pt. . pp. 401426
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SUMMARY. This article propoxes & mavel approach to cstimation of o steohnatio
differential equation aystem in economics.  An algurithm is developed and opplied, along tho
linos uf Dvoretzky (1956) and ongincering practices, using discrole peint approximations. In
it the probability beenmuer exderly one (ruthor than ulmost onv) that the estimate tonda to the true

parameter value with increasing iterations.

1. INTRODUOTION

There scems to be a revival of interests in the continuous time econo-
metric models propounded by Koopmans (1850) and recommended by, for
instance, Phillips (1059), and Bergstrom (1966). Thig is clear from recent
economists’ efforts to fit stochastic differential equations to economie systems.
Different upproaches have been followed. One of thie approaches is that of
approximating the continuous model by a computationally simple form
preserving the linearity of the original model. Examples are Sargan’s (1974)
and Wymer's' (1972) work in both of which variables are in absolute form
but which differ in the degree of the differential equation. For it is a differen-
tial equation of the first degree in the endogenous variables in the first work,
while it is that of a general degree in the second work. Another approach
initinted by Phillips (1974, 803-19) replaces the continuous model by a dis-
crete one, which, in effect, is exact, based on Lagrangean interpolation of
exogenous variables between data points. However, the model is nonlinear
in parameters, not in variables® and the predetermined variables are, as in
Wyer (1972), in absolute form. The most recent approach is pioneered
by Robinson and exemplified in two of his very powerful papers (1976s) and

AMS (1984) eubjeet classification :  62P20.

Key words and phrascs :  Stochartic discrete equations i iona ‘sure gonce' s

1 The empirieal application of the theory {Wymer, 1072) was tho subject mattor of a lator
Peper by Wymer (1073).

* Phillips (1972) carlior cstimated o amall example of & stochastic dificrential cquation
syatom, non-linear in paramoter only, by an exact discreto methed without special emphasia on
tho exogenous variables. It whould bo added that the melhod of numerical differentiation used
In Phillips (1974) lias alao beon used by Borystrom and Wymer (1974) in their papor.
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(1976b). In thess a system of simultaneous linear differential equations
involving more than first degree differentinls in both the endogenous and,
which is remarkable, exogenous variables is replaced by a discrete approxi-
mation “that is more conveniently bandled in the frequency domain” by
means of Fourier transformations. The second paper, more specifically,
suggests a frequency-domain class of instrumental variables estimators for
all or parl of nn open system of linear differential equations with
computationally preferred proporties in those situntions where theso can be
used.

The purpose of this paper is to present yet another approach to estima-
tion of a stochastic differential couution system. We suggest a stochastic
approximation algorithm for a class of non-linear dynamical econometric
svstem. The non-lincarity?® is in variablest, not in parameters, unlike Phillips’
(1972, 1974) nonlincarity (in paramecters, not in variables). Discrete point
approximation of a very simple nature is tried including that commonly
used in economics, i.c.. differentials replaced by differences. Thus our
upproximations are similur to, although not exactly the same as those used
in, for instance, (Bergstrom. 1966, pp. 176; Wymer, 1972, 567-8; Phillips,
1972, pp. 1032)%. The virtue of our approximations is in their ability to
unfold the adaptive nature of economic systems. The algorithm proposed
(Section 2.1 and Scction 2.2) is one in which. as the number of itcrations
increases, under certain general conditions the probability becomes exactly
one (rather than alnost one) that the estimate tends to the true parameter

& The form of the nonlinear equation, preaonted in (1) below, is chosen on tho basis of
oxperience of the cconmmic system and may ba validated by nn equation or equations, conlaining
functions without porumetors, which constitute qualitative statonicnts about tho system to bv
identified. Given this form, the model structnre is fully known oxcept for a parmmneter vector
a s (@y. ..o, Gp, Ggaqe o0 G5)T, T baing tho transpose (se0 (7)), embedded in tho struoture. This
structure, 0 Linear in tors, is nonlinear in variables {sco oquation (6)). Tho non-
linaarity makes the transition back to tho original model (equation (1)) difficult, if not imposaiblo.
This explains why. after having derived tho approximation, no attompt is made in this papor
to go back o the original model.

Wheon hnwever, such a lack of attempt i not vindicatod and futuro resoarch can parhapa
improve tho situation, limited justification for it may still bo advanced in torma of those mueh
loms complox situations, 0.g.. linear (non-differential oguation) systoms, whero tronsition from
reduced form to the original structual equations i3 not possible and yot the reduced forms do
serve a number of usaful purposes.

¢ This kind of non Inearity in variablea ia like that used in Fishor {1961) in a non-differontial
equation contoxt.

® These refc i definite i is by disorote point values.
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valued At this point, the estimate is error free, thus no need arises for state-
ments on the variance of estimate to be made, variances being zero, unlike
usual cconometric practices. For instance, a small simulated example on
consumption (Section 2.3) shows that only 98 itcrations donc in 2.06 scconds
produccd purameter estimates with error as low ax 0:0000072, or virtually
nothing. This algorithm is a direct application of some stochastic convergenee
reaults of Dvoretzky (1056) ax exemplificd in the engincering literature in
especially the contributions of Ho and Lee (1965), Lee (1964), Sakrison (1967),
Caridis and Stein (1968) and DeFiguciredo and Netravalli (1970, 1971).

One important feature of our work is assuming measurement errors in
variables at the point of their actual caleulation. e at diserete points, given

by diserete random process characteristios. The form of these crrors is

arbitearily (though commonly)

gned liowever, These eerors arise from
discrepane
E

sume of the basie ingredients in. for instance, w model of capital accamula-

s hetween theoretical concepts and their representitive measures.

imples of these concepts way be capital, income, profit rate, money -

tion. money, and growth in the dynamic context. Memory s still perhaps
not hazy about n fieree capital controversy initiated by the Cinnbridge school
which went on for guite sometime in one of the most rceent pasts of our
ceonomic thinking.

2. THE MODELS

2.0, The stmplest model with one endogenous, one exoyenous, and one
rrror variable and a gencral order dynamics. Constder a non-linear recursive
economic

vstem characterized by an endogenoux variable @, an exogenous
variable z, a random input # and an s-th order dynumics of the form :

der _ .(1 dx

e o P e (Y

all the variubles x, 2 and @ referring to a time point k to be denoted by a(k),
2(k) and @(k). The cloice of the form of f, as indicated in footnote 3 of the

@ A ward of caution must ba sounded herr,  The canvorgenee takes no account of possiblo
diserete approximntion biag, which will gencrally nat vanish however largo the number of itera-
tions miicht ho. But the extunt of suel bins will be -imilar to that obtnined by, for instance,
Wymer. Stnee Wymor (1972) i his puprr discusees thic in dotail, wo leave st out here.

Ttix perhaps interusting (o add that bawd on diserete approximation, the  catimates may
not b conwistent for uny rexidual process but they iy ho perfurrsd because there inay not bo

any renson o take ‘pure noise’ sufficiently seriously to justify (he added cost of estimating the
soxuct’ mudel.
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introduction, is fixed and given by qualitative characteristics of the system,
but its structure does depend on parameters a’s to be explained below. b is
the coefficient for Z. Using discrete opproximations to the differentinls
geverating the new variables y,z and « and the new coefficient b for b, we
have the approximate’ model :

0:17 0
g1y = | .00 YA | e o ®
aT bz(k)+ (k)
where y is a column veetor of S elements, 0 o null column vector of S—1
elements, / an identity matrix of size S—1, a7 is a row vector of § clements,

T being the symbol of transpose, 3(k) and «(k) are scalars, and ¢ a coluren
vector of S I's. and

, (s+1 (s+2 s+p—1
S=st () (e v ) ®)
yRY = OMR) galk), o R, gt R, L ST )
b= (b, by .y b, Deay, ooy be)T o (3)
Plyk)) = aTo(y(k) (= aTy(k))
— T WS % a0l G )
=1 fy=1iget U7
AN G ip X
+---+,l{l t::l ‘,,Ex Uyt ¥ )y PUR) e (6)
@ =(ay, ..., Qs, Ay, Uy ooy Assy oony Qypeny, Upyonqy ony Agsees)T
= (uy, ..., @5, Ay, ..., 05)T e ()
Plytk)) = ylk) = (Y'(R), ..., y3(R), Y (RN, ... A (R)YA(R).
PR Yk, L ysR) L sRNT. .. (8
R [ o

p tines P times

What was a gencral nonlinearity f( ) in the differentials has been replaced
by that of a specific class, that is, a polynomial ¥ in equivalent discrete time

7 See Appondix A for dotails, and for tho rolationship between « and y at discrote points.
Note that non-linearity incronses the number of discroto points ovor lincerity. For example,
in our mothod the number of such points is § (sco (3) ebove), which is larger than the number &
to bo used in a lincer situation such a8 Do Figuoiredo and Netravalli (1070). Howover, it
remains truo that the firat 8 points are the most crucial.
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observations y(k)*® involving the parameters a’s. This will be more clear
below.

Assumeo scalar linear measurements of endogenous variables y(k) and
exogenoud variables z(k) subject to errors »(k) and (k) :

Y(k) = hTy(k) = (00 ... 1)y(k) e (9)
Y(k) = Y (k)+-v(k) e (10
Z(k) = z(k)+{(k). e (1)

The model in the discrete approximation form can now be interpreted
as follows. It is assumed that the transformed system is forced by a control
function 2(k), & =0, 1,..., which is a somple realization of a stationary sto-
chastic process and by the disturbance u(k), ¥ =0, 1, ..., a similar process.
The system dynamics characterized by the matrix

["’}

is assumed stable and the initial state reaction in y is assumed to have
subsided before estimation beings. Thus y(k), k=0, 1, ..., is also 2 semple
function of a stationary process. The measurements used for estimation are
Y(i) and Z(k), k = 0, 1, ..., the noise contaminated system output and input

4§ Fur this particalar roplaccment, tha systom (2)—(8) has a property : $(w+y) =
) - xte)gln)
for all i and adinissible values of y, when the clements of tho S-voctor £(w) and the coefficionta
of the $% 8 matrix x(r) depend only on w (and not on y). (Once the veotor ¢ is chosen, theso
clement~ nnd corMicien(s becomo known functions of ie). Tt can b cosily proved that with @ (y (%))
as dofined in (3, which follows from tho represontation of Y (y(k)) by o figito number of terms
of the Taylor Series expansion of Y{y(k)) around y(k) <= 0. the systom (2)— (8) possesses the above

property.  An alternative spproximation would be by projecti of Yiy(k)) into a subspace of
its space.
© Tnstend of the typical ropwxan!n’-lonofy(j(k))usm (8) with ¢(y(k}) asin (8). ono might
bave a repreventation by trig ic polynomials in the variobles y(k), i.o.,
Uyky = aTPlylk))
a - {ayay ... as)T

SR — (sin y(k), cos y(k), . ., sin Sy(k). cos Sy(k)T.

Tho detailed treptment givon to (2)—(8) would equally spply to tho systom based on the above
substitutions. However this would invulve tho lengthy use of somo standard trigonometrio
relationy. The intorested roader may find sorme useful hints in (Netravalli and Do Figueiredo,
1971) in conucction with a aimploer situation.

19 For this, what is required is a 8ot of characteristic roots of tho matrix that lie within the
unit ciralo. For more on stability of tho conti ond discrete imation modols, soe
Appondix B.
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ag it were. We can assume, though without loss of generality, that the
structure of (2) involving y(k+1), y(k) and z(k) is controllable and that involy-
ing y(k+1), y(k) and Y(k) is observable.!! We further assumo :

(i)2(k)'%, u(k), v(k) and {(k) ere mutually independent sequences of
statistically independent random variables. u(k), (k) and (k) are random
noise eloments with variances o3, o2, and o2 and means given by E(us(k))t = ay;
B(o!(k)) = Bi; E(L(k)) = 0; k. ieJ. 1

(i) Ay = inf|Ag,s4| >0

whero Ag,s_y is the minimum characteristic root of

E(CykyT W) fylk—1) = g)+ HE(ZZT)HT | HE(7¢7¢T)

E(ZchT)HT E(ZeZeTy
for any £, where Z¢ is defined in (16) below and C and H are the cocllicient
matrices of y(k) and Z¢ in the reduction or expansion of ¥¢ (see (16)).14:1%

(iii) The means Bk (= 7), E(uS(h)(= ), and E@k)) (=) arc
known!®, and second, thicd, and fourth moments of z(k), wu(k), (k) and (k)
aro finite.

The following lemma will be immediately useful.

Lemma 1 : The syslem as specified by (2) and (9) is equivalent lo the follow-
ing difference cquation :

Fh+8)—asYh+S—1)—...—a, F(})
= bla(k+ S—1)+b3_z(k+8—2)+... +blz(k)
+duk+S—1)+d§_u(k+S—2)+...+du(k) .o (12)

1 For moro on tho controllubility aml observability of system structures, sco Ho and Loo
1965, 93-110).

12 Even though zis n random variable, ita depend: on k| a 80qt of

random varinbles.

13 J is tho sot of non-negative integors.

14 For more hinta on € and I, seo footnoto 21 and Appondix C. Tho dotailed structure of
thoso matrices ia vory cambersoroo. Also it in not diroctly neoded in tins paper. So we loave
it out horo, ovon though ono can casily work it out. Notico that Axsumption (i) validates the
uso of tho convergenco rosults.

18 This rosomblos requiring tho undorlying matrix of Phillipa’ [1972, 1025-8] Minimum
Distanco Eetimators to have tho smallest charactoristic root with a positive sign.

4 The essumption that tho mean values aro known is porhaps no moro unroasonsblo than
tho ono that thoy aro zoro used in many oconometric contoxts.



NONLINEAR DYNAMICAL ECONOMETRIC SYSTEM 407

where 5 = Tb;

e=T11..NH%5
’—0 0 0 0 .. 0 a; 0
a, a ]

T =
. (19)

a a @ .. agy as3 0
a a; a; a; ... asy as, O
0 0 0 0 0 0 1

Proof: Since T~ _
T() = (0 0... 0 1)y(1y”

50 yS(k) = Y(k).
+ [
bz

(UH
y
Thus Y B asySE) = T4 1)—bsal)— (k)
in which y's (i = 1, 2, ..., S) represent the successive eloments of the ¢ vector
(sce (8) and S is as in (3)).
Similarly, ¥(k42) can be expressed as follows :
as{ay' (k) +... +asyS(E)+ (@, (k) +... +asy5 (k)
= Y(k+2)—(ady+...+ashs)(k)—bsz(k+1)— (@, +... +ashu(R)—u(k+41).
As for ¥(k+3), after some manipulations we get
0 = Y(k+3)—asY (k+2)—as, Y (k+1)—bsz(k+2)—(ady+... +as_ibs_y)
Xalb+1)—(aybyt ...+ a5_obs_y)a(k)—ulk+ D) (... Fa5y)
Xl 1) = (@ e 05 ()~ (@A) + ..+ 05pySTR)).
Thus, finally, after an overwhelming amount of tedious algebra, we get
Y+ 8)—asY(k4+8—1)—...—a, Y (k)
= bsla(k+8—1)—ase(k+8—2)—...—az(k)]+(arby+... +asbs)
Xz(k48—2)4...+(abs o+ ... +abs)e(k+1)+(abs s Fabs)a(k)
+ulk+S—1)—asu(k+S—2)—...—azu(k)]+(a,+...+as)u(k+5—2)
+.HaFagta)uk+1)Ha,+agdulk). o (14)

37 Tho proof that follows is & nonlinoar oxtension of the lincar caso aa trented by Loa (1064,
$0.3).

Now Ye+1)=(00... 1){[
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From above, wo have

B = bs

B, = —bsas+(ab,+...+asbs)

V-2 = —bsas_y+(edyt...+assbs)

"1 = —bstt(abs_rtabs)
d=1

dy_| = —as+(a+...+as)

a3z = —asH ot +as)

L8 = —ayta+a)

which can bo cast in the matrix form (13). Thus is equation (12) derived
from (14) using (13). QE.D.

The main theme of this note is then presented in the following theorem :

Theorem :  Under the condition and assumplions of this section, the slochas-

tic approximation algorithm for the recursive estimation of the parameter vector
0T = [aTh]) . (15)

18 as given in (26). The parameler estimales provided by this algorithm are
such that with probability one, these converge asymplotically to the true values,
and the mean square error of eslimales converges o zero.’®

Proof : Defino
278 —1) & [2(k), ..., 2(k+8—1)]
Tkt S—1) £ (X(E), ..., Y(k-+S—1), 2(k), ..., 2(k+8—1)]
VI(kt-S—1) = [VI(k+8—1) ; VI(E+S—1)] = [o(k) ..., o(k+S—1);
LR, oo, YRHS—1)] . (16)

Ukt S—1) = [u(k), ..., u(k+5—1)]
WE(Ek+8—1) = [T (k+S—1)+ VT(k+5—1))

= [Y(k), ..., Y{E+S—1); Z(R), ..., Z(k+S—1)].

1 §o0 footnoto 8 for soino caveat.
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Then, from (10) and (12), solve for Y(k+S) thus:

F(h48) = F(k+S—1)04 UT(kd-S—1)d° e (7
Y(E+S) = WT(k+S—1)0+9(k+S) ... (18)
where®
Yh+8) = t{k+8)— WIR+S—1)0+ UTE+S—1). ... (19)
For a stochastio approximation algorithm, ono may minimize tho criterion :
E(pik+S)? = E(Y(k4S)—WT(k+S—1)0) . (20)
with respect to 0 and build tho estimated gradient
@ = W(k+4S—=1)Y(k+8)— W(k4+S—1)¥7(k+S—1)§
into the algorithm such that for the linear regression function
E[0]0E—1)] = gldk—1)).
The root occurs at f(k—1) = 0. These considerations lead to certain specifie
measurements for Y(k+8) and W (k+S—1), all of which are implied (in tho
present case) in G and then in the algorithm, These measurcments® are
given by :

and E(Y(k+9)) = E(lylk+S—1)))+ay+p+bst e (21)
Ye(k4S—1) = A*y(k+S—1)+(Vy(k+S—1)) . (22)
whers _ _
A o 0
=4y & .. 0 o (23)
A, Ay . &,
and - -

Ayis an identity matrix of sizo (‘+“;._l)x(‘+;~l) for 1<j<p;

and 1‘1';, isa (‘H—;_l) X (H-'G—l) matrix with either zero or measurement

1,(k + 5) bolow has the following statistical proporties 1

E(g()) =0 i=012..
itH i—j 8

o= {9 I SE

EWG-1) () # 0 im2

1 Tho underlying ealculntiona aro based on on extonsion of Do Figuoiredo and Notravalli
(1930, 204.5) and Notravalli and Do Figuoiredo (1071, 20-30). Soo Appondix O for somo hints,

B 3-156
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noiss components (¥8) as its torms. Typically, a term, for instance,
of A3 of A*is

2Vik+S—1) 0 e 0.0
Vik+8—1) Pik+S—-1) ..o0..0

: : . . (24)
0 2P3(k+S5—1) .0 ..

0 . e v e 2VARFS—1)

It is assumed for the sake of the convergence proof that
(iv) E(4*) is o known and constant nonsingular matrix, and
E(4} A},) are known constants for relevant ¢, j, £ and 1.
The algorithm? is given below, with 8(k—1) the estimate of 0 at the (k—1)-th
stage, and p a sequenco of non-negative numbers :

c—1
Bkt) = dk—1)+p (ﬁTl) (PR S=1)[ ¥ (k- 8)— W (4 S—1)8(k—1))
e (25)
for k=1, 842, 2s+3, ..., which spacing ensures the uncorrelatedness of the
disturbance terms, It is assumed that :

® £ ptj) = eo

?P’U) <o

again for the sake of the convergence proof. This algorithm may be shown
to converge to tho minimizing value 8 of E(y(k+S))? of (20). But § will not

23 Tho algorithm (w0 (25) above) says that tho ostimato of tho veetor 8 at timo k+8 based
on tho rocoipt of tho new information Y (k+S) has two parta: (i) tho old catimato at timo (k—1);

Y i factor proportional to the diffe DLotwoon the actual mensurement

Y(k+8) and tho estimnted measuromont 1W¥(k+S—1) f(k—1) based on tho old cstimato. Sinco
the residuo botween tho actual and prodicted measuroments arises from tho orrors of estimate
k—1) TV o
and also from the random terma u(f), the part (p('+ll) ) can he takon to bo a weighting
factor which fairty apreads tho residuo in lino with tho confidenca ono places on it. tSce pagoe 15
for moro on p. An altornative way to look at (25) abovo is Lo consider it as a gradient schemo
which goos in tho dircction of minimizing the §; catimation error of tho measuremont.
Noto that (26) has @ built into it which includes measuring v by Y(k-8) : equation (21), and
Wk+8—1) by Ye(l:+8—1}+ (10) and (22).
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be unbiased for 0. For an unbiased estimator ono obtains the following
algorithm, % (tho dimensions, Sx S, 28x28, SXI1, or 28x1, of somo
matrices or vectors are shown below their symbols andjor signs) :

Bk +2) = Bk—1)+p (’;_;_:){ Wik 4 S—1)[ ¥(k+8)— WT{k+S—1)(k—1))

i Oaxs ot Dd°
Sreveeeennn ] Bk—1)— [ ............ :| } . (26)
N B PYSEN Osx1 29x1

(27)
and
0 0 0 0..00
1 0 0 0..00
s
Ty 1 0 0..00
s S-1 s
D=|agsZ o+ Z o T 1 0..00
3 Sa1 S-3 sS4 s
{lasy+ad) Zayt+asZe+ E a) {asEeq+Za) Zaq 1..00
- Co Il
.- (28)
where
7 = (2t o5t agasy+af)+aas o+ 2as0s+ad)
s
+aglos_g+2a5_sa5+3a} sas+ab y +ai+. NE a
3-1
+(as+ao"s+"x(“3+as-1)+as(¢s.x+2as¢s_,+n§+...) Y
8-(8-9
4.+ Z an
This [s an ion of the algorithm doveloped by Saridis and Stein (1868, 522.3) in the

lincar caso. Soo Appondix O for sorno hints.
BFor tho praoticability of this algorithm from the point of view of economio data availa.
bility, sco footnoto 27 to follow.
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Specifically, tho matrix D arises as tho cocflicient of U(k+4S—1) in tho
expansion® of WW(k+S—1). Its structuro is triangular, bounded on one
side by a hypotenuse of unitics. Crucial in this structure aro tho elements
of the first column. Thero is a simplo rulo to obtain theso clements however.
Tor instanco, the element in a particular position is obtained by successively
multiplying by as, as_y, ... the elements preceding it but below tho clement
of unity, adding theso results, and finally adding to this sum tho sum total
of a number of a’s. Tho number of these a's is tho maximum S less the number

3
of positions the particular element is below the T aq position. For example,
1

tho fifth element is obtained by multiplying tho fourth and the third clements
by as and ags_, respectively, adding theso products and finally adding to

S5-2
them X @, & sum of a's equal in number to S minus 2 which is the number
of positions the fifth element is below tho third element. The third element

s

is X ap.B

¢ is & simplo extension of Saridis and Stein (1068, 62-3) to show that
the conditions required for n convergence proof of Dvoretzky (1056, Sec. 8)
are satisfied for the algorithm in (26). Thus

E[G[‘i (S+1)]-0]2>0

— o

and Pr{ 0 [S+D]=0}=1
9w

2.9. The generalized model with many variables and general order dynamics.
The analoguo of (2) in the caso of m endogenous variables and n esogenous
varigbles is :

0 T
m(S—T)xm + m{—1)xm(§—1) 0
Yt ) = e e | W8 T

3.
mxmmx Xm mxXm

(An examplo:f this structure in tho purely linear caso is to be found in equa-
tion (2) of Wymer, 1972). A’s are tho analogues of a’s of (2), even tho.ugh
they are now matrices. They jointly signify dynamic simultancity. B is &

A4 ono expands T¥(k+S—1) thoro will b two olher coofficiont matrices, ono, 1.0, C which
is the coofficiont of y(k) and tho other, i.0., I of Z&(k+S—1), both of which con bo casily ealoula.
tod justas D. An exact knowledgo of thess eoofficionts will not bo nceded except when ono wonts
to 800 if Dvorotzhy's (1050, Soction 8) conditions hold for the convergonco of the algorithm. BSeo
eapocially tho last paragraph of this soction for moro on the convorgonco.

240n the whelo, once tho olomonta of the first colurn of D are obtained, thoso of tho othor
columas are derived vory casily as shown in the body of D itsclf. .
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matrix of dimension mSxn. Tho dimensions, e.g., m(S—1)xm of the other
matrices or vectors are shown below their symbols. ¢ is a column vector
of mS clements.

Tho algorithm of (26) can bo suitably modified to incorporats the abovo
changes in the scope of tho problem. 8 will be of dimension (mS+nS)xm;

otl, 0
17 of dimension (mS+4nS)x 1; Y of di ion 1Xm; [ ¥ :I ofdi

0 okl
(mS+nS) X (nS+nS); D* of mSxmS; and d of mSxm. Tho last follows
from the dimension mSxmS of T and mSXx m of d (for d® = Td). Finally tho
0 matrix under of Dd® will havo tho dimension #SXm.

2.3. Testing of the algorithm on a simple simulated case. Wo shall con-
clude this articlo by a simplo test of the algorithm presented in equation (26).
We shall assume no exogenous variablo in the approximate model equation (2).
Tho value of s will bo assumed to be 2. Thus 8, which is equal to
a+(“;l)+...+("+p_l), will bo 5. As a result of these simplifications,
oquation (26) will reduco to

Oik+2) = B(k—1)+p ("%’) (kA Y(kA-5)— WT(kt 4)0(k—1))
+0310(k—1)—03Ddo)

where k=1,4,7,10,....

In above, WW(k+4) is a column vector of elements Y(k), Y(k+1), ...,
Y(k+-4); WT(k44) is the transposs of W(k+4); I is an identity matrix of
sizo 5X6; d° i3 o column vector of clements a,, a,+ay, a+ayta,,
a,+a,+ay,4a,, and 1; and D is a matrix of elements as follows :

0 0 0 0 0
1 0 0 0 0
B
Ty 1 0 0 0
D=
1] 4 1
agLy+I oy Lo 1 0 0
1 1 1
5 3 3 5 ] 5
(e ta) Say+agXa+Bay agley+Ee Loy 1 0
1 1 1 1 1 1

2 Tho atructuro of D will chango in the following ways: The singlo olomonta O's and 1's
will respoctivoly bo 0 matrices and 1 (idontity) matrices ; and a's will bo the various A matrices
Similor matrix implications apply to the matrix T' whoso now dimension is discussod bolow.
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From (9) and (10), Y(k) is obtained from y(k) by the relation
Yky=( 0 0 0 My
and Y(k) = Y(k)+o(k).
Thus tho last element of y(k) becomes the effective obscrvation on Y(k).
Due to this, from (2),
Y(k+1) = ay (k) ey k) +agly )P+ a,ly (R (R aglya (k)24 (k)
= Yy(k)+ulk)

and, iteratively, wo get other values, o.g., Y(k-+2), Y(k+3), ... from similar
rclations.??

In the simulation experiment, we proceed as follows: We choose -6, 4,
*4, =2, 25 for the actual values of a's in 0 = (a, a, a, 2, a;)T. Given theso,
and using the normal probability table, we can find out actual values of ¥(k)'s
from, for instance, the following relation

Pik+1) = Yly(k)+a+Noy

where N (= 1-06) has been chosen to be the 5%, probability point of the normal
variable.?*  Of course, wo need knowledge about y'(k) and y(k), & (= E(u(k)),
@y (= v/V(u(F)), and v{k) before P(%+1) and then Y(k4-1) can bo determined.
For this we assume :

Y= 2133

yk)y = 2134
a = —002
V(u(k)) = 002
v(k)= 026

Vo)) = 033

We have borrowed #'(k) and y*(k) from Phillips’ (1073, p. 1038) sample data
on consumption colculated as the mathematical expeetation (for the

77 Tt should bo clear that the algorithm needs only o limited nunbor of basio observations
liko y}{k) and y(k) based on which any number of ¥ (k1) for various values of k may bo obtained.
Such ohservationa aa y!(k) and y2(k) aro ordinarily availablo from cconomio timo scrics so that
dota availability ehowld not bo any bigger problem for the algorithm than for any other econ-
omotrio cstimation methad.

2% Wo havo tricd 30 other points of tho standard normal orror variablo N randomly chosen
from paga 484 of Randam Normal Numbers of tho Chemical Rubbor Company Handbook of
Tablea for Probubility and Statistics, (2nd Ed.) edited by W, H. Boyer, Tho results aro briofly
reported in footnoto 30,
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equilibrium consumption lovel) of the first twenty five and tho sccond
twnety five observations respectively, scaled by tho factor 10-? for computa-
tional convenicnees. Tho other assumed data, although arbitrarily chosen,
bear some resemblanco with those used by Saridis and Stein (1008, p. 518)
and Neteavalli and DeFigueiredo (1071, p. 331). Noto that a knowledgo of
o (= V(u(k)) is nceded to completo computation of the algorithm.

Going back to tho algorithm, we como across the weighting factor

P G‘%l) This con bo replaced by an objective and appropriate matrix
P(k+s5) given recursively by
P(k+38) = P(k—1)—P(k—1)W(k+S—1)

X {WT(k+S—1)P(k—1)I (k4 S—1)41)!

X WT(k+S=1)P(k—1).
This represents a version of the least squares estimator given in Lee (1064,
49-59). It has been proved (Ho, 1963, 152-154) that P(k) behaves asympto-
tically as 1k, Thercfore, assumption (v) is fulfilled in the limit and con-
vergence of the algorithm can still bo achieved in this Jeast squares caso.

o.u0 e
X1 ne nr »a Wy .0 " CX ) Ly e

Fig. 1.

The computational work for the algorithm was dono on tho IBM 360 of
the University of Waterloo. The initial estimates #(0) for k=1 wero tho
simplo least squares cstimates based on 50 simulated observations generated
from tho actunl parameter values stated before. It took only 206 scconds
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with 08 iterations beforo the algorithmic estimates converged to the actual
parameter values with the associated error as low and negligible as 0-0000072.
The path of convergence is shown in the accompanying graph of plotted
points (Figure 1) whero errors (defined as maximum absoluto differences
between exact and computed parameter values) are shown along tho vertical
axis and. the number of iterations along the horizontal axis.®

The success of the algorithm as revealed from the empirical test above
should not mislead one into believing that the timo taken would always be
the small. Indeed, with multiple exogenous variables introduced into a
network of recursive relationships involving multiple endogenous variables
such as thoso that might bo relevant in some economic contexts, tho timo
taken might bo more than tho 2:06 seconds of the abovo limited example.
For it is sometimes contended that the convergenco of stochastio algorithms
is generally not as fast as one would want it to be.¥® But one should not
forget that the limiting algorithm is error proof for practical purposcs. Thus
even if it mey take somewhat longer, it can perhaps bo tolerated. However
there aro ways by which the computational time can be reduced.

One i3 by suitably choosing the initial parameter cstimates; others may
be by suitably clhoosing the variables so the associated measurement errors
are not large, and 8o on. Extensive research is needed on these and other
aspects of the algorithms in rclation to economic problems.

3. CoxcLusioN

The paper has been on the “Sure” convergence algorithm. It has deve-
loped that both theoretically and, within the limits of the simulated example,
empirically, Due to its recursive nature it is capablo of gencrating duta to
feed ony number of iterations, given even 2 very limited number of initial
data. In the simulated example, only two initial (time-scrics) y values (sco
- 14 for values of y'(k) and 32(k)) were used. Yet theso two made possible

29 The relationship of orrors to sclected numbers of iteration is to bo found in Table 1 to
follow.

%9 Ag mentioned in footnote 28, wo havo tricd 30 other values for N, the standard normal
error variablo, defined in pago 14, chosen from Random Normal Numbora Tablo. We like
to report hore only the broad results. For values of N ranging botweon —2.098 and
0.464, tho maximum absoluto error or differenco betweon actual and computed paramotor values
ranged belween losa than 0.0002 and 0.0005 at 2,000 iterations requiring on the averago five
eaconds of computational ¢ime. Thua the inereaso in tho numbor of iterations {ndicates that the
eonvorgenco process tends to bo slow. Howover, the computational time takon is still small. ’
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2,000 iterations of the algorithm as mentioned in footnote 30. Indeed
there could bo any larger number of itorations run for the sake of larger preci-
sion of results. Thus tho small samplo difficulty of cconomic problems is

TABLE 1. MANXDIUM ABSOLUTE DIFFERENCES BETWEEN ACTUAL
AND COMPUTED PARAMETER VALUES AT SELECTED ITERATIONS
FOR A VALUE OF THE STANDARD NORMAL ERROR
VARIABLE = 1.06

no. of itorations maxisnum sbsolute error
1 0.00283
10 0.00010
20 0.00018
30 0.00018
40 0.000120
80 0.000109
60 0.000081
70 0.000000
80 0.000038
00 0.000016
08 0.0000072

not a problem with this discrete-point algorithm, and since, as in engineering
applications, the algorithm has to be iterated until the error practically con-
verges to zero, and the algorithm under the given conditions surely converges,
there does not seem to be a need for a statement on variances of estimates
to bo made. Of course this does not mean that such & statement can not
be made but that that would take us beyond the scope of this paper.

Appendix
A. A represontation for (1) is obtained by having y, = 2 and writing (1)

as
Dy, = ra—y)eo+ Erafztadi)fay

Dy, = (ys—ya)ay+Eexf+diu)ecy
Dys-y = (ys—ys-ao+ (Bsade-+aia,
Dys = R(yy, Ya: - ¥, 2, W)l
where D = d/di, a, is constant, R is & function of its arguments such that it
conforms to (1), and tho relationship between 8 and 4 is as given in (3) of the
s a1 8+2 a+p—1 . .
toxt, i.e,, S = a+( 2 )+( 3 }+...+( p ) Tho problem is to deter
mine R. (The superscipted y's of the toxt aro replaced by the subserip-
ted y's to copo with the detailed use of symbols here).
B3-10

w (Ad)
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From (A.1), writo,
(D+ e —yafot, = Brefztaim)fa
(D+1lﬂo).'h“J:/“n = baZ+agila,
(D+1I%)ys-1—ysldn
aDys=R
..y ¥s ond get, because of D(Bz+E) =0, i=1,2

s oy S—1,
aiD(D+1]eg)* -y, =
Then

(Zs—l%z‘l'“%“)l%

Eliminate y,,

. (A2)
R = a§D%y,+{afD(D+1)x}5 -y — gD yy}
= —a3 fy, Dy, ooy DSy tafl2teafa
+{a3D(D+1/erg)S =1 —ag DS}y,

To express R in terms of ¥y, ys, ..., note from (A.1) that

Dy, = (y—y))ate+ i +afa)

Dy, = D{yyfer)—Dlth/ag) = (ys—yaMla§~ye—t)la}

= (yy—24+y)/ad etc., cte.

In general
=(E—1)/a, where F is tho advancing operator, i.e., Eyr = yx,,.
Then,
Dy, = (E—1)tlaty,
k
= o - _
= (U%){y:.“ ( . )y,,.|.,_,}, k=0,1,..,8-1
Hence,
-1 E—1 \5-
R=— —
f (yh ( % )!/1- (Bro3z+afa)ja, ( ) Yir oo (

)

+afpgztalut{(E—1)ES-1—(E—1)S}y,

=~ (o { 20 Y bt ( 222 ) (£

e yn-n
&

+bsz+"+{(s—l)ys— (i)ys-,+(§ )ys_,—...—(—l)sy,} e (A3)
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where _
aﬁb‘ =b,i=12..8
2=z
oS = u.
Vo have assumed in the toxt that the linearity of the function f is such
that (A.3) ultimately reduces to
R = aTy(R)+bsth)+u(k)

where 7' is tho symbol for transpose and a and y(k) aro as defined in (7) and
(8) respectively of the text.
To get differcnco equation approximation, replace the following value

at tho t-th timo point :
Dys(t)

by (sl + 1) =y}
in equation (A.1). This gives, in view of the equation in (A.1) for
k=12..8-1,
Yt 1) —y(t) = Yeal)—9alt)
or, Yr(t4+1) = Yelh)-

Thus, (A.1) leads to

A 0 1 0 .. 0 % bztu
Ys 0o 0 1 .. 0 Ys bztu
= +

Ys-y 0o 0 .. 0 1
ys 0 0 0 0 ys R
—_ = UL R I ) S —

whero the subscripts ¢4-1 and ¢ indicate the time points at which things are
recorded and
R = R4ys(t)

+bsztu
= Y+bstu
where 1/ ia as dofined in (6) of the test. Tho above may be cast into the form
of equation (2) of tho text at the point of time ¢ = k.
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B. Wo should perhaps expand on the stability point in relation to tho
continuous as well ag the discreto approximation models. The stability of
nonlinear differential and difference equations is & very complex matter and
cven if tho continuous modol is stable, it is not obvious that the discreto
approximation will be and vico versa. Iowever tho following observation
can be made which is applicable to our caso.

From our Appendix equation (A.1), with R = aTy+bZ+u, we have

-1 1 0. . 0 0 0
0o -1 1 . . 0 0 0
1
Dy=— U (1
V= v+ @
0 .o =1 1 0
bz
a .. . as_y as %ﬂu
1
=— Ay+F, say.
a

The approximating difference scheme replaces Dy by {y(t+1)—y(u))/e,. So
(i) gives
weED—y) _ 1
A =, AU )+-F
or
Y1) = (I+ Al a,F. e ()

The relationship between the stability of (i) and that of (ii) is now a question
of : Do tho eigen-values of 4 (in (i)) have negativo real parts ¢ And do
the eigen-values of T4 (in (ii)) lio within the unit circlo ?

But tho cigen-values of I4-4 are just “I--(eigen-values of 4)”. Henco
stability for (i) is assured if eigeavalues of 4 lie in tho unit circle “shifted
left by unity”.

Note, however, that if eigen-values associated with (i) are Ay, 2, ...y
(ile., these are the eigon-values of ““lo A“), then the eigen-valucs of “4" are

just @ghy, hy, ..., and, presumably, ¢, is small to justify the approximation

Dy= YD)~y
ay
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Hence, if A, Ay, ..., lie in left-half plane (so (i) is stable) and a, is sufficiently
small, the cigen-values of 4 (which are agd;, &ph,, ...) will lie in the shifted
circle, 8o (i) will be stablo too.

C. Equation (21) is established as follows :
B(Y(h+8)) = E(T(k+S)+o(k+8)]
= E[{00 ... N)y(k+8))+E(e(k+5))
= E{( Uty 5.1)+ba(kot- S—1)-Hu(k+-S—1)1+Eo(k-+8))
(using (2)~(8), especially (2) and (G))
= E(y(yr ) +DstHa+5y
(using assumption (ili)). Q.E.D.
Equation (22) is established as follows.

Tet,
{ = k+8—1
Ye(k4+S—1) = [Y(R) Y(k-+1)Y(k+S—1)] e (B
Vilk4-8—1) = [o(E)(k-+1) ... o(k+S—1)IT v (B2)
Q) =Y 0 ... O - (B3

Quly) = [MO) YOP0) .. POy O o (B4)

Qo) = (H(0- ) FLOPO- PO e 98050, T e (B)
P timea p timos P times
By referring to (4) and (6), we have
ylt) = [Qu(w) Qulys) ... QuluIT W (B.0)
= ). . (B)
Now Qi) is & ("'H.._l) x1 vector, 1 € i € p. Also refer to the dofinitions
of J,', and 3;, immcdinwly following equation (23) of the text.
From (B.1), (B.2) or (10) and (B.3), and (9) and (10), we have,

y(k) v(k)
AYC(R4-8—1)) = @, <((o 0..1) [ yk+1) j'+li o(k+1) ])
- yk+8—1) w(lbd-8—1)

= Q-+ S—1)+Q(Vy(k-+5—1)
= iy Quylk45—1)+Q(Vslk+8—1)
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(since A}, = I, which is an identity matrix of size :

(H-:—l )x( ’+ll_] ) = axa).
It should be clear now that
YOy = e+ 2vins o+ viovio
whero, for instanco, Y’ () is tho first observation on the vector Ye(i).

Similarly,

YO Y0 = 2O 04+ VY O+ VIR + VI Vi

YO Yl = P+ 2VIrO+ VIOVIE.
It follows from the above equations and from (8.3)-(8.6) that

QuYe()) = A3 Q1)+ A3 Quly) +Q, V()

where 43, is as given in (25) of the text. By an exactly similar procedure,
we derive

oY) = ,"3, X, 0y + UV,

for 2 < i & p, where J:, is a previously defined matrix with either zero or
measurement noise elements as its terms.  Generalization of the above result
produces equation (22) of the text. However, there ono must remember
that Ye(k+8—1) receives the samo vector representation as y(t) of (B.6) or
(4) and §(Vy(k+S—1)) as @(y;) of (B.7) or (8).

Lastly we consider tho bias of the estimate. The bias of estimate, from
(25), arises on account of non-vanishing values of
E{W(k+8—1)[Y(k+ S)—WT(k+S—1)d(k—1)]}
which, from (18), is equal to
E(1Vy)
writing, for instance, y(k+S) as y, W(k+S—1) as V.
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Now, from (16) and (10), and Assumption (i),

E(Wy) = E(Fo+ V)[o(k+S)— WT0+ UTdo))

o -
J 0+E(YeUTd),
1

Noxt, we express Y¢ in terms of y's, z's, and u's for the computation of
E(YeUTdo). In this expression, terms involving %’s and z's do not finally
matter because these variables and u’s aro independent by assumption and
thus the terms involving the expectation of these variables and «'s will vanish.
This being so0, we focus our attention on the component u's in the expansion
of Te.

Since
YE)=(00... 0 1)y(k).

yik) = Y(k). . (C))
Iyt ] }
oo | H2(A)Feu(k) 3.

a P (B) ... Fay k) = Y(k4+1)=ba(k)—u(k). . (C2)
Also from proof of Lemma 1, wo have
a5y (k)+(a,+ase)y k) 4.+ (af+as_y)yS(k)
= Y(k+2)—(ady +... +asbs)z(k)
—bsz(k+1)—(a,+...+ashu(k)—u(k+1). . (C3)

We can go on, similarly obtaining expressions for ¥(k+3), ..., and P(k+S—1),
and arrange theso ¥'s to form ¥¢ (k+S—1) as defined in (16) written as

50

Agpin, since

(0
Flk+1) =(00...01) {,:

Yyl

Yk
Pek4S—1)=| F4S—1)
Zek - S—1)

to be now expressed, after using (C.1), (C.2), (C.3), ..., ns

Cy(k)+112¢(k+S—1)+DU(k+S—1)
Ve 8—1) = rcerrecrcnnens 5 ¢(L+S— i') ..................
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where _
0 0 e
a ay e g
asa, ay+asay v a§tas_y
I A A
0 0 . 0
bs 0 we 0
g: by bs . 0
= -1
e abi+ I abiyy Tad l 0

and D, worked out relatively fully, is as shown in (28) of the text. (For a
mechanical rule of determining the elements of D, sce the paragraph follow-
ing (28)). Note that wo show only some of tho elements of the matrices €
and I7 for a basis as to how theso clements are computed, but not all elements,
since we do not nced them anyway. As mentioned before, terms involving C
and H drop out in the calculation of E(IVy) continued below,

atl 0 aiDd°
s [ 2 T [ 0]
10

which is equation (27). This is subtracted from the terms insido the second
brackets on the right hand side of (25) to produce equation (26). Tho adjust-
ment gets rid of the bias.
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