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EFFICIENCY OF ESTIMATES - PART I

By J. K. GHOSH
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SUMMARY. Tho papor providoa a partly expository, partly hi ical reviow of various
rosults ond techniquos in tho ares of asyinptotic efflviency. The following topics aro disoiazed.
Fisher's and LeCam’s inequality, Cramer-Rao incquality, Haick-Ynagaki convolution theoram,
local asymptotic minimaxity, ploti lity of p i pproxi Bayca chara-
oter of maxi likelihood osti and limiting oxpori

1. INTRODUCTION

The modern study of efficiency in estimation theory or what would
perhaps be called to-day first order asymptotic efficiency, began with the
seminal paper of LeCam (1053) and recached a more or less final form in
Héjele (1972), the only significant work after that being Millar's (1983) eluci-
dation and extension of some basic results of LeCam (1872). At about the
same time, various groups of workers—Akshira and Takeuchi (1976), Ghosh
and Subramanyam (1974), Efron (1975), Pfanzagl (1973, 1975)—began a
systematic study of higher order efficiency to discriminate between efficient
estimates. It was but natural that much attention would focus on the
pioneering work of Rao (1961, 1962, 1963). In the last ten years or so, this
theory too has reached a fairly definitive form, the most general results being
those of Bickel, Chibishov and Van Zwet (1981) and Bickel, Goetze and Van
Zwot (1984).

In at least two ways, then, this scems to be the right time to survey and
make clear to the general statistical world what has been achieved in these
areas. I shall attempt such a survey in a two purt article, addressed to the
general reader of our subjeot rather than the specialist. In the present paper
which ia Part I of the proposed survey, I shall be mainly concerned with the
classical work on (first order) efficiency, trying to present the main results
with a sketch of proof in most cases. Though no thorough review of the
subject has appenred so far, the excellent introduction in Hajek (1972).
Chapter 5 of Roussas (1972), parts of the first thirty pages or so of Pfanzagl
(1980), Ibragimov and Khasminski (1681) and Lehmenn (1983, Chapter 6).
contain partial reviews.
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Much of the work on officiency was prompted by an attempt to under-
stand how well the maximum likelihood estimate performs as 7 goes to
infinity. So we bogin the next section with a brief account of the maximum
likelihood estimate.

2. ASSUMPTIONS, NOTATIONS AND THY; MAXIMUM LIKELIHOOD ESTIMATE

One considers a sequence of i.i.d. random varizbles {X{} of which n are
observed. The common density is fo, for convenience we assume the para-
meter space @ is the whole real line . It is assumed, unless otherwise stated,
that the usunl regularity conditions! for existencu of a consistent solution of
the likelihood equation, vide Rao (1965), or Serfling (1980), hold. The usual
proofis of existence have a small gap but it is well-known that the gap can
be removed, vide Ghosh (1983). In most of the literature on efficiency it is
this consistent solution, denoted by 8,, which is called the maximum likelihood
estimate; this will be the convention here also. As everyone knows
vuf,—0) is asymptotically normal, AN(0, I-Y(0)) where I(0) is the Fisher

2
information E, {% } , assumed to be positive and finite. This property is often
o

referred to as the efficiency of the maximum likelihood estimates. We shall
examine in the next few sections how far this terminology is justified.

The symbol N(g,o®) will indicate both a normally distributed random
variable with mean z and variance o as well as its distribution function.

3. INEQUALITIES OF FISMER, LECAM aND CranaEer-Rao

Let 7, = T, (X,,..., X,) be an estimate of 0. A natural question to

ask is whether
ValT,—0) is A.N.(0, (6)) v 0 -

w(0) > I-Y0) % 6. v ()

If the answer were yes, one would be justified in calling J, efficient in
the class of all estimates satisfying (1). Unfortunately, as everyono knows
today the following famous example due to Hodges, vide LeCam (1953) shows
the answer is no under the conditions assumed in Section 2: Choose 0,

and Jot;
{ gu if |gn_’00| > g{n)
T, =

0 i |8,—6| <gn)

whero g(n) & 0 but n¥¥g(n) - 0 (e.g. g{n) = »~14). Then (1) holds with
o) = I-40) if 0 # 6, and v(f,) = 0. So not only is (2) violated but it is

entails

*Theso imply among other things that 8,+h/y/n is contiguous to 6, vide Hajok (1072). -
A3
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clear that subject only to (1) the lower bound to v(0) at any 0, must be zero,
On the other hand LeCam (1953) proved the remarkable result that (1) does
entail v(6) > I-'(6) almost everywhere (with respect to the Lebesgue measure).
I shall refer to this as LeCam’s inequality. If the stronger result (2) holds,
T, will be said to satisfy Fisher's inequality, in honour of Fisher whose pioncer-
ing arguments were the basis of expeoting (2).

The fifties and sixties were full of different attempts to get round the
Hodges example. This was done either by putting more conditions on the
estimates—Fisher consistency, Kallianpur and Rao (1955) or asymptotic
normality uniformly on compact sets, Rao (1963) etc.—or by permitting all
estimates (not necessarily with an asymptotic distribution) but evaluating
them in o different wny. The first approach will be reviewed in Section 4
and the second in Section 5. It was intuitively clear that the Hodges example
was pathological and both the sufficient conditions for (2) given jn Section 4
and local minimax criterion of Section 5 make clear mathematically what
are the desirable things that the Hodges estimate lacks.

Most of us have been brought up on the tradition that TFisher's inequality
(2) is a plausible even though not rigorous consequence of the Cramer-Rao
{which should perhaps be called Cramer-Frechet-Rao since Frechet was an
independent discoverer). Historically however it wasn’t so, the Cramer-Rao
being a relative late comer as a small sample analogue of (2). Indeed Fisher
had a proof, which is satisfactory even by modern standards, for the estimates
which are now called M-estimates. In fact both the inequality (2) and the
essence of its proof for M-estimates can be traced even further hack to
Edgeworth; Pratt (1976) provides a well-documented study of the pioneering
efforts of these giants.

Even retrospectively the Cramer-Rao doesn’t seem well adapted to prove
(2). Let us sce why. To derive (2) rigorously from

var(y'm(Tm—0)) > (1-+b;,(0)31(0) - @

one has to assume two things: (A) the limit of variance of +/n(T,—0) is
the same as the variance v(0) of the asymptotic distribution and (B) by — 0:
Both (A) and (B), particularly (B), are unpleasant assumptions with nothing
but muthematical convenience in their favour and both would be rather
hard to oheck for the common estimates. Walker (1063) provides a sufficient
condition for (4) which involves, roughly speaking, the finiteness of the
(2+8)-th moment of +/n(T,—8) for all #; the proof seems to require more—
that the integrals bo bounded by a fixed constant for all n». This stronger
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condition is of course woll-known to be sufficient for (A). Incidentally, as
pointed out by Walker, for F, = N(0, 1), the Hodges example satisfies (A)
but violates (B), confirming onc’s suspicion that (B) is the more serious res-
triction. For all these reasons the sufficient conditions to be presented in

the next section turn out to be of an altogether different kind and thoir justifi-
cation will not invoke (3).

In the other direction, one can, following Pratt (1976), base a proof of
the Cramer-Rao on Fisher's inequality. Without loss of generality we
consider the unbiased case, i.0., by = 0. Suppose, then, [y satisfies regularity
conditions as explained in Section 2 and Ty, is unbiased, vary(Tm) < o0 3+ 0
aod E,|T'|? is bounded on compacts. Under these condtions let me prove
(3). Let mn=14dm and T, = kYTr(X,, ..., Xm)4 oo+ Tl X mirs - X0
Then by the Borry-Esseen theorem, 1/n(T,—0) is A.N.(0, m vary(Tpm)) uni-
formly on compacts. By Raa’s theorem, vide Section 4, Fisher's inequality
holds for v(#) = m vary(Ty) which is just (3).

There is an interesting heuristic proof of (2) which is, by tradition attri-
buted to Fisher (but Pratt (1976) apparently doesn’t think so). It goes as
follows. Let 17',,(0) be the Fisher information contained in the marginal
distribution of 7',. Fisher had proved as everyone knows, 1, 0) € nl(6),

nl being the total information in the sample. Observe that if Y is N(8, 09
then Iy(0) = al" and so (1) suitably strengthened should imply Iy, is approxi-
mately TZ) Hence (2) follows from 11‘,. & nl. This argument is implicit
in Rao (1961) and forms the basis of his approach to efficiency and second
order efficiency in that paper.

4. SUFFICIENT CONDITIONS FOR FISHER'S INEQUALITY

The simpiest sufficient condition for (2)—multinomial probability and
smooth Fisher consistent estimates—could have been due to Fisher but is
actually due to Kallinnpur and Rao (1966). The proof is so beautifully simple
that it can be included in undergraduate courses. I can’t resist sketching
the argument for those who have not seen it before. Let X take k posaible
values with probebility m(6), ..., mk(6). A sufficient statistic based on
X,...X, is (p}, ..., p}) whero p} is the proportion of the j-th value among

E .
5. X, .., X,. Tho log likelihood log L, is );‘. ap] log m3(0). Consider only
estimates of form 7', = g(p"). Such a 7, will bo called Fisher consistent if
glm(@) =4 v ()
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and ¢ is continuous in p*, If in addition g is smooth in the sonso of being
continuously differentiable, then an application of the delta method shows
/(T —0) and n~'*d log L,/d6 have in the limit a bivariate normal distribu-
tion with covariance

x B0 7o)

which on differentiating (4) is one; (2) now follows from the Cauchy-Schwarz
exactly as in the proof of the Cramer-Rao.

This sort of approach was extended in Kallianpur and Rao (1965) to
Froohet differentinble statistics and in Kallianpur (1983) to statistics differen-
tiable in the sense of von Mises. However in parametric estimation theory
these sufficient conditions do not secem to be satisfactory, they are ;:ertainl_v
rather restrictive. From the point of view of a statistician, the most appeal-
ing sufficient condition is the one dae to Rao (1863) who strengthens (1) by
requiring that it be uniform on compacts. The motivation for this is that
if one is to use the normal approximation to the distribution function of 7',
one must be able to choose an 7, such that for n > ny, +/n(T,—0) is normal
to the degree of approximation required. If n, depends on ¢ which is un-
known, the approximation would be useless. With uniformity on compacts
we can get an n, which works since in practico we can often find a bounded
set that contains the unknown . Ideally one would like to have uniformity
over the whole parameter space but this is rarely attainable except for loca-
tion parameter problems.

Assuming 1/»(T,—0) is A.N.{0, v(6)) uniformly on compacts, Rao proves
(2). As noted by Rao (1963), uniformity and the fact that fy is continuous
in 6 ensure that v(0) is continuous. Since he also assumes, among other
things, continuity of I(f), his result follows from LeCam’s inequality. Rao’s
own proof is different and much more innovative. The proof that he gives
can be shown to hold under the weaker regularity conditions assumed in
Seobion 2, see for example the caloulations in Bahadur (1864). In particular
one doesn’t have to assume I(0) is continuous; then continuity of fy and f;
gives, via Fatou’s lomma, only lower semicontinuity of I(#). In order to see
why uniformity prevents superefficiency, it would be interesting to get a
fairly direct proof of Rao’s result from LeCam’s inequality under the regularity
conditions assumed in Section 2,

Rao’s own proof involves a clover application of the Neyman-Pearson
lemma. Fix 0, and 1 > & > 0 and compute the limiting power of the most
powerful test of sizo & for Hy: 0 =0, va. H,: 0 = 0p4-8/y/n. Compute ulso



EFFICIENCY OF ESTIMATES 315

the limiting power of the test which rvejects H, if T, > ¢, with suitable
randomisation at the boundary to achieve size . The fact that the limiting
power of the most powerful tost must be the bigger of the two quantities is
jusb tho inequality (2).

The same idea of ovaluating an cstimate by comparing the limiting
power of an associated test with the limiting power of the optimum test has
peen used independently by Bahadur (1964) to prove LeCam’s inequality.
Buhadur first proves by tho method outlined ubove that () > I-1(0,) at
any 0, where T', satisfies

Bm Py (T, < Optn) < L. . (8)

The associated test accepts f = Gy iff T, < G4~} and (5) bounds its error
of second kind. Bahadur then shows that (5) holds for almost all 6, thus
proving LoCam’'s inequality. Bahadur's proof that (5) holds almost every-
where also leads to the following fact (which should be compared with the
Hajek-Tnagaki invariance condition (7)) : Suppose that under 6, V/a(7,—0)
converges in law to G, for all 0; then for fixed real & there exists a
subsequence {m} C {1} such that under 0-d/+/m,

the distribution of /m(Tym—0—8[4/m)
converges weakly to ¢y for almost all 0. )]

Ruao’s result has been extended in two directions. The limiting law for
Vn(T,—0) is allowed to be pon-normal but with zero as the unique median
and instead of comparing the asymptotic variance v(0) with I-Y0), one com-
pares tho limiting concentration probability lim Py{—r < v/2(T,—0) <71}
with the corresponding probability for N({0, I-1{0)). Predictably, there is
also an analogue of LeCam's inequality. The basic technique in all cases is
an application of the Neyman-Pearson lemma. The importnt papers are
Wolfowitz (1965), Schmetterer (1966) (who introduces the interesting and
useful notion of continuous convergence) and Planzagl (1970).

There is o deep result of u rather different sort—the Hdjek-Inagaki
convolution theorem—from which most, if not all, of the above results can
be obtained as a corollary via Anderson’s incquality. Assume that ¥ &,
under 0+ 8/+/n,

the distribution of v/a(T,—0—8/y/n) 3 @, e (D)

where ¢y does not depend on &; then Gy is the convolution of N(0, I-}(0))
and some other probability distribution. Clearly this means G, must be
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more spread out than N(0, I-'(0)). The result was obtained at about th,
same time by Hdjek (1970) and Inagaki (1970), Inagaki’s conditions being
much stronger than needed. An elegant proof based on the idea of limiting
experiments and Kakutani’s fixed point theorem is sketched in LeCam 1972y,
o more detailed exposition of the same proof is available in Millar (1983).
An ologant elementary proof due to Bickel js presented in Roussus (1979),
Jegannathan (1980) attributes to LeCam the remark that the existence of a
limiting distribution of +/n(T',—0) ¥ 8 implies the Hajek-Inagaki invariance
condition (7) holds for almost all 4. In the proof of the convolution theorem,
e.g., Bickel’s as roproduced in tho next page, one needs (7) only for a counta-
bly dense set of 8’s and for somo subsoquence {m} CC {#}. This weaker condi-
tion follows casily from (8) by the standard diagonal selection procedure.

The convolution theorem may be thought of ns a modern version of
another of Fisher’s old results which says that difference between an inefficient
estimate 7, and the cfficient cstimate 8, is (asymptotically) independent «f
8,. A rigorously treated special case and heuristic argument for the general
may clarify what is involved in proving the convolution theorem. Fix ¢,
and consider all ¢'s which are of the form ¢ = 0,+68/1/n, § any real number
For such #'s the scaled score function

1 dlog L,
i WL
is asymptotically sufficient (in the LeCam-Wald sense, explained, say, ia
Roussas, (1872, Chapter 3).

We first consider the important (but technically rather trivial) special
case where in addition to (7) 4/n(T,—0,) and V,, aro (under §,) asymptotically
bivariate normal. Let T, ¥ denote the random variables corresponding to the
limiting distribution. By a well-known result on contiguity, vide Roussas
(1972, Ch. 1), +/a(T,—0,) and V, are asymptotically bivariate normal
under f = @,+8/y/n with same dispersion matrix as under 8, and
mean of ¥, equal to & meun of \/n(T,—0,) equal to I(G,)a,48, where oy
is the covariance of the bivarate normal. By (7), oy, must be 1/I(6,). This
immediately implies {T— V) is orthogonal to ¥ and hence independent of ¥;
this, of course, is the convolution theorem. It is worth noting that here among
unbiased estimates of &, based on 7' and V, V is the best and so must be
orthogonel to I'—V which is an unbiased estimate of zero.

We now turn to some heuristics in the general case. Suppose T, satislies
(7). Passing to a subsequonco we can assumot hat under O, the joiiid
distribution function of vi(T,—0,) and ¥V, converges weakly to, sdy,

Vu =
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Gy, v). As beforo, this implies tho existenco of o limiting distribution ¢,
under y+8{4/n. Let T,V be random varinbles having distribution @,
under 8. Then one expocts na hefore that 1V is a complete sufficient statistic,
N8, [7'{0,)), and by (7) the marginal distribution of (T— V), under &, is free
of §. From this one would have to conclude that V and (T'— V) are indepen-
dent. To do this suppose the conditional distribution of 7' given V has a
density. Then, using sufficiency of V,

A2, v) = g(t| AN, I-1(B))d o). e (8)
Clearly it is enough to prove that g(t|v) is of the form h(t—v) for then the joint

distribution factors in the way needed for independence of (T— V) and V,

Observe that for any bounded mensurable 4, (7) and an elementary change of
sariables show

] Y(t—OWG,—ff ;1/(!)11(:'0 =
T Tt +8)v+8)— gt} v))dL N(O, I-}(0,))(dv) = 0. e (9)
This implies, via Stein's lemma, Lehmann (1959, p. 225), g(t+48|v+4) is in-

variant. under translations nnd hence must be a function of {(#—v) only. The
proof suggested by LeCam (1972) is a rigorous version of this.

Bickel’s proof depends on a different kind of tricky caleulation, which
often comes in handy in problems involving contignous distributions, Passing
te a subsequence assume as before that, under 0, +/2(T,~—0,) and v/nV,
have a limiting joint distribution G,. Let ¢(hy, h,) denote the m.g.f. of G,
defined for all complex &y, ks for which the integral in question exists. Clearly
the convolution theorem would follow if we can show

h?

Plik, 0) = yr(k)e 0 e (10)

where ¥/(h) = (i, 0) ¢ M gt be o characteristic function of some
random variable. To prove this use (7), and observe

#(ihy, 0) = lim Eon_‘_h,l\/"[exp{ill,\/n(T"—O,,——h,/\/n)}]

Doy th
= tim EgJexp{ilyy/n(T,,—00)— il [hg)] ;“_"_""]
0

= @lihy, hd)exp{—ihh,—(h3[2)]} ... (10a)
whore in the Inat step one uses the stochastic expansion
10g{Pg 1. ynlPog = 1 Tav/nVo— el +ou(1)
tnd I = I(6y).

By analyticity (10a) holds for all complex hy. Putting & = b, hy = —ik/I,
one sees that (k) as defined in (10) equals @(ik, —ik) which is the charac-
teristic function of P—V.
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5. ASYMPTOTIC LOCAL MINIMAX TEEOREM

1 now turn finally to the other mothod of dealing with the Hodges examples
in which one considers all estimates buf ovaluntes them by a limiting local
minimax criterion. I begin with some notations.

Let Iiy) be n symmetric bowl-shaped loss function, ie., Uy)=l{~y),
I{|y]) is non-decreasing in || and {0y = 0. I also assume for convenience
that I is bounded. What is actually needed is that it s integrable with
respoct to all N(0, %), the moro general case following from the bounded case
by an easy truncation srgument. For any estimate T, let the risk he
R(O,T,) = Efl(vn(T,—0)). The performance at 0 is however evaluated
not by R(@, T,) but by the supremum of R(0", T,) over the set |0'—0| < 4,
where & is a small positive number that will eventually tend to zero. This is
rather like the smoothing out of a bad function. The asymptotic performance
at @ is measured by

lim lim sup R, T,) =pl0,{T,)) say.

40 n 5w -0l <$
This seems a fairly satisfactory thing to do except for the arbitrariness of the
loss function ! and the fact that the loss in estimating 0 by T, is taken to be
Uv/n(Ty—0)). It turns out (in view of (11) below) that arbitrariness of !
doesn't matter but the scaling by 4/ remains, to some extent, more a matter
of tradition and mathematical convenience than good statistical commonsense,

The basic Hijek-LoCam theorem in this area is the striking inequality
@
PO (T 2 | U)N(O, I7Y(0))(dy). - (1)
-0

Equality holds above if +/u(T,—¢) is A.N.(0, [-%9)) uniformly on
compacts and [ is say, continuous so that the integration by parts formuly
holds for any probability distribution function F,

] warw) = [ a—Fona). - 12)

Thus (11) does provide a means of comparing arbitrary estimates with the
maximum likelihood estimate provided +/n(8,—8) is A.N.(0,1-}(0)) unid
formly on compacts and (12) holds. Moreover (11) rules out superefficiency
in the sense that no estimate which is superefficient at 0 can attain the lowen
bound in (11), for Hdjek (1972) has proved that a necessary condition fon

attaining the lower bound for o nonconstant { and with lim replaced by liny
above, ja —

Vul,—0)—v,50 . {13
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where ¥V, is as defined in the provious scction, i.c., 7', bohaves cssentially
like 8, under 6. In the spocial cuso where the observations are iid.
N0, 1), T, is the Hodges estimate and 0 = 0, the left hand side of (11)
is equal to l(o), i.e., the behaviour is the worst possible.

It is interesting to note that relations like (13) had been proposed carlier
by Rao (1963, pp. 193, 104) as definition of efficiency from the Fisherian
point of view of approximating the score function. It is reassnring that in
this case, at least his Definition 3C has pood frequentist implications.

The inequality (11) can be proved in two closely related woys. We first
sketch the original method due to LeCam (1053) since it seems to be the more
natural one.

Fix ¢ and choose a smooth prior density m{#) which is positive on
(#—8, 8+8) and is zero elsewhere. Then,

sup R(O',T.) > inf [ R(O', T))m(00)d0'. .. (14)
Ww-01 <8 '
As most statisticians know, if n — co, with probability tending to one the
posterior is approximately normal with mean 8, (and variance (d*log L, /d0?)*
evaluated at 8,). So f, is nearly Bayes for the loss functions under conai-
deration. Hence hopefully the right hand side of (14) will converge to

lim RO, 8,)m(0')0" = 5 Uy)N(O, I-18"))(dy)m(0")d0" e (15)
n—p o

which will converge to the right hand side of (11) if § = 0. Thus (15) consti-
tutes the heart of the “proof” of (11).

The trouble with this proof is that justification of (15) needs fairly strong
ussumptions (stronger than the assumptions in Section 2) and the details are
rather messy. The alternative, and more elegant, proof is due to Hijek
but the version we skotoh below is the substantially simplified form in which
it occurs in Millar (1983); the basic ideas in the simplification are due to
LeCam (1072).

To motivate the second metlhod note that in the first proof one bounds
tho minimax risk by & Bayes risk, vide (14), and then takes the limit, vide
{15). In the second meothod, the order of thess two operations is reversed
and to do this the very innovative notion of & limiting experiment is intro-
duced. Tt is first proved that the limiting minimax risk is greater than or
%ual to the minimax risk of the limiting experiment and thon the latter is
eufenluted by a well-known Bayesien argument; in fact the computation of

A3-4
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the minimax rigk of the limiting experiment turns out to be the weli-known
problem of finding a minimax estimate for a normal mean with known
variance.

In view of Proposition 2.3 of Millar a limiting experiment may be defined
as follows. Consider a family of probability measures {Q3, 8 € ©} (on some
measurable space) such that each {Q3} is contiguous to (Q;o). 8, being o fixed
element of @. Let {Q, 8¢ O} be another family of probability measures
with tho same index set @ (but possibly and usually on a different measue-
able space) such that @, is dominated by @, Then {Qs, 6 O} is the
limiting experiment for (@3, &¢ O} if the Q',}o-dist»ribuﬁon of the k-tuple

aQ;, . _ Q.
(EQ—;;;' i=1,.., k)convcrges weakly to the Q,D-dlstribution of(m, i=1, ..., A')

for all choice of & and 4, ...,8r € ©. Roughly speaking, the likelihoods in
the limiting experiment provide a clue to how the likelihoods of the n-stage
experiment behave for large n. To apply this definition in the present
context, fix 4 > 0 and define Q3 = P35y |8] € 4. Then easy calculs-
tion shows the limiting experiment is {N(d, I-1(#)), |8| & 4}. It follows ny
a general result for limiting experiments that

lim inf  sup R0, T, » inf sup [UT(y)—8)N(S, I-(6)dy). ... (16)
Ty 16~81G Alun T 18G4

But the limit of the right hand side of (18) as 4 — oo is [l(y)N(0, I-40))(dy)
ie., T(y) = y is the minimax cstimate in the limiting experiment, which is

proved by Bayesian arguments or invariance considerations. Hence making
A — o0 in (16) one gets

lim lim sup R, T,) » lin lim inf sup R, T,)
¥ 1g-Di<? ddmnre T, | A
|0~01< 5,

2 [UnN©, I7(6)(dy). SNt

Fobien and Hannan (1982) refer to the second inequality in (17) as the
sharper form of the Hijek-LeCam inequality and make intercsting comments
on the attainability of these bounds. Ibragimov and Khasminskii (1981) as
woll as Millar (1983) make significant applications to non-parametric problems.
A slightly different version of the LAMN thcory due to Stone is availabla in
Lehmann (1983); it has the pedagogical advantage of being presentable in an
clementary way but the criterion usod is less appealing.
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6. MisoeLLaNEOUS
We conclude with two general remarks, the first being concerned with

those aspects of efficiency that wo have either ignored or stressed insufficiently
and the second with various extensions.

Remark 1: To o Bayesinn the most important property of 8, is ite
approximate Bayes property. Indeed this means that in an estimation
problem for a wide variety of priors and a wide variety of loss functions, the
Bayes estimate is often independent of both the prior and the loss function.
Pitman has called the Glivenko-Cantelli theorem the existence theorem for
statistics. Many statisticians will feel the same way about the asymptotic
mormality of the posterior. I have not so far given any referonces for this
fresult partly because like many basio results it has & long history and many
pames nssociated with it. It can be traced back to Laplace, more modern
rontributors are Bernstein and von Mises, vide Borwanker et al. (1971), and
Kolmogorov, vide Wolfowitz (1853).

This approximate Bayes property of 8, may also be thought of as the
main reason why 8, is efficient from the frequentist point of view, An ex-
eellent early heuristic paper on maximum likelihood estimation along these
lines is Wolfowitz (1953). The same point of view underlies Weiss and
Wolfowitz (1974).

It may be pointed out that most of the results on asymptotic normality
of posteriors—for example Johnson (1970) or Borwanker, Prakasa Reo and
Kallianpur (1971) to give two recent references-—treat of the case whero the
true distribution is that holding under 6, 0 being a fixed point in whose neigh-
bourhood the prior density #(0') is positive and continuous. However both
from the Bayesian and the frequentist point of view this is not always satis-
fuctory. From a Bayesian point of view it scoms much more natural to
study the asymptotic behaviour of the posterior when 6 is a random variable
with 7(0") as its density. From a frequentist point of view one needs to
compare the integrated risk of the Bayes estimate and the intograted risk of
8, Such studies were initiated in LeCam (1953, 1858) and continued in
Ghosh, Joshi and Sinha (1982), where asymptotic expansions are also
considered.

It is interesting to note that though the approximate Bayes role of §,
is 50 fundamental, it has not played any important role in the study of effi-
deney oxcept in LeCam (1953) and Wolfowitz (1053) and, to some extent,
Weiss and Wolfowitz (1974). Indeed though most of the lower bounds were
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motivated by the need to justify §,, 8, itself does not play any important
role in their derivation. This is partly because the lower bounds have been
developed under conditions which aro much weaker than those assumed to
prove asymptotic Bayes proporty of 8..

As a matter of fact the lower bounds are proved under the so called LAN
conditions due to LeCam (1980) which are much weaker than even those
assumed to prove asymptotic normality of 8,. The two main tools in this
area, both due to LeCam, are contiguity and the LAN conditions. A brief
desoription of the latter seems to be in order. The family {P§, 0e0,n > 1}
satisfies the LAN condition at @ if the log-likelihood for contiguous alter-
natives log{dP},, ,,,/dPg} can be written as o quadratio

8, W, —1831(6) +o5(1)

where W, is A.N.(0, I{6)), % bounded §,. All the results surveyed above
hold provided only thaot the LAN condition is valid for all . Independence
or identical distribution is not needed. In particular many Markovian
examples can be handled in this way, vide Roussas (1972).

I/

Getting sufficient condition for 8, to attain these lower bounds boils
down to getting a sufficient condition for its uniform asymptotic normality
on compacts. Such problems are best tackled by getting Berry-Esseen
bounds for §,,. The best possible rate for the one-parameter case is given by
Pfanzagl (1871), slightly worse rates for the multiparameter case are given
in Pfanzagl (1973u). A much simpler treatment of the multiparameter caso
is available in Bhattacharya and Ghosh (1978).

Remark 2: The extension to the multiparameter cose is, generally
sposking, straightforward. All the lower bounds and the Hsjek-Inagaki
convolution theorem remain valid, the definition of bowl-shaped loss in the
multiparameter case is given in Hajek (1970). The only result which does
not hold—and is, thus, a reminder of the Stein phenomenon—is the necessary
condition (13) for dimension greater than two. On the other hand Pfanzagl
(1880, pp. 20-27) makes an interesting remark on tho Héjek-Inagaki con-
volution theorem which shows that in a certain sense the Stein phenomenon

is absent. See also o ourious example due to Takeuchi, reproduced in
Pfanzagl (1080, p. 28).

Of other extensions we mention oaly two. Weiss and Wolfowitz (1974)
have studied the efficiency of the maximum probability estimate for many
non-regular coses. Theo succesa of their programme suggests that in many
non-regular cases, a3 in the regular case, the posterior doesn't depend
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much on the prior but the Bayes estimate depends on the loss function chosen.
An anologue of the Bernstein-von Mises theorem is worth investigating
The examples in Weiss and Wolfowitz (1874) are interesting but their argument
for their basic result, though elegant and tantalisingly simple, isn’t very
Jluminating. Possibly their main result as well as the examples can be
profitably studied from the Hsjek-LeCam-Millar point of view as outlined
in Section 5.

The other substantial extension has been to the so called LAMN (locally
asymptom'cully mixed normal) case which generalises the LAN condition
by allowing a random quadratic term. Many ‘“non-ergedic” Markovizn
examples belong to this class. A penetrating analysis of all aspects of
estimation under the LAMN condition is presented in Jegannathan (1080)
and Swensen. Much of Jegannathan’s work can be found in recent issues
of Sankhya A. An excellent recent monograph is Basawa and Scott (1083).

Acknowledgement. I would like to thank Mr. T, Samanta who read the
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