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COST ROBUSTNESS OF AN ALGORITHM FOR
OPTIMAL INTEGRATION OF SURVEYS

By K. KRISHNAMOORTRHY and SUJIT KUMAR MITRA
Indian Statistical Inatitute

SUMMARY, Lot \ha eost of an lategrated wurvay dopaod only ca tho number  of dix-
tunet wnits in the survoy and the cosl funclion Cfr) bo monotoaks focreasing In v Farthor lot
the inorormant Ols-+1) — v} disninlh with . It Lt shown that tho opiimal integrated survay of
Mitre and Pathak (1024 ia cost optumal usler such a cont function. Wo sl proacnt (ntermtion
plans (or e surveys which am cost optimal when C(3}-C(2) > C{21-011).
1. INTRODUOTION

Consider o finite population with ¥ units scrially numbered 1,2, ..., N.
Lot S denote the sot {1, 2, ..., N} It is proposed to carry out k separate
surveys on this population. The i-th survoy sssigns a probability of selection
Py to the j-th unit and thus corresponds to a mndom varinble X, which
assignx o probability Py to the integor j (J = l .. N). An integrated
nurvey p to n joint probabili ion of random variables
X, . Xi which realixes for X; tho same marginal distribution as the
one nlvtcrmmed by tho i-th survey. For @=(x, 2, ..., xx) in 8* tho &-th carte-
nian power of S, v(z) donotex tho number of distinct integers appearing in
the & coordinates of z.  An integrated survoy is called optimal if E[y{X)] is
mininwm. It was pointed out in Maczynski and Pathak (1980) that an opti-
mal integrated survey always exists but is not unique. Mitrs and Pathak
{1984 present algorithms for dosiving optimal integrated survoys for k = 2
and 3. Tho present paper ix n follow up of the Mitru-Pathak paper and aims
firstly to clarify some doubsts that may crop up through a cunsory reading of
this papar.  Examplo 1 i o stachastic matrix, specifying tho solec-
tion probabilitiea for the & surveys, for which tho optimal integrated survey ia
unique. Though the optimal intograted survey is in general not unique, one
may speculato that each such sarvoy plan would lead to a uniquo probebility
distribution for v{X) tho number of distinet unita in the integrated survey.
Examploy 2 and 3 polnt out to the contrary. One may horo bo plessantly
surprised o find that tho integration plan ia stll optimal even though ho
muy havo initially missed tho bus by putting loss thau the maximum possible
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maxs 10 the ovont act 8, «  (:r(x) = 1}. In one of Lheso examples nn opti-
mal [ntegrated survoy plan In fact amigns o probebility 0 to 8, even though
6,> 0. In the othor oxamplo an optimal Intograted urvoy sssigns a pro-
bability 0 to &, ovon though 1—0, > 0 whero 8, and S, aro dofined tho same
way aa §, noting that for k£ = 3, 2 and 3 aro the only other valuca that {z)
could ammume and 0; = ‘:‘.P.mv where P, is tho i-th smallest valus among
Py, Paen Py
Tho optimal lnwgrlltd survey is clearly cost optimal If the cost of
ing and analyxing an | samplo with ¢ distinet units depends
anty on v and the cost function Cfy) s linesr in v with n positive slope. It
may bo more realistic Lo nssumo that C{v) incroases monotonieally with »
but the increments themsulves dimini<h with {ACH) > 0, AM) < 0. The
socond object of this paper is o show that tho optimal integruted survey
derived in Mitra and Pathak (1084) s faldly cost robust in tho sensa that it
rotains its conl optimality even for this wide class of cost funclions. The
cnse of a cost function which exhibits n fastor than Hnear growth presumably
only of acadomic interest ia troated in Section 3. We wre able 1o present
Intograted survoys which aro cost optimal under such a cost funclon.

Wo recsll that n configuration in gencral, in the context of & murveys,
o kx N array of nonnegative nambers with each row adding up to the same
numbor not neccsarily cqual to | (Mitra and Pathak, 1084). Each xtep of
tho Mitra-Pathak algori ons fi ion into another with
the common row lotalu of the successivoe configurations shrinking to 7cro.

2. THREE EXAMPLES

Example 1 : Consider the stochsstic matrix for threo surveys given in
‘Table 1.
TADLE ). VALUES OF P,

1 a 1-a [ 0

2 3 0 1-8 o

1 ) o [ 1-5
1>ma>0

‘The algorithm givon in Mitra and Pathak {1984) loads to the following optimal
integrated snrvoy

P =Pr (X, =
Poy = 1-b, pyy

K=l X=1)=a
b—a
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where tho Ppg's in goneral are onalogously dofined. Hore E{(X)] =
Ya)+2(b—a)+3()—b) = 3—a—b. We now show that hore the optimal
integrated survey is uniquely determined. Clearly an integrated survey hers
is supported entirely on & pointy

B Zm) s =125=132=14

One considors tho linear equations which the pur's must atisly to realiso
the marginal disiributions givon in Tublo 1 along with the linear equation
which will ensure optimality (i.o. B{W{X)] = 3—a—8). It is scen that these
equutions uniquely dotermine pm, 88 Py, = 1—b. This along with
Pr{X;# 1} =Pr (X, 1) = 1—b on account of nonnegatirity of the
P's IMPlY  Piuy = Puy = Pi3y = Pyyy = Py = 0 which in tun impliem
P~ 0, Py =b~a. Tho uniquences of tho optimal integrated surrey
is thu established.

The next two oxamples show that in general not only wro the optimal
integrated survey plans not unique, thoy do not even lead to a unique pro-
Bability distribution for tho number of distinet unite. L is casily scen that
for an optimal integrated survey tha vector (Pr (), Pr (8,). Pr (5,) is unique
npto o constant multiple of the veetor (—1, 2, —1).

Ezample 2 : Consider the stochastic matrix for 3 surveys given in
Table 7 of Mitra and Pathak (1984) after correeting the obvious mistake there-
in (interchanging of rows and columns)

TABLE 2. VALUES OF P,

R ) 2 3
’ _—
t .2 & Kl
2 3 i
3 s .2

The ulgorithm leads to the following plan for an optimal integrated survey

Pen = 1.

Pin = P = Pay = -2 Py = Py = P =
An alternntive optimal integrated survoy is givon by
P =), Pan = Prxa = 2} Panr = -2, Pios = Pa = P = 1.

Nota that wo have transforred oqunl probability masses of .1 from (1, 1, 1} §;
and (2,3, 1) e §, to (2,1, 1) and (1, 3, 1) both in 8, Wo have here Pr(8,)
= .6, Pr ($,) = .5.
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hmpki:(}onlﬂerh[aﬂawhgmhuﬂcmmh!mm
TABLES. VALURSOF Py

The algorithm leads to tho following plan for an optimal integrated survey
P~ Py =1 Pt = P = L i Py = 35 Pam = 2 Pugy = 1.

An alternative optimal integrated survey is given by

Pt = Pen =P = Poy = -1 i Pass = 21 Pus = 3 i Py —= 1.

Note that wo have travsferred equal probability masses {rom S, and S, to §,.
Wo have hore Pr (8y) = .8, Pr (8) = .1

3. THE MAIN RESULTS

We shall prove the following theorem.

Theorem 1:  Let the coat of an integraled survey depend only on the rumber
v of distinet wnils in this survey and the cout function Clv) be monolonic increasing
in v. Further lel the incremenia Cly+1)—Clv) diminish with v. The optimal
integrated aurvey derived through the algorithm in Mitra and Pathak (1984) it
cost opltimal under such a coat function.

Proof : ‘The case of two surveys is trivial. Wo confine our attontion 10
k=3. Fimt the case 0, < 1. Here tho optimal integrated survey asigns
n probability of 0, to 8,, (0,—6,) to 8, and (1—8,) to 8. If this is not cost
optimal et there exist an integratod survey assigning probability of p¢ to 5t
with a lower oxpected cost, that is

O(ypy+C(2)p,+03)py < C(1)0,+0(2) (,—0,)+C(9) (1—00) -
This {mpliea on subtracting 0{2) from both sides of (1)

[CT11-C@)p HOB)— O(2)]p, < [A{1)—O(2)16,+(0(9)—C(2) 1-0)

= (O3~ Ci2)lps < [CH—CD] O~p)HE®—-C®) (1=0). - 3
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The R.H.S. of (2) is further seen to bo leas than
(C(8)—Ci2)) (1—0,) since (C(1)—-C(2)] (6,—p) < O
This {mplles p, < (1—0y).
Inequality (2) implies
[C()—C(2)]p +{C2)— GNPy < (H1)—C2)J0,+H(C(2)—-CM)] (1=6y) ... (3)
since [C(2)—C(1)) > (0(3)—C(2))
= [C()—C)] (P 272+ 3p0) < (C2)—C(D)] [0, 420, —6))+ 31 —0p)]
adding 2{C(2)—C{(1)] to both aides of (3)
= p1+2Pat3ps < 6,+2(0,—0,)+3(1—0,) since [C(2)—C(1)) > 0
which s iblo gince the algorithm for optimal ion minimisea
the expected valve of the number of distinot unita.

The case 6, > 1 can be similarly established making use of tho facts that
6,— Pr (S,) > 0 and C(») is monotonic increasing. QED.

Theorom 2: Lel the cosl funclion C(v) be monolonic increasing in v and
C(3)—C(2) > C(2)—C(1)-

Let there exiat an optimal integroted survey which assigna a probability 0 to S,.
This survey is also cost optimal under such a cost function.

Proof: Lot tho optimal Integrated survoy asign a probability p} to 8
and p¢ = 0, If this is not cost optimal lot there exist an integrated survey
oaalgning probability p; to 8; with & lower oxpected cost

CiNp+C2)p+CR)P < CHA+O2PE
= GNPy +C(2)2,+H20(D—CO) P
< Oy +C(2)pe+Ci3)ps < CLNPL+C(20R
= CHR+CDR+H2C12)—-CO)A
= (CI9)=COWpy+2py-+3py) < L0(2)~CID)(PI+ 273+ 37
adding C{2)—2C11) to both sidos.

Since ((2)—C{1) > 0, this contradicts our assumption that tho optimal inte-
grated survoy minimises the oxpocted number of distinet units. QED.
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Examplo 2 illustrates such o situation.
Tho following theorom can bo proved on similar lincs. Wo omit the
proof.
Theorom 3 : Lef the cost function C{») be monalonic increasing in v and
C(3)—-C2) > C(2)-C(1).
Let there exist an oplimal inlegraled survey which assigna probability 0 to §,.
This survey is also cosl optimal under onch a cost funchion.
Example 3 illuatrates such a situstion.
Plans for optimally integrating three surveys derived through the algorithm

in Mitra and Pathak (1084) are of two types. One that uses stages 1. 2 and
3 loads to the probability disteibution of tho number of distinct units gisen by

Pr {8,) — Oy, Pr {8y = 0,—0,, Pr (8;} = 10, T

The other uges stages 1, 2° and 3* and leads o
Pr{8,) = 0,, Pr {§,} = 1-0,. e 3
Clearly as noted in Mitra and Pathak (1984) the first altarnative works only if
0,< 1. e 16

Theorom 4 shows that condition (8) is also sufficient.

Theoram 4 :  For an optimal inlegration of three surveys with the probabi-
Ity distribubion as in (4) to exisf it i necessary and sufficient that (8) holds.

Proof : Tho nocessity part Is trivial sineo (4) =

Pr{8)=1-0,> 0.

For tho sofficloncy part we show that if (6) holds ol the stops in stago 2 will
go through amoothly without any hindranco. Lot us considor the configur-
tion at the commoncomont of stage 2. Wo classify the N columns of the con-
Ggnration as follows. Lot I;, denote the sot of indicea of those columna for
which the i-th row contalna tho smallest column entry (0), I¢, the sot of indices
of thoso columns for which the i-th row oontains the sacond amallest column
entry and I;y the sst of indices of thoss oolumns for which the {-th row con-
taing tho maximum eolumn ontry, tine boing arhitrarily broken-up.

Clearly,
I6UIeUln =8, i=1,28
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A typicst column in 1, written as & row veclor, is thus

(0,2, b)or (0,6, a). a < b.

IF thiy is column j, the second smallest ontry in this column is zoroed out by
assigning n meus &, to 8 point (v, j, j) In $ such that u# j and I 4, = a.
The targot is to oxecuta this operation without affecting the loeo‘m‘l‘-mcllut
entry in any column. This implies that &, > 0 only if ucl,, and in any caso
4. thould not oxcoed Pyu—PFye. The availablo surplus in the columns
of 1,; should bo adoquota ta mcot tho demands made by the colomns in J,,
that is

Supply —domand = X (Pgsa—Puul— I (Posa—Pups}
wal,, waly,

= ":-‘-'. I(1".-—1”.»-)+M5"(1’.-—l’m-H— “3“(1’.-— Pra)

(noting that for n in /,y, Piu—Piyy = 0)

= E Pu— X Py 1—0,3 0.
ue§ ue§

Henee if (6) bolds, in row 1, supply is ndequato to meot the demand. The
same argument also holds for tho other rows, QED.

Conuider a point Is §, und » polnt in 8. Wo say that these Lwo points
are matched if they agreo in one coordinaste. Since tho coordinates of a
point in 8, aro all idontical and thoso of a point in §, aro necesasrily distinot
thesa two points could agree st moat in one coordinate e.g. the pair of points
(1. 1. 1) and (2, 3, 1) in Examplo 2. Sinco tho algorithm asaigns & mass of
2m.2to(l, 1, 1) and & = .1 to (2. 3, 1), & mass of .1 = min (4, &) could bo
removed from cech of the pointa (1, 1, 1) £ & and (2, 3, 1)e 8, and redistribated
to aach of the polnta (2, 1, 1) and (1, 3, 1) both in §,. The resulting plan is
stll optima) since theas manccuvres do not affoct E(v(X)}. Howover alter-
native plana dorived through tho algorithm of Mitra and Pathak (1684) may
allow for differing degrees of matching. Tho arguments given in the proof of
Thoorem 4 suggest a strategy for ‘maximum matching’. This Is desaribod
bolow, keeping In viow possiblo uses in connection with Theorems 8, 3 and
also 5 which wo present later in thiy section. Wo have said earlior that for
uel), tha available surplos is Py —Prye.  Sinco boro the plan asigns a mass
of Pyyye (&, 4, «) € 8, if tho entiro surplus is used in stago 2 which only gener-
stos pointa in &, tho possibility of a matehing of a point in §, with the point
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{u, 4 u) in 8, will bo annihilated in the bud. ldeally out of the surplun
Piyyu— P yu, 8tago 2 should loavo an amount of Py, for stage 3. o therefore
define the notion of safe availablo surplus a, as follows.

{ o U Pgyu—Piypa < Py
ay =

) -
Po—Pon—Puyw othorwise. !

Wa bave maxi hing in tho first coordinate if
Z ay > I {Pyu—Pun) . (8)

uehyy uelyy
and the oxtent of matching is moasured by
m=2ZIfu ()
elyy

[ Py fau>0

whero Bu = (10§

Pigju— Py otherwise,

Sineo the demand in any case hus to b met, if (8) is not satisfied the maimum
matehing as given in (9) s reduced by the corresponding nmount. One has
here tho following revised expression for ey

m I Betad— 5 (Paw—Puu) - 1=0p )
uelyy uelyy

Compute similarly ry and jty. The
3 surveys is given by

in a plan for integrating

min ey 4+ ¢ pye 1—0;) o)

voting that onco tho configuration prior to stage 3 is so arrived at, with cach
column containing atmest onc nonnull entry, operations in stago 3 could be =0
directed 68 to attain the bound set in (12). Clearly no chango in the steps
under stage 3 of Mitra and Pathak (1984) are called for if s 1=0,
for i = 1, 2, or 3 sinco tho moximum matching 1—8, can bo secured through
tho i-th row itsell. Wo shall therefore considor the caso whero py < 1—0,
for i = 1,2, 3. Hore it will be convenicat to split tho nonnull entry vq in
column u of the configuration (prior to stago 8) 28 y — fu+7e (e > O)
Pu ond y,, representing respectively the critical and the noncritical mass,
The distinction is however only superficial and will help us in doseribing the
roquired modifications in tho steps of stago 3. We first zoro out tho critical
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maxsics Ay in the firt row with the lielp of noneritical mnases in other rows.
Thix will be poasible if

3 L fu X X
R Y > “I"/l- - W >m“ Aa . {19
[ 10, > prtpgand 1=0y 3 joy+py. e (14

1f ono of Lhese inequalities ia not true for examplo if 1—8, < g,+p, the non-
eritical masses in third row aro insufficiont for this purposo. That is, while
zeroing out the eritical messes in the first row not only are the entire non-
critical massos in third row uscd up but ono has to drw from part of the eriti-
val masses in third row a8 woll.  Honce whon ono zerces ont noxt the balance
of the critical masies in third row which add upte 1—0,—p,, the noneritical
maxscs i tho first row arc just sufficiont for tho purpose and irrespective of
whnt happens in the sccond row the bound 10, in (12) in clarly attained.

i (13) in satisfied tho critical masses in row 2 are next zeroed out wilh
1he help of noncritical masses in other rows. Since in the first row only non-
eritical mnssca remain, no specfal offorts aro needed here. However in the
third row the avallable noncritical maancy shoukl snffice for thin purpose,
that in

S g S > S (1)
. welyy wely, wly
or equisalently
V=0 > ittt - 10

If (15) s snUsfied, tho critionl masscs In third row are next zeroed out
with the help of nvailablo masses in the othor two rows which are incidentally
ull noncritical. ‘Thus the bound py-+jeg-tg In (12) i aitained. If (15) is not
truo the bound 1~y in (12) is attained in & manner similar to what wo havo
described above. 1t may bo wise to distinguish the pointa in S, that are to bo
wied in maximal matching by putting a « sgainst tho coordinate that supporta
a pivotal critical mass. Thus pys,y = .1 indlcates that tho point (1, 2, 3) is
matchod with (2, 2, 2) and & mass of .} can be romaved from cach of theso
points for teansfer to (1, 2, 2) and (2, 2, ).

Consider n plan for muximally matched optimal inlograted survey and n
plan for optimal integrated survoy dorived front the asme by transforring
eijpnl maxscs, to the maximum oxtent possible from 8, and §, to polats in
Sy I in shown in Theorem 5 that tho resulting plan (call it #,) ia cost opti-
mal for

1 <[CE-CEYICRA-C K 2 - 07
even if Pr (¥,) il Pr (8,) are both nomnull in this caso.
w212
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Consider the plan ®, so derived in the preceding paragraph, Thers
is zoro matching now between the points In S, and thoso in §,. Howover
tranafors 1o ; can still take place under slightly more uofavourable condition.
Thus givan a moas 28 sttached to the point (u, u, w) € S, and a mass 4 nt the
point . &, ) « S with u, j, k, 1 all distinct, & mans of & could bo tranaferred
to aach of ¢ho pointa (7, u, u), (4, L, u), {u. u, 1) in 8,. Theso Lranafers though
not profitable under (17) will turn out te be profitable if

2 <[CEA—-CENCR—C()) w (18)
Wo keep on making thees tranafers until zoro mass ls left sither in S, or in §,
or in both. It is shown in Theorem 5 that the resulting plan 2, is cost opti-
mal undor (18).

Theorem 5:  Let Cly) be an increasing funclion of v. The inlegration
Plars P, and P, are cost optimal under conditions (17) and (18) respecticely.
Proof: Lev(() T vand

[CE)—C@eR)—C] > 1. o (19)
Furthor let © bo an integration plan which is coxt optimal under such a
cost function. We conmider the pointa in Sy, S, and S; which received pasi-
tive mass under . 'The reapoctive subseta mre denoted by S}, §7 and 55
and et these pond lo jond ¢, ¢ nnd ¢ respecti We
now deduce cortain propertics of ¢, ¢, amd ¢ s b consoquence of the st
optimality of ®. Finstly we note thut there is zero mntching  between the
points in S} with those in §, beeuuse otherwise certsin positive mast 8
could be removed from a point in S and n mutching paint in 8} and then
transferred to pointa in §; ux indicated carlier.  \When (18) holds these trans-
fers would result in atrict improvement in reapect of the expected coat con-
tradicting the cost optimnlity of 2. This implies that if a column in ¢
has nonnull entries then tha corresponding column in ¢, hs only null entrics.
Sumilarly we note that o column in ¢, can have atmost ono nonmull entry,
becauwo othenwise an application of tho Mitra-Pathak algorithm to ¢ would
result in shifting positive mnssos from S} to cortain points in &, andjor 8,
und thesc shifta ngain would result in n strict improvoment in respeet of tho
oxpected cost. Lot the j-th calumn of ¢, be null and without any loss of geno-
rality lot the wiagle nonnull entry ¢ in the j-th column of &, oceur in tho first
row. This implica that the j-th column of ¢,, writtan ns a row voctor would
look like

(Py—¢, Py, Py) = (s qu» qu) (a35)

Each ion hato (s 3 N tablo with the th, g the partial marginal
probabllity diateibutlane for the thros murvars.
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where Pij'a uro vhe entries of tho originul configurmtion speeilying the marginal
probability distributions for the three scparato survoys. Wo now show that
qu cannot bo the smalleat or tho sccond smallest ontry in that column. Tho
points in 8, with j appearing in at least ono of tho three coordinates aro of
Alx bypos (1) (4, 5. ky). (2) Ge ky ) (3) (K. §. ) (4) (R B ). (8) Ky i &) amd
() G, & k) whilo the points in S, with j appearing in tho first coordinate
aro of one type—(j, i, ). Clearly the poinl (L. j, j) could not appesr in 8.
(£ it did. cortain positive mass & could bo transferred from cach of the poinia
{kye j. j) in 83 and (j, i, &) in &} to the point (ky. i, ) in S, or Sy and G, j. j)
in 8, and this would result in a strict improvement in respect of the expected
cost.  Also the point {k,, &,. j) (and for a similar reason the point thy j, &) )
could not appear in §}.  For oxamplo if tho point (&, Ly, j) did, a positive
mnss 8 conld bo transferred from (j, i, 1) in 83 and {k,, L, j) in 8} to points
(ky. &y 1) and (. i, j) both In Sy Theso transfers would result in a atrict
improvement in respect of Lhe oxpected cost. Thus there are only points of
type (1) (2) and (0) in Sj. Let tho total mass recoived by points of type (i)
ho denoted by aw. Wo have thoreforo

aytagtag =qy
=gy
fy = ¢y

= TP T D = = Gay

Let E (i <= 1, 2, 3) denolo the num of tho i-th minimum column entries
of all the N columns of ¢,. E,. £, and ¥, thus correspond to 0,. 0, and 0, res-
pectively as dofined for the original configuration. Let 8,—y, be the {otal
mnss assigned to the points in S7. The structure of ¢, we havo just estab-
lished implies & = y,, §,—E, = 0,~0, and for each of the threo rows of ¢,
the row total in cqual to £ = (3,+&,+%)/3. If§ > Iy an application of tho
Mitra-Pathak algorithm to C, would reult in shifting (rom 5} & mass of
to 8, and §—E, to $,, tho balance mass §,~§, would remein in 8, With
the allocation alrendy made in $} and 8§ remalning undisturbed, these
shifis would result in a plan for which

P(8) = 7 40—y, = 0,
PUSy) = £y~ = 0,—0,
P(Sy) = 1-0,
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which in clearly optimal in the sonm of Mitra nnd Pathak (1984). In other
words tho integration plan  can be derived from o plan which is optimal
in this scnso by shifing masses from S, and §, to S,. This can be more
eloarly scen as followa : Assumo without nny loss of generality that the first
ecolusnn of ¢, has nonnull ontries in ench row. As onumerated earlior six Lypes
of points in ¢, could have contributions in tho first column of ¢,. (1) (1, 1, i),
(2) (1, Ky 1), (3) (kg 1, 1) (4) (s £ 1), (5) (Ls, 1, ky) nnd () (1, by, k). Por
reasons wo havo atressod earlier S} eannot exclusively havo points of type
(4), (8) and (0). It shoult in fact have pointa of atleaxt two of types (1). (2)
and (3). For oxamplo if it hag only points of type (1) and none of type (2) or
(3) then for the first column to bave the stipulated property it Is necessary
that 83 should have some points of type (4). Agnin o point of type (1)
cannot coexist with u point of typo (4) in 53 for preecissly the samo reason.
Thus cither 93 has exclusivoly points of all tho three types {1). (2) snd (3)
(with k. &, and X, nll distinet) or has only two of them e.g. of types {1) and (2)
(with X, # k) with or without points of type (6). If plan J assigns masses
2. g. r respectively to (1, 1, k), (1, by, 1) nnd (&, 1, 1) and p > ¢ > 7, an appli-
eation of the Mitra-Pathak algorithm to the resulting configuration will Jead
to o redistribution of mnsses as follows :

mass point

q4r U, 1,18,
r-q 0.1, ke S,
q-r (kg ) € Sy
v (hy, kyo 2y) € 8,

It is scon that if ono trnsfors masses to 8y symmetrically from the point
(1. 1, 1) in 8§, nnd mutching point (1. &, &} in S and then asymmetrically
from the point (1, 1, 1) in §, and the nonmatching point (ks b, k) in S the
original distribution of masses to the threo pointa (1, 1, k), (1, &y, 1) ond
k. 1, 1) In restored.  The argumont ia ximilar for the caso where the plan
2 assigns masses p and g to tho points (1, 1, k) snd (1, by, 1). Tt is interest:
Ing to obsorve that even if tho plan » had amigned a mass s to the point
{1, by, k. (& + ky # k) and Mitra-Puthak algosithm apptied to the resulting
configuration then tho mass asignod to the point (1, k. ko) will not bo llfﬂhtd
by tho redistribution. This means that whon the smallest nonzoro entry in
differont columns similsr to column 1 (are zoroed out) disjoint sets of points
aro affectod by the rodistribution. Tho olsim mado carlior in this paragraph
is thus substantisted. Tho plan 9, which cnsurce maximal matching betwen
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polnta in §, aml 8, before these whifts Inke place i 8 avmmetric manner i
(hus ween 10 be cost oplimal when (17) hokly, The cosl aptimality of P,
under (18) s similarly catablished.

If £ < Ey the Alitra-Pathok algorithm shifts from & n maos g, to S,
and a mass £~E, to S, which contradicts the cost oplimality of 2 unleas
Li=0 Il § =0 that ix P(S) =0, PIS) =00, PM8)=1-0,
sinco P(S}) # 0,0, contradicia cither tho cost optimmlity of 2 or the
optimality of the plan deriveel throngh the Mitra-Pathnk nalgorithm. This
shows that the plun 2 iw itsctf optimal In the sense of Mitra and Palhak (1984)
and tho argument given in the preceding paragraph is valitl, QED.

Open problem. 1L may be of Inlerest to characterize the situation where

the plan for an optimu! integrated survey s unique.  Table 1 illustrates one
such enso,

For references to cardier work of Keyfitz, Lahiri and Des Raj on the
optimal integration of two eurvoys see nny one of the two papers listed below.

Revenexces

Maczvxaxt, M. J. and Pavuax, P. K. (1680)1 Tulogrativn of murveyr, Scand J. Statiat., 2
130138

M, 8. K. and Pamax, P, K. {1980

Algorithma for ortimal intograthos of twa or threo
survoys, Scond J. Stati.

257.242,
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