A CHARACTERISATION OF THE NORMAL DISTRIBUTION

By 8. RAMASUBRAMANIAN

University of North Caroline at Chapel Hill

SUMMARY. The normal law is characterised through the local independence of certain statistics.

In this note we prove a characterisation of the normal distribution through the local independence of certain statistics. A similar result has been proved earlier by Parthasarathy (1976). Our result is the following:

Theorem: Let X and Y be independent and identically distributed real-valued random variables with density f. Suppose the conditional densities of X+Y given X-Y=t exist and are equal for all $t \in E$, where E is a Borel set with $\lambda(E)>0$. (λ denotes Lebesgue measure on the real line R). Then f must be a normal density.

To prove this theorem we need a few lemmas.

Lemma 1: Let E be a Borel subset of \mathcal{R} with $\lambda(E) > 0$. Then there exist $y_n \in E$, $n = 0, 1, 2, \ldots$ such that the y_n 's are distinct, each y_n is an accumulation point of E, and $y_n \to y_0$.

Proof: There exists a compact set $E_1 \subseteq E$ with $\lambda(E_1) > 0$. By the Bolzano-Weierstrass property there exists an accumulation point $y_1 \in E_1$. Let $F_1 = \{y: \text{there exist rationals } r_1, r_2 \text{ not both zero such that } r_1 y_1 + r_3 y = 0\}$. As F_1 is countable, there exists a compact set $E_2 \subseteq E_1 / F_1$ with $\lambda(E_1) > 0$. Let $y_2 \in E_2$ be an accumulation point. Proceeding thus we get a sequence y_1, y_2, \ldots , such that the y_n 's are distinct accumulation points of E_1 . As E_1 is compact, $\{y_n\}$ has a convergent subsequence which may again be denoted by $\{y_n\}$. Take $y_0 = \lim y_n$. This completes the proof.

Lemma 2: Let $f(x) \geqslant 0$ a.e. on \mathcal{R} , with $\int f(x)dx = 1$. Let $\alpha(x) \geqslant 0$ a.e. on \mathcal{R} and $\beta(x) \geqslant 0$ and set of positive Lebesgue measure. Let $\beta(x) \geqslant 0$ be a Borel subset of $\beta(x) \geqslant 0$ and let $\beta(y) \geqslant 0$ for all $y \in E$. Suppose that, for every $y \in E$, the relation

$$f(x+y)\cdot f(x-y) = \alpha(x)\beta(y) \qquad \dots (1)$$

holds for almost all x (i.e., for all $x \notin some N_y^*$ with $\lambda(N_y^*) = 0$). Then α is continuous on the complement of a null subset of \mathcal{R} .

Remarks: Consider the example: f(x) = 1 for 0 < x < 1 and zero otherwise: E = [1, 2]. Then

- (i) if $\beta = 0$ on E, (1) holds for arbitrary α for all x, so that the desired conclusion on α can be made in general only if β is positive on a set of positive Lebesgue measure.
- (ii) if $\alpha = 0$ a.e. on \mathcal{R} , then (1) holds for any β on E. We shall therefore assume in what follows that $\alpha > 0$ on a set of positive Lebesgue measure.

Proof: Let $\xi = \sqrt{\alpha}$, $\eta = \sqrt{\beta}$ and $\zeta = \sqrt{f}$, so that $\zeta \in L^p(\mathcal{R})$. Then, by the Cauchy-Schwarz inequality, $\zeta(\cdot + y)\zeta(\cdot - y) \in L^p(\mathcal{R})$ for every fixed $y \in \mathcal{R}$. A Fubini argument then shows that, for some set N with $\lambda(N) = 0$, (1) holds for all $x \in N^c$ and for $y \in L^p(N_x)$ for some set N_x with $\lambda(N_x) = 0$. We claim that at least on the set N^c , α is continuous. Let then $x_0 \in N^c$ and $\{x_n\}$ be a sequence of members of N^c converging to x_0 . Then (1) holds for all $y \in L^p(N_x)$ and we have

$$\begin{split} |\xi(x_n) - \xi(x_0)| & \int_{\mathcal{B}} \eta(y) dy = | \int_{\mathcal{B}} |\xi(x_n + y)\xi(x_n - y) - \xi(x_0 + y)\xi(x_0 - y)| dy \\ & \leq \int_{\mathcal{B}} |\xi(x_n + y)\xi(x_n - y) - \xi(x_0 + y)\xi(x_0 - y)| dy \\ & \leq \int_{\mathcal{B}} |\xi(x_n + y)| |\xi(x_n - y) - \xi(x_0 - y)| dy \\ & + \int_{\mathcal{B}} |\xi(x_0 - y)| |\xi(x_n + y) - \xi(x_0 + y)| dy \\ & \leq 2||\xi||_{\mathcal{B}} (|\xi(x_0 + y) - \xi(x_0 + y) - \xi(x_0 + y)| dy \\ & \leq 2||\xi||_{\mathcal{B}} (|\xi(x_0 + y) - \xi(x_0 + y) - \xi(x_0 + y)| dy \\ \end{split}$$

since $x_n \rightarrow x_0$.

Remark: Note that the same argument shows that

$$\begin{cases} \xi(x_n) - \xi(x_n') \to 0 \text{ as } n \to \infty, \\ x_n - x_n' \to 0 \text{ and } x_n, x_n' \in N^c. \end{cases}$$
 ... (2)

if

Lemma 3: Let f, α , β , E and the null set N be as above and let the sequence $\{y_n\}$ be as in Lemma 1. If [a, b] is a compact interval such that

$$\inf\{\alpha(x): x \in N^c \cap [a, b]\} > 0,$$

then g = log f is defined and equal to a quadratic polynomial on each of the intervals $(a \pm y_0, b \pm y_0)$.

Proof: The preceding remark and $\inf \alpha > 0$ over $N^c \cap [a, b]$ imply that, for some $\delta > 0$, $\inf \alpha > 0$ over $N^c \cap [a-2\delta, b+2\delta]$ as well. Let $y \in E$ be fixed. Then (1) holds for $x \in S_y = [a-2\delta, b+2\delta]/(N \cup N_y^*)$. Note that $\log f(x\pm y)$ are defined on S_y and if g denotes $\log f$, we have, for $x \in S_y$

$$g(x+y)+g(x-y) = \log \alpha(x) + \log \beta(y) = A(x)+B(y)$$
, say.

Let h be a smooth function on \mathcal{R} vanishing along with its derivatives of all orders on the complement of the open interval $(-\delta, \delta)$. For any real function Ψ defined on $[a-2\delta, b+2\delta]$, let $\bar{\Psi}$ be defined on $[a-\delta, b+\delta]$ according to

$$\bar{\varphi}(x) = \int_{-a}^{b} \varphi(x+t)h(t)dt.$$

Then we have

$$\bar{g}(x+y)+\bar{g}(x-y)=\bar{A}(x)+B(y)\int_{-\pi}^{\delta}h(t)dt,$$

for $x \in [a-\delta, b+\delta]$; therefore

$$\bar{g}'(x+y)+\bar{g}'(x-y)=\bar{A}'(x),$$

for $x \in (a-\delta, b+\delta)$. (Recall that $y \in E$ is kept fixed).

Let now $z_0 \in E$ be an accumulation point of E, so that there exists a non-constant sequence $\{z_n\}$ of members of E converging to z_0 . We may assume that $|z_n-z_0|<\delta$ for all n. Then

$$\bar{g}'(x+z_n)+\bar{g}'(x-z_n)=\bar{A}'(x)=\bar{g}'(x+z_0)+\bar{g}'(x-z_0),$$

for all $x \in (a, b)$.

Note that \bar{g} is defined on either of the intervals $[a\pm z_0-\delta, b\pm z_0+\delta]$. Hence it follows that $\bar{g}^*(x+z_0)=\bar{g}^*(x-z_0)$ for every accumulation point z_0 of E and for all $x\in(a,b)$.

Let us now take the sequence $\{y_n\}$ as in Lemma 1. Then, for any $x \in (a+y_0, b+y_0)$, if $x_n = x-2y_n+2y_0$, then $x_n \to x$ and so belongs to $(a+y_0, b+y_0)$ for all sufficiently large n. Then

$$\bar{g}''(x_n) = \bar{g}''(x_n - 2y_n) = \bar{g}''(x - 2y_n) = \bar{g}''(x).$$

so that $\bar{g}^{\prime\prime\prime}(x)=0$ for all $x\in(a+y_0,b+y_0)$. Thus \bar{g} is a quadratic polynomial on that interval, and similarly on the interval $(a-y_0,b-y_0)$ as well. Since this is true whatever be the smooth h of the kind described, it follows that g is itself a quadratic polynomial on $(a\pm y_0,b\pm y_0)$.

Lemma 4: Under the same hypotheses as in Lemma 2, f must be of the form $\exp Q$, where Q is a quadratic polynomial, throughout \mathcal{R} .

Proof: Since $\alpha(x_0) > 0$ for some $x_0 \in N^o$ ($\alpha > 0$ on a set of positive measure), let

$$\alpha = \inf\{x : \inf \alpha > 0 \text{ over } N^{\alpha} \cap [x, x_0]\}.$$

$$b = \sup\{x : \inf \alpha > 0 \text{ over } N^{\alpha} \cap [x_0, x]\}.$$

We claim that $a=-\infty$, $b=+\infty$. Suppose not; for definiteness, let $a>-\infty$ if possible.

Let $\gamma = \inf\{\alpha(x) : x \in N^c \cap (a, x_0]\}$. We claim that $\gamma = 0$. Suppose not and that $\gamma > 0$. It then follows from the definition of a that, for every positive integer a.

$$\inf\left\{\alpha(x):x\in N^c\bigcap\left[a-\frac{1}{n},\,a\right]\right\}=0$$

so that there exists a sequence $\{u_n\}$ of members of N^s such that $u_n \uparrow a$ and $\alpha(u_n) < \frac{1}{n}$; on the other hand, for any sequence $\{v_n\}$ of members of N^s such that

 $v_n \downarrow a$, $\alpha(v_n) \geqslant \gamma > 0$, so that $\alpha(v_n) - \alpha(u_n) \geqslant \frac{1}{2}\gamma$ for all large n, though $v_n - u_n \rightarrow 0$, which contradicts relation (2). Hence $\gamma = 0$. Let then $\{t_n\}$ be a sequence of members of $N^o \cap \{a, x_0\}$ such that $\alpha(t_n) \rightarrow (\gamma = 0)$. We claim that $t_n \rightarrow a$; for let $\{t_{n_0}\}$ be any convergent subsequence of $\{t_n\}$ and let t_0 be its limit; then the possibility that $t_0 > a$ is ruled out by the definition of a; hence $t_0 = a$. Thus every convergent subsequence of $\{t_n\}$ convergees to a, or, $t_n \rightarrow a$, while $\alpha(t_n) \rightarrow 0$.

Since $t_n \in N^c$, equation (1) holds with $x = t_n$ and $y \notin N_{t_n}$. By applying Lemma 1 to $E \setminus UN_{t_n} = E^*$ (say), we may take an accumulation point y_0 of E^* which is itself the limit of a sequence $\{y_n\}$ of accumulation point of E^* . We may then appeal to Lemma 3 to conclude that f is the form $\exp Q^{\pm}$, where Q^{\pm} is a quadratic polynomial, on each of the sets

$$\left(a+\frac{1}{k}\pm y_0, x_0\pm y_0\right)$$
 for every $k=1,2,...$

(It is easily seen that Q^{\pm} is independent of k). It follows then that f is of the form $\exp Q^{\pm}$ on the sets $(a\pm y_0, x_0\pm y_0)$. Now

$$f(t_n+y_0)f(t_n-y_0) = \alpha(t_n)\beta(y_0), \text{ for all } n$$

$$\alpha(t_n) \to 0, \text{ as } n \to \infty$$

is then in contradiction with the facts that

$$f(t_n + y_0) = \exp Q^+(t_n + y_0) \to \exp Q^+(a + y_0),$$

$$f(t_n - y_0) = \exp Q^-(t_n - y_0) \to \exp Q^-(a - y_0).$$

Hence $a = -\infty$; and similarly $b = +\infty$. Consequently $\inf\{\alpha(x) : x \in \mathbb{N}^c \cap I\} > 0$ for any compact set I. It follows from Lemma 3 that f is of the form $\exp Q$, throughout \mathcal{P} .

Proof of the theorem: Let $U = \frac{X+Y}{2}$ and $V = \frac{X-Y}{2}$. Then the joint density

of U and V is $2f(u+v)\cdot f(u-v)$. Let $q(v)=\int f(u+v)f(u-v)du$. Let $x_0\in E$ be fixed. Then by our hypothesis we get

$$\frac{f\left(u+\frac{x_0}{2}\right)\cdot f\left(u-\frac{x_0}{2}\right)}{g\left(\frac{x_0}{2}\right)} = \frac{f\left(u+\frac{x}{2}\right)\cdot f\left(u-\frac{x}{2}\right)}{g\left(\frac{x}{2}\right)}, \text{ a.e.u,}$$

for all x in E. Therefore

$$f\left(u+\frac{x}{2}\right)\cdot f\left(u-\frac{x}{2}\right) = \left[\frac{f\left(u+\frac{x_0}{2}\right)\cdot f\left(u-\frac{x_0}{2}\right)}{q\left(\frac{x_0}{2}\right)}\right]\cdot q\left(\frac{x}{2}\right),$$

a.e.u. for all x in E. Now the theorem follows from Lemma 4.

Acknowledgement. The author wishes to thank Professor K. R. Parthasarathy for suggesting the problem and for many helpful suggestions; the author also wishes to thank a referee for pointing out several mistakes, for removing many obscurities from an earlier draft, and for suggestions for improvement.

REFERENCE

PARTHASARATHY, K. R. (1976): Characterisation of the normal law through the local independence of certain statistics. Sankhyā, Ser. A. 38, No. 2, 174-178.

Paper received: March, 1982.

Revised: March, 1985.