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ESTIMATION AND TESTING IN AN AUTOCORRELATED
LINEAR REGRESSION MODEL WITH DECOMPOSED
ERROR TERM: THE CASE OF TWO
AR(1) COMPONENTS
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SUMMARY. Thiv papur wwunos n linoar rograssion model whore the diturbaacs teom s
1 1 1 into two indopendent T vach following torog; ive proccrs uf onler ).
Such a spoaification of tho disturbance torm of an sutoocurrolated lincar rogrogsion modol i ox.
poctod tu bo more complota from the pouit of viow of Rources of autocorrolation {say, vrrurmin-
obsorvations andfor misspeaifioation) boing incorperated into tho model. A large ramplo tret
in nuggoeton to idontify difforont wituations that aro charnotorizod by difforont combinntions of the
pammotons involverl in thy variaee -eovarianco matrix of the orror torip, Mothods fur obtaming

consislont and ollicient ontumator for udl the cascs aro also discumsod.

1. INTRODUCTION

In the stundard econometric literuture cstimation of o linear regression
model with autocorrolated crrors ia done by assuming some particular
stationary stochustic process [e.g., an autorogressive (ARR) or o moving
avoruge (MA) process] for the errors. ln fact, until recently the common
practice has been to ussume an AR(l) process. This kind of an approach
docs not seem to bo quite satisfactory [see Nowbold und Davies (1978) in
this conncotion] and may not even be easy to justify often. For cxumple,
if the error terin is viewed as the sum of two indopendent components—one
representing tho offocts of omission of variables and the other orrors-in-
observations-then the autocorrelation in the composite error term can be due
to autocorrelation in either or both the components. If these independent
additive error components are assumed to follow AR(1) processes, the compo-
site error term will, indeed, not follow an AR(1) process.! It will, in fact,
follow an ARMA (2, 1) process [vide Granger and Morria (1976) and Rose
(1077)]. Some of the standard two-step cstimation mothods like thoso of
Cochrane-Oroutt and Prais- Winsteu which are based on the mumpm" of

1Tho samo conolusmn wnll bo vnlul ovon if one of the two Fe in not fatcsl

Furthor, tho wamo typo of conclumion will holit if tho individunl cuinpononts are assumed to follow
othor stationary stochastic procossos,

AMS (1080) subjost claseification : 12J02, 12120,
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AR(1l) errors might then be inefficient. It seems, therefore, necessary to
examine whether an observed autocorrelation in a regression equation is due
to one or both of these factors, and accordingly make suitable assumptions
about the error processes for efficient estimation.

It may be argued that in a suitation like the one considered above, one
can straightforwardly assume the composite error term to follow an ARMA
(2, 1) process and then estimate the parameters of the model by available
methods [see, for examploe, Pierce (1971) and Judge et al. (1980)]. In our
opinion, howerver, there are still valid reasons for undertaking a study of the
present type. Specifically, when one of the error components arises out of
misspecification [cf. Ramsey (1969), Chaudhuri (1877, 1979) etc.] it is worth-
while to sec if we can ascertain whether the observed autocorrelation is due
partly or wholly to mispecification. Such an information is helpful for various
reasons. Firstly, one can then try to respecify the data matrix for proper
reestimation. Secondly, an appropriate error variance-covariance matrix
can then be obtained depending on the nature of the observed autocorrelation.
And finally, if autocorrelation in the error results from misspecification of the
data matrix, it is likely that some standard assumptions of the classical linear
regression model will be violated so that the usual two-step methods of esti-
metion will no longer be efficient [vide Maddala (1977) and Judge et al. (1980)).
To devise an efficient estimation techniquo for such a situation a knowledge
of the source(s) of observed autocorrelation would be useful.

This apart, for the type of error structure considered here, there is no
a priori basis for using an ARMA(2, 1) error process since one would not
know beforehand if the error is, in fact, sum of two independent AR(1) com-
ponents. Also, the presumption of an ARMA(2, 1) process would lead to an
unduly complicated structure of the error variance-covariance matrix com-
pered to the one resulting from the assumption of AR(1) processes for the
two independent additive components of the error term.

In this paper we consider & model whose error term is decomposed into
two independent additive components with the possibility of both being
generated by AR(1) processes, and develop a large sample test for identifying
various autocorrelated situations. We also suggest methods for obtaining
consistent and efficient estimators for the parameters of the mode! according
to situations. These include estimators for situations where standard methods
turn out to be inapplicable. The test procedure as well as the estimators
suggested here are based on ordinary least squares (OLS) residuals and hence
are computationally simple.

B 1-19
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In what follows in Section 2 we present the model. While in Sectiog 3
the nature of the error process is discussed, the nature of autocorrelation of
the error term is characterized in Section 4. Section 5 deals with the deve.
lopment of a large sample test for identifying tho source(s) of autocorrelation.

And lastly, the estimation method is described in Section 6.

2. TAREBE MODBL

We consider a A-variable linear regression model which is written in
matrix notation as

y= Xp-ret e (2.1

where X is the (»Xx k) data matrix on & regressors, B is the (kx ) vector of
wssocinted regression coefficients, y is the (2x 1) vector of observations on
the regressand, and et is the (2% 1) vector of disturbances.?

Wo make the following assumptions ? :

(i) et =gtz forallt=1,2 ..., n e (22)
(ii) X is stochastic but disturbuted independently of both € und = *
(2.3)
where € = (g, €, ..., £,) and 2 = (2, 2q, -... 2,)’-
(ili) € is independent of z. o (24)

#0ne of the rogressors in the squation in (2.1) may bo takon to bo unity for all £ incorporating
thoroby an intercopt term in tho equatinn.

SIf tho mgrossion oquation in (2.1) is iderod as o misspocifiod equation then it can bo
shown that !i" is indeed tho sum of ¢y, tho oror torm in tho trun rogression equation, and & which
i duo to wismpeoification [son, for oxample, Ramsey (1869) and Chaudhburi (1879)). Also, 04
noted hy Judgo et al. (1080) and notually shown by Chaudburi (1878), tho Durbin-\Watson (W)
statistio oy como out to Lo significontly losa than 2 more oflen than the predotermined st

kind of error.  Thero is thus a risk in applying DAV tost for detocting sutocorrelation in the errof
torm in this situntion.

¢“The nssumption that X and £ aro indopondont may apy to bo restriotive. It wal.
bowuvor, bo notod horo that tho assumption is noadod only for catimation and not for tho tost

pruposcd.  For tho Iater it ia snough to assumo that plim (% x’s) = 0. This ia a much weakor
n—bwm

askumption, and it gota satiafiod for o misapooiflod modvl whoro B is rodefined (ss comparxl to the
truw modol) 40 us to captwro as much of tho additional infl of tho oxcluded r ra on the
rogrossand as possiblo (sco Chaudhuri (1070) and Gupta and Maasoumi (1979) for dotails}. 02
tho othar hand, if ono trics to ostimate the model by dirvctly nssuming an orror procosa for gt-on
ARMA (2, 1) procoss in our caso—thon ho would noscesearily hovo to neswuno indopendence of
X and &* which, given our decomposition of €+, would slao imnply indopondones of X and & Henc®
standard mothods of oatimation wvailablo for cstimating models with ARMA procosmos o
oqually vitiatod by tho rostriotivonoss of this ussumption.
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(iv) Ep = Pty ... (2.5)
where |p,| << 1 and wus's are independently distributed with zero

mean and constant variance o3.
(v) z4 = paZi-1-tus .o (2.6)
where |p:| < 1 and v/s are independently distributed with zero

mean and constant variance o?,

(vi)y  plim (i X'X) = Xz, 8 pusitive definite matrix of rank k < n.
e R

e (2.7)
Obviously from (2.5) and (2.8),
gt %
Viee) = a% = T—ot |
bz | forallt=1,2,..,n e (2.8)
14 = 0?2 = o
(z¢) z qg ;

3. NATURE OF THE ERROR PROORESS

It hns been mentioned earlier that the error term will not, in general,
follow the same process as that generating the individual components. We
may now illustrate this for an AR(1) process. \Vhile the general result on
this is well-known, the following argumentas may shed some light on the issues.

Let us assume that e%'s are given by
et = pef_,+ 1w .. (8.1)

where |p| < 1 and we’s are independently distributed with zero mean and
constant variance o2.

Now, since e} = e;-}-z;, we have from (3.1),
gtz = pleey+2zey)+wn
or, wy = g4—pee_y+2n—pzg_y. ... (3.2)
Iet us now consider the first-order autocovariance of 1w given as
cov(wy, wy_y) = cov(es—pes_y-+24—pP2i_y, €0y —PE_g—+2Zs_y— PRe_s)
= oY (1—pp)(p.—p)+ 31— ppe)(ps— p)- - (3.3)
Clearly, this is not, in general, equal to zero, as required for assumption (8.1)
to be true. The covariance will be equal to zero only when
() p=pe=p, or, (i) either 63 =0 or o% — 0%
% Both aE nnd 175 onnnot ho oqunl to zoro bocause that would mm-xn thoro ig na dllturbnn‘c;

torm in the modo). If ono of thom (sny, a%) ia oqual to zoro, thon obivously p = P, and honco
ooV (wy, wi,) = O,
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We thus find that even if both & and z separately follow AR(1) proces
¢+ would not, in general, follow the same process. As noted earlier ¢+ would.
in fact, follow an ARMA (2, 1) process.

4. CHARAOTERIZATION OF THE NATURE OF AUTOCORRELATION
We may now present a method of investigating the naturc of the dis.
turbance term® under fairly mild assumptions. In order to describe the
method conveniently we msy first enumerate the possible situations as shown
in the following table :

TABLE | : DIFFERENT MODELS FOR THE ERROR TERM

pr =0 P O
o3 =0  caso 8 caso 5*
150 onso 1 : pg 55 0 caso 2:p;, = 0
a
’ onso 4:py =0 cnso 6 : py 7 0 and pg 7 P
case 7: pr 7 0 and p, = p; = P (say)
*® For oasea 3 and 5, 02 = 0 which implics ;; = 0 for all 1. Thoroforu p, is not doflned for

thoeo two casos.

It is possible to further characterize the different possibilities in terms of

the parameters p, ps, % and of. For this purpose we consider the OLS
residuals et where

et — y — X @ and f Is the OLS estimator of f

Now,
p=(XX)Xy
=Pf+X'X)y ' X'eH(X' X)Xz
and thus
EEE B == B by assumptions (2.3) and (2.7). oo (41)

Therefore, e+ converges in distribution to (e+42) as » — co.
Let us now define

S
% efet,
B, ='=2
1= e
X ef?
=1

® In ordor to ensurc that tho orror term has at loaat ono d Intod
or not, wo assume, without any loss of gonorality, that a? >0,
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Since e* converges in distribution to (e-}-z),

§ (es+20) (epyt2e)
plim g, = plim -——4—m—«——. . (4.2)
e " X (gt
1
Assuming that ugs in (2.5) and v's in (2.8) have finite fwurth-order
moments?, we have

. 1 8 : 10
I:il'ﬂ; = lz g =0} I:’_l.“: 7 %t =po)
iml £ =0 and plim -3
pim = Zaf =07 and - PhT 5 T = AoL
Therefore (4.2) can be shown to reduce to
: - PPt
}:—lj.n: P(= p,, vay) = 5! o to? ! o (4.3)
Let next define
» i" efets
~ []
Py = 77—
Setel,
2

Again, by similar algebraic simplifications und making the same assumptions,
we get
i s = Pt plol
lim = , BRY) = . e .
plim 21 = (o) = L2000 s
The values of plim 5, for the different cases listed earlier may now be
n—wo

presented in the folluwing table.

TABLE 2: VALUES OF plim ;;;(!= £} FOR THE DIFFERENT CASES OF TABLE 1
n=>de

pe=10 Pe 0
.,f:o cado 3° : ) onRo 6t pe
enso 1: gy case 2 : o
w’.>0 23 0’
coso 4% U cnso O xm
0% +pioy

0080 71 pwhoro p, = pg = p # 0

*Striotly apoaking, for cases 3 and 4, gy = % and henoe undofined.  In thoso two cascs,

what in roally monnt by tho ontrioa in tho tablo is that plim cov (a}, a"‘:_‘) =0,
n—pr
Vids Goldborger (1063), pp. 149183,
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5. A LARQE SAMPLE TEST FOR DETEOTING THE SOUROES
OF AUTOCORRELATION
Lot us define the random variable
b1 = ef —Pget,. . (6
As sot out in Table 2, 2, takes different values in large samples for different
cases.

Now, let C, be defined os
Cy = cov(dy, $i_y), foralls > 0.

Then
Cy=coviel, g ,)— Py covie}, et ,_\)+P% oov(el,, elao1)—Byooviel,, ef,).
(5.2)
Now in large samples
covief, ef.,) = cov(z;, z;_s)+00v(e, €1_) = plot+plot. e (63)

Therefore from (5.2), we have®?
Cy = plot+plol—pypit o —pyp 08 +7ipiot
+A3plt—popi ot —Popt ot ... (6.4)
In order to examine the autocovariance structures of ¢y's, we obtain
C,'s for a > 0 for each of the seven cases and present the values in the follow-

ing table whore the seven cases are arranged under three groups. The algebra
is straightforward for all the cases and hence is omitted.

TABLE 3 : AUTOCOYARIANCE STRUCTURES OF ¢; FOR THE
DIFFERENT OASES

group caso  valuos of paramotoms autocovarianco struature

] Pa=0.p3 0,08 >0 1
Oy # 0,0, =0 yap3
2 Pe 0, p = 0.02>0 J

3 Pa=0,0%=0

i g + Pe=0,p = 0,08 >0
Gy Opapl
1 pugt 0, vf-:l]
T m=p=p#ENoES0
m L] 054 py = a7 0,08 > 0 O,EO0yvesl

“Honcoforth, without any losa of genamlity, wo shall take O, to bo plim G..
e
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1t is now olear from the above table that we may distinguish among
three broad groups of cases on the basis of the first two autocovariances of
¢¢'s. However, the disorimination among these groups of cases on the basis
of zoro/non-zero values of the autocovariances of ¢,'s can equivalently be
done by using autocorrelation coeflicients of ¢¢'s and hence we suggest appli-
cation of Bartlett's well-known test {see Box and Jenkins (1876). pp. 34-36
and Malinvaud (1V80), pp. 442—444]| to oxaminc whether the population
autocorrelation coefficients of @,'s (f = 1,2, ...) are effectively zero beyvond
a certain lag.

It can be noted that all nssumptions of Bartlott's test® are satisfied if we
assume ¢&¢'8 to be normal (this will automatically meun assumption of nor-
mality for ¢}'s) and hence it can be used to diseriminate ameng our three
broud groups of cases. This, however, would not solve our problem com-
pletely. Tu uchieve complete identification wo have to further distinguish
among the different cuses falling under the same group. It does not seem
possible to distinguish between the two cases in Group 1 which are observa-
tionally equivalent. But for Group II, we can divide the four cases into
two subgroups each consisting of two indistinguishable cases. While in
Cnses (5) and (7), s follow an AR(1) process, in Cases {3) and (4), ¢f isa
random series. In fact, we test the null hypothesis

either p, =0, 0% =10
Hy:

or Pa=0 p=0 o> 0
aguinst the alternative

either p, 20, 6Z=20
H,:
or  p=p,=p#0, 03>0
by using the conventional DW and other tests.
We may now restate the final groupings of the seven exhaustive cases

according to their identifiability on the basis of the tests proposed here. The
broad descriptions of the situations are also given here.

) p,=0, #0, o> 0 and
Group I : o } AR(1)+Random
(i) p,#0, pg=0, 3> 0

() pp=0, oi=0 and
Group II : Random
Eubgroup ) (i) p,=0, pe=0, 02>0
A5 & ' And c'v 410 mtationnry processos and ot &4+ in distribution as n— ©, at'a
{(and honeo ¢y's) woultl bo stationary in largo samplea,
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Group IT : AR(1)
(subgroup 2) (i) p,=ps=p #0, 0> 0

Group IT : (i) Os#p,#ps#0, 0i>0 AR(1)+AR(1).

It may be noted that the failure to achieve further discrimination does
not really affect the conclusion regarding the nature of autocorrelation in the
error term. This may be seen by looking at the interpretations of the cases
belonging to the four groups/subgroups stated above. Thus, if an observed
situation is found to fall in Group I, the conclusion would be that while both
the components aro present, the autocorrelation is duo to only one of
them. The situation represented by Group III, on the other band,
implies that the autocorrelation is due to both the components being auto-
correlated. Cases coming under subgroup 1 of Group IT indicate that there
is no autocorrelation in the error term. The first case in the subgroup 2 of
Group II would mean that the error term is autocorrelated and that it is due
to one component only, the other being absent.’® Clearly, the autocorrclated
linear rogression model commonly considered in the literature really deals
with situations described in subgroup 2 of Group IIL

6. EsTIiaaTION

We have seen in the last section that it is not possible to know exactly
which particular case out of the seven possible cases, a given set of data
represents. (The only exception is Case (8) under Group III.) The most
that could be done by using our tests is to clessify o given situation into one
of the four broad groups/subgroups. However, although it is not possible
to distinguish between the cases in the first three groups/subgroups, one can
atill consistently and officiently estimate tho regression coefficients for each
of the seven cases if the broad groupfsubgroup to which & particular case
belonga could be identified.

We now deseribe the method of estimation to be applied for the different
situations. For this purpose, it would be convenient to first obtain the struc-
ture of the variance-covariance matrix of e* for the most general case wherd

g2>0 and 03 p, 7% pg # 0.

Since & = ete
19I5 tho othor caso of thin group, both tho }s ta aro prosont and yot tho orror ﬂ:
follow an ATt(]) procoss. But thon pq = ps = p 52 0 and this in unlikely to happon in obsery®

situations.
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we have
cov(e?, et ,) = plot+plot for s=0,1,..,(—1
andt=1,2,...,mn,
Henco
othot  polteat . pelesiol
|
| pIi+pui oi+o? ... pi-ted4pr-tol
Plet) =

R I e I

1+o3 putpeos . piipilof

Pet-Pe0} 1+0% e PEppI 0 |
=gt | ... (8.1)

PN pE g piPpi oy Laf

where g% = o¥fod.
Clearly, depending upon the particular values of the parameters involved,
this matrix will assume different forms for the different cases.
Let us first consider subgroup 1 of Group II which comprises Cases (3)
und (4). [t may be seen thet the variance-covariance matrix for this group
is

V(et) = o+,
ot for Case (8)
where ot =
{ o2+o0? for Case (4).

It is obvious that in either case the best linear unbiased (and consistent)
estimator of the regression coefficient @ for such a model is given by OLS
estimator and the estimate of the asymptotic variance-covariance matrix
of @ is given by

-1
nipn (1 X'X)
n

b &2
where pa =1
n—k

It may be noted that 8+2 will estimate o2 in Case (3) and (s2}-0?) in Case
(4) consistently. It is therefore a consistent estimator of the disturbance
B 1-20
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variance in each case. Thus, even if discrimination between Cases (3) and
(4) is not possible, application of OLS will yield best estimates irreapective
of the actusl situation.

Now, for all the other cases, we can apply generalized least squares
(GLS) taking oV, (where o® and V, are different for the different cases and
V, is assumed to be positive definite) as the form of the variance-covariance
matrix of the disturbances. It is well-known that the application of GLS
will yield consistent und asymptotically cfficient estimate of 3. The trouble,
howovor, is that V, is unknown and hence & straightforward application of
GLS is not possible.

This problem can be tackled by using a result given in Theil.
The result! is that given a consistent estimator l;'o of ¥y, 8, 02 and the asympto-
tic variance of 5, the GLS estimator of  using 170, can under certain conditions

be consistently and efficiently estimuted by GLS with V¥, replaced by 170.
The problem then reduces to finding a consistent estimator of ¥, for each of
the possiblo cases.

If the tests suggested earlier indicate that a given situation falls under
Group 1, then the variance-covariance matrix of €+ is given by

l _l
13— 2 n—1
( +a,a) Pz Ps Pe ‘\
Vie) = o3| o e |
------------------ |
. 1
ks (1+ ,—5)
= oW,
or,
I (1+ed ot o
Pe Q+ed)  p, i
Wey=ot .. ... e
i n ot At (140d)
—op, B

$¥Tho result and the conditions can’ba found in Thoil {1871, p. 309),

It can oasily bo scon
that tho conditions are eatisflod in the prosont caso.
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where 02 = 03/o?, as before, and V, is defined as above according to the specific
ocase.

We now suggest the following estimator ¥, for ¥, :

Palby B A . R
Py BBy B . PP

T BT B BB
(- _!
It can easily be seen from the definitions of 5, and p, in Section 4 that
17, is a consistont estimator of ¥, irrespective of whether we have Case (1)
or Case (2).

It may be noted that if o particular situation corresponds to cither of
Cases (5) and (7) in subgroup 2 of Group II, then the error actually follows
an AR(1) process with autocorrelation cocfficient p, or p os the case may be.
For this the consistent estimator of V¥, is very well-known.

We may finally consider Group III which consists of only one case viz.,
Case (6). We have already presented the variance-covariance matrix for
this cuse in (6.1). Now to get a consistent cstimator of this variance-co-
varisnce matrix, we first define

1

L]
8= — X efef,i=0,1,2,8.
1 Rt purn tC—ir

Then assuming that for both %, and v; fourth-order moments are finite [vide
Goldberger (1963), pp. 149-153] and using the fact proved earlier that e con-
vorges in distribution to e;,+2z as n — o0, it is easy to see that

plim S = pioi+plet, i =10,1,2,8.
e

We may then obtain consistent estimators of p,, ps, 08 (= o}jo}) by
solving the following equations :

S, = 0"?"*‘0'3
8y = p,o-1peot
S, = plol+piot

8; = plot+plol.
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— sn—ﬂns 1
Sl _ﬂxso

Thus, ﬁl

and 88 =1+ {—— S —1}
° T (S, —2.S)Bs—P)
where 3, is n solution of the quadratic equation
PHST—~808,) +-p(S2Sy— 8,8, + (85— 8, 8) = 0.

In case the quadratic equation yields two real roots each lying hetween
—1 and +1, we shall choose that solution as the estimate of p, for which
the residual sum of squares is minimum. Even though this general method
of obtaining consistent estimates of the parameters p,, p; and o} could, in
principle, be applied in all the cases, one may not use this method for the
other cases because once the relevant group is identified, the methods for
obtaining consistent estimates of the relevant parameters for these cases are
feirly easy and efficient, at least asymptotically.1®
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