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BY
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1. Introduction

Ifor finite-memory channels as defined in (1) the equality of stationary and
ergodic eapacities has been proved by I. P. Tsaregradsky (2| and L. Breiman
[3]. For channels with infinite memory we give & new definition of the rate of
transmission which coincides with the usual definition for finite-memory
channels. By utilising the representation of a general stationary measure
as a direct integral of ergodic measures due to Kryloff and Bogoliouboff [4],
we obtain a representation for the rate of transmission of any stationary input
in terms of the rates for ergodic inputs. This representation leads to two
important results: It shows that for any stationary channel the ergodic
capacity is equal to the stationary capacity, and that the ergodic capacity is
attained whenever the stationary capacity is attained.

2. Basic properties of stationary and ergodic inputs

In this section we shall consider stationary measures on the Borel field
generated by cylinder sets of the product space

A =Tl 4, A=A foralli,

where the product is taken over all integers and A is a finite set congisting of
a elements. Then under the product topology we can assume A’ to be a
compact metric space. If T is the shift transformation of A’ into itself, then,
under the group of automorphisms T™:n = -+, —1,0,1, -+, A" becomes
a compact dynamical system. Hereafter we shall follow the notation and
terminology of Oxtoby [5). If f(p) i8 & real-valued function on 4', let

(2.1) M{f,p, k) = Jilp) = (1K) Ziaf(T') (k=1,2--)
and
(22) M(f,p) = fX(p) = limues M(f, p, k)

in case this limit exists. A Borel subset E of A’ is said to have invariant
measure one if u(E) = 1 for every invariant probability measure u. Let @
he the set of points p for which M(f, p) exists for every f¢C(A’) where
C(A") is the space of continuous functions on 4'. It follows easily from
Riesz’s rep! tion th that corresponding to any point p ¢ Q there
exists a unique invariant probability measure u, such that

M(f,p) =jfdn.-
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Let R C Q be the set of those points for which u, is ergodic. R is called the
set of regular points. Now we quote from Oxtoby’s paper the results of
Kryloff and Bogoliouboff for reference.

Taeorem 2.1 The sel R of reqular poinis ia Borel measurable, and of in-
varion! measure one.

TaeoreM 2.2. For any ergodic measure y, the set of regular poinis p such
thal p, = p 18 of y-measure one.

Turporeu 2.3. For any bounded Borel measusable function f on A, [ f du»
12 a Borel measurable function of p on B, and

[sa= [[[1am ] ot

for every finile invariant Borel measure .

TuroreM 24. For any Borel sel E C A’, uy(E) is Borel measurable on R,
and

WE) = [ 1(B) du(p)

for every finile invariant Borel measure u.

We denote by [z,, - -+ ;) the cylinder set of points r in A" where &, ...
i coordinates are z;, -+, z;, respectively. Let F, be the Borel field
generated by cylinder sets [z, - - 2] where 4}, - - -, &, vary over negative
integers only. Let Z, denote the cylinder set of points with zeroth coordi-
pate equal to a. Corresponding to any finite measure u we consider the
following conditional probability function g,(x, a) given by

(23) WEnZ) = [ 0le, o) duta)

for any Borel set E in F;. We shall now prove the following theorem con-
cerning g,(z, a).
TuEoReM 2.5. If u, w, ond w are invariant measures in 4',
p=om+ (1 =a)m(0Sas1),ondpand s are orthogonal, then
0a(7, @) = gu(z, ) ae. z (w).

Proof. 8ince y and s ere invarient” and orthogonal, the critical sets in
which their masses are concentrated ean be taken to be invariant and hence
in F2. It is then immediate from the definition of conditional probabilities
that

0(%, @) = gu(3, a) ae.z (m).
‘THEOREN 2.8. If 4 ia an invariant probabilily measure, then
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0(z, a) = g,,(z, a) 8e. z (15)
for abmost all p (p).

Proof. For any invariant measure u, we have from (2.3) and Theorem
2.3,

24) wEZ) = [ o) dute) = [ [ [ oea) donte) [ utp).
From Theorems 2.4 and (2.3) we have

09 w(Ba2) = [ Bz dute) = [ [ [ one o) dote) [ uto,

where R is the set of regular points and E Is any set in F7 .
For any invariant set A for which u(A) is neither zero nor one we can
write

“=a"l+(1_a)“h
where a = u(4), w(E) = u(En A)/u(A4), snd m(E) = u(En A')/u(4’)
for any Borel set E. Then g and p are invariant and orthogonel. Hence,
by Theorem 2.6,
o(z, @) = g (2, a) ae. z ()
Substituting g for p in (2.4) and (2.3), equating the two expressions, and
making use of Theorem 2.3, we obtain

o) [ [f oo dund |auto) = [ [ [ outer ) )| e

for any invariant set A and any set Ein Fz. Since the functions of p within
the square brackets in (2.6) are invariant and thus measurable with respeot
to the a-field of invariant Borel sets, we have, for all cylinder sets E ¢ F; and
almost all p (u),

[ ouz,2) dugta) = [ gnla, @) i (2
] 4
The required result now follows from the uniqueness of the Radon-Nikodym

derivative.

3. Properties of the rate per letter of an information source and
transmission function of a channel

As ig well known, the rate per letter of a stationary information source
[A', u] is defined as the limit

(31) (s, A) = limyg —(1/1) Dtey.iony slay -+ 2] log plry -+ 2l
For any point z = (+++, 21, %, T, ***), let

hy(z) = ga(, %)
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Then by MoMillen’s theorem (1], —log h,(z) is integrable with respect to g,
and

el A) = = [ log y(2) d.

Now we ghall prove the following representation theorem.

TueoREM 3.1. There exisls a funclion h(p) defined over R such thal for
every invariant probabilily measure y,

el 4) = [ hp) dut).
Proof. Define
(32) h(p) = — f log g,,(z) dup(z)

for any regular point . By Theorem 2.6,
hu(2) = h(2) ae. z ()

for almost all p (u). Since —J log hy, du, is Anite for almost all p (i), by
Theorem 2.4 and Fubini’s theorem we have,

(o 4) = = [oghte) du = = [ [ [1og ) dste) |

= ‘f, [f log hy,(z) du»(:)]dn = f h(p) du(p).

This completes the proof.

Remark. It has been pointed out earlier by Breiman that the rate per
letter of an information source is linear in the convex set of stationary prob-
ability measures. The above theorem shows that it is not only linear but
given by an integral.

Next, we ider an arbitrary stationary channel [A, v, B), where », is 8
measure in B’ for every fived z in A’ p ing the usual stationarity proper-
ties, viz., »(F) = vn(TF) for any Borel st F in B’, T being the usuval shift
operator, For ench fixed F, the function »,(F) is d to be bl

Let |yi, iy -+ Yaol denote the cylinder set of all points y in B’ whose
i, i oo, it coordinates are yy,, Y, c, Y. respectively. Write

(33)  3(2) = —(1/8) Dyt walth -+« pal log nalin -+ 3,

where the summation is over all eylinders of the type |y, -+~ ya]. For any
stationary probability measure u in F, , let

(34) X B|4) = Im [ s,(x) dua).

The existence of the above limit is a well-known result in information theory.
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THEOREM 3.2. There exisis a function H(zx) such thal

w(wB14) = [ Hiz) dula).

H(x) 1a given by

(3.5) H(z) = —/ log v.lya| y-1p-s - -] dva(p),
and

(36) sl Yorges -] = lim 2elen b

wae Vell—tary Yo
Proof. The existence of the limit (3.0) for almost all y () is a well-
known result. in the theory of martingales. Further, proceeding in the same
way as in the proof of Lemmas 7.3 to 7.7 in pages 67 to 70 of [6] we have

(37) im [ 1ou(z,) = oz, ) | dnly) = 0,
where
(38) galz, 9) = —log {w}

, elh—nts -+ Yl
and
(3.9) 9(x, y) = —log wilyo | yory—s -]
Thus,
(3.10) l,.l?:, _[ gal2, ¥) dv(y) = —[ glz, y) dvily).
Let

@) HnBI) = =3[ Tl g log ol -+l duta).

Then, by applying the well-known result that
[iMas @n/bn = liMaaa (@80 — @acr)/(ba = ba-i)

whenever the second limit exists and b. is monotonic, to the sequence H,,
we have

vl - Yad]
provided the limit on the right side of (3.12) exists. Further

v,[h )
(3.13) _'/[Z Pl sl I]d"m

= _f [Z venlyoia-n <+ g log ey -yl

(312) i H (s, B| 4) = lim — [ {z gy -+ o) log 2~ ) }d @

vl
verulyoen o Y] aulz)
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where 7" is the shift transformation applied # times in the reverse direction.
Changing the variable z to T"z in (3.13), we obtain

lim Hu(, B 4) = lim = [ [ 1og ,—:'w[”_‘(‘:_‘l;’ _'j,'y”_"]] dni(y) duz),

which becomes

(s, B14) = = [[ log e g-sea -+ 1 dvle) du(z) = [ H(o) duCa)

by the bounded convergence theorem and (3.10). This completes the proof
of Theorem 3.2.
For any stationary measure u in F, , let the measure 5 be defined by

oB) = [ P ).

nis defined in F, .
Dervition 3.1, For any stationary channel [4, »,, B] the rate of trans-
mission for any stationary input measure p is defined by the equation
®(p) = X(n, B) — ¥(s, B| 4).

It is ensy to see that this definition of rate of transmission coincides with
the usual definition for finite-memory channels.

TueoreM 3.3. For any slationary channel (4, »s, Bl

8(0) = [ @) dutp).

Proof. This is an immediate consequence of Theorems 2.3, 3.1, and 3.2
and (3.2).

COROLLARY 1. Supy stationary) R(s) = SUP(e ersoaior R(k).

CoroLLaRy 2, The set of slalionary measures af which the capacity can be
achieved 18 a closed conver sel whose exlreme poinls are ergodic.
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