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ON STATIONARY RECTILINEAR VORTICES IN THE CORNER
OF PLANE WALLS MEETING AT RIGHT ANGLE

K. D. DEBNATH AND A. GHOsH

( Received March 14. 1973 )

Abstract : The possibility of existence of one or miore stationary rectilinear voruices ina frictionless
fluid at the corner of two perpendicular plane walls has been studed  The case of two vortices has been
studied 1n detail. 1t has been found thal two vortices of opposite signs and of different strengihs can remain
stationary 1n a stagnation Bow in a comer.  Stream lioes for 8 parlicular casc have been raced  The question
of stability has not been discussed.

1. Introduction : Recircutating flows occur in many practical problems. Flow in reclan-
gular cavitics, Bow beneath a hovercraft, flow between the tubes of a superheated boiler, flow
behind a bluff body, all have recirculating flows. 1n many problems the heat transfer 1s very much
dependent on recirculating flows.  The Heat transfer will be much affected if instead of one there
are two or more recirculating fows.  Decclerated stagnation flow with separation is a particular
case of recirculating flow.  Foettinger's {see Schlichting) well-known photographs show the existence
of a big vortex in the corner with a few smal! ones rotaung in the same or in the opposite directions
though they are not necessarily stationary. In the present siudy the possibility of existence of one
or more stationary vortices at the corner of two perpendicular plane walls for a frictionless fluid has
been investigated.  One or more vortices of different strengths have been placed in a stagnation How
near the corner and conditions have been found out so that it they may remain slanding. The
case for one vortex is quite simple and one finds that the line joining the centre of the vortex to the
corner makes angle of 45° with each wall. The distance of the vortex from the corncr increases as the
magnitude of the oncoming flow is decroased.  The conditions that two vortices may remain siationary
give rise to four complicated equations with four unknowns. They have been solved taking particular
values for the strenglh of the vortices and the magnitude of the stagnation flow. Solutions could
be obtained only when the vortices are of opposite signs. The position of tiie vortices with their
strengths for a few particular cases are given in Table 1. The stream lines for a particular case

when—:‘- = - 1/0.35 has been traced in fig. 8. Since the flow is frictionless the vortices with their
2

images on the wall parallel to the oncoming stream will also be stationary for a stagnation flow
perpendicular to a plane. The case for three stationary vortices involves six equations with six
unknowns and heace it will be much more difficult to obtain the solution. Here no attempt has
been made to find them. The question of stablity of the vortices has not been studied here.
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2. One stationary vortex at the corner of two perpendicular walls.

o

1y D1
K .

Let Ox and Oy be the l\vo plane walls meoting at right angles at O. The velocily
distribution in frictionless two L p ial flow in the neighbourhood of 1he stagnation

point x=0, y=0is given by

u=-ax
vmtay @

where a is a constant.

]
The plex p ial of the ion flow is a; . Let there be a vorlex of stength &,

ata poiot A, (z,). Then the image system is — K, at 2,,—k, at-2, and k; a1-z,.

To find the velocity of the vortex at 4, one lakes the complex potential

az? z4-2
Wi==5 ik, logr - 22

The vortex at A, will be at rest il
‘—2‘%:0 when z=z, .@3)

This leads to the relation

3z +2)7
Z, = T i e {24
i i 122,(z2-32) (2:4)

Putting z=r,e%"2, one gets

ky

.S T
ri=

2a e (29)
0= nf4

When the above conditions (2.5) are satisfied the vortex can remain in a stationary state.
The vortex always lies on the line 8="f,. As the magnitude of the flow velocity is inereased by



ON STATIONARY RECTILINBAR VORTICES ETC. 9

increasing the value of the constant “@"’, the distance of the vortex from the origin dccreases but
as the strength of the vortex is increased it gradually moves away from the origin.

The complex potential of the fluid motion is given by

(z-2,0(z+2,)

we T vl g TP @6)
The stream function ¥ is given by
_x”k. log Ux=x2)? +(y-p, ) Hx+ 3,02 + (y+y.)7 @

x=x)"+r+y)HxHx)? + (y =y,

The stream-lines for the particular casc
ky = i
r=- 21 =1 are given by
2a

_'l:_ X HytH142x2p7 - dxy . (28)

X+ pt414+2xy? +4xy

=xy+log

and have been traced in fig. 2.

There are two stagnation points §, and S, on the wails as shown in the figure. The fuid
inside the stream line S, S, recirculates near the corner,

3. Two stationary vortices at the corner of two perpendicular walls

Let there be two vortices, one of strength k, at A, (z;) and another of strength k, at
Ay(z,) in the stagnation fiow (2.1). The vortex at 4, (z,) has images —k, at z,,—k, at —2, and
k, at—z,. The vortex at 4,(z,) bas images—k, at z, and -z, and + k; at—2z,. (Fig. 3)
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-1, !: j:"u Lt

= pa”

i T4,
x, . b -y

The velocity of the vortex at 4, can be obtained from the complex potential function

wA,) = az z+z, Tiky lagz —z, 3.
The velocity of the vortex at A, is given by the complex potential function
¥
w(A,)_—.f';_ +iky log —+xk Iug z+ z, (3.2)
The vortex at A, will be at rest if
% =0 when z=12,
which gives
g 3z34+z7 . 2z 2z
kI tel g ik _:__x__] Y
12“(21:_2‘1) gt 70 -27 IR TS 3:3)
Similarly the vortex at A, will be at rest if
dw(A
_%Jl=0 when z=z,
which gives
ik','—lz’ +;’ =az, +ik [ - (3.4
22,(22 - 27) z; —zl e (349)

Substituting z,=r,e**1 and z, = r,e*sin cquations (3.3) and (3.4) and equating real and imaginary
parts one gets the following relations

k, cos 28,
sin 28,

r2 sin 200, —0,)
i+t =2 cos 28, -96,)

=ary? cos 20, + 2k,r) {

(3.5)

£ sin 20, +8,) }
8 +rd ~2r7r 3 cos 28, +9,)
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k - r®—rdcos2(6, —8,)
Ky arigin2t 2 1 [ 1—%
7 = 9in20, + 2hear { rd 7 —2r2% fcos2(8, - 6,)
_ ry® —ry'cos2(6,40,) } - (36)
et - 2rrcos2(8, +6,)
kgcos28, s { rysin2(0, -6,)
B =gy o520, + 2k, 1,0 L a1
sin2f, : O U S —2rr 7 cos2(8, - B)
_ ry°sin2(0, +9,) } an
rért -2 fr2cos2(0, +6,)
ky 2er - 7 —r.teos20, - 0,) rd—rl2cos20,+0,)
2 —ar.35im28 2% ra a 1 a 1 - a 1 a 1 } 8
2 rosindat2kirs {’|‘+’9‘ —2rfrfcos2(0,-0,) r\¢4rgt —2r7rcos2(8,+8,) (8)

These are the four oquations involving the four unknowns ry, 7y, 8, and 8, when k,, ky
and g are assumed to be known constants.

4. Solutions of Equations for two stationary vortices

Eliminating a between (3.5) and (3.6) onc gets

k,cos28, 1 1

AR or {1y c0s20, — 1 2c0528,) P+ 15t — 2r 3 Bc0s2(0, —0;) Iy +ret —2rirgcos2(d, +0;) @1n

Similarly, eliminating a belween (3.7) and (3.8), one gets

kqcos20, - 1 - 1 42
4kyro(r*cos28, —rilcos20;) rtryt -2y rcos2(0, —8,)  rt gt —2rrcos2(8, +85) “2)

Since the right hand sides in equations (4.1) and (4.2) are the same. equating the left hand side
expressions one can get the following simple relation
2 T
f‘,_ 60520,+l—(3,—00529a=0 o (43)

1 T2

From this refation it is evidont that if c0s28, is negative then cos28, is positive. So if 8,
lies between § and § then 0, lics between 0 and §. Again multiplying (3.6) by &, and (3.8) by k,
and adding one obtains the following relation
2 a2
%:r,’k,siﬂ?ﬁ, +rky5in26, e (4.4)

Now, solving for r,? and ry* from the equations (4.3) and (4.4) and substituting those values
in equations {4.1) and (3.7) one obtains the following two equations involving the two unknowns
8, and ¢

1 3

(k,tcos?20, 4k tcos?20,)" 4k Ok 2k, *cos®20, +-k, cos®20,)cos28, cos?20,
+ 4k *kgtcos?28, c05°20,c052(0, — 0,)c052(8, +-04)=16k 2k ,>c0528, co528,5in20,
5in20,(k,2cos320, +k3¥cos®20,) - (4.5)
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(kg — 2k 3)cos220,5in20, ~ 3k kP cos20, sin20, cos*20,
— 3k Sk Pcos20,8in20 5005220, (k7 — 2k ke 5)cos 328, 5in20, =0 e (46)

These equations invoive k, and ky butnot “a”. So#8, and 0, are independent of “a” i.e.
of the magnitude of the stagnation flow velocity. Once 6, and 0, are determined, the distance of
the centres of the vortices from the origini.e. r, and r, will be determined from equations (4.3)
and (4.4) and hence will involve ‘a".  To solve the above two equations (4.5) and (4.6) one makes

the following substitutions
c0s28, = X ; cos20,=Y; —kk—lx-=Al
2
and transforms the equations to the following form

ABX + Y - 248X Y  +4(ACH AN YO H4(A + A2) X2 ¥4

=164%3(A>X Y+ XY3)y (I- X1 -¥?%) e (4T)

(1=24%)Y2 VoY -3 XV I - X5 Y2 - 3AYX? T 1%

HA"-24%) (1= XY)=0 . (4.8)

The method adopted to find the solutions X and ¥ was to draw the graphs of equation
(4.7) and (4.8), find the point of intersection which gives an approximate value of the solution and
then to improve the solution. While attempting to find solutions so that 6, and 8, lic between 0
and § 1t was found that solution was only possible when A was negative which means that the two
vortices have opposite signs.  For traciog the graphs a constant negative valuc of A was assumed
and then for a particular value of X the value of ¥ was determined by a method of iteranon.
Then the value af X was gradually vanied and the corresponding values of Y were determined.
In some cases two solutions for Y were found for a particular of X, but in the figures only the
curves which intersected with the curve obtained for the other equation have been traced. Fig. 4
gives the curves for A= —0.5. Curve I has been obtained from cquation (4.7) and Curve II from
equation (4.8). Fig. 5, Fig. 6 and Fig. 7 give the same curves when A=—06, 4= -04 and

A= - respectively.  Positions of the rectilivear vorlices can now be calculated from

1
035
cquations (4.3) and (4.4). Wheo one interchanges the strengths of the vortices, the absolute
magnitudes of cos 20, and cos 20, are interchaned and the value of new 8, is complementary to

old 0, and vice-versa. The values for A= —0.35 and A= —1/0.35 are shown in Table I, which

gives the values of 7y, 7, 6,8, and (x,, y,) and (x,, y,) for different values of 4 and
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To trace the stream-lines one has to
s
(4.9)

which is given by
P

27~y

B

Uo7y ikglog

W=

a;n +Ikllng

The stream funclion ¥ is given by
X=X )4+ (Y =y P HOEX ) + (P4 p,)%

d 'L‘L ,"g ! ] ]
x=x)* + ()" N 4+%,)" + (- ¥,

o Tt
ko gog (X = xa)2 (¥ = pa) Hlx4x)" + (p+35)"
toa 8 =X+ +y)™ e+ X))+ y-ya)?f 7 (4.10)
2a = -1 are giyen by

The stream lines for the particular case when A= — ;nnd —
0.35 k,
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e e 2P §x— %) T+ (=23 RIx + x,)° + (p4p,) %
2 —xy-2851182 ] L 0
koY Bl x )T (s m) - M

)2+ (y4ye)t

+10 {(x = X3)" +{y—ya) hilx+x:)? + 2 e (Al

B =) (T Y ) R+ X)) F (77 )
This has been traced in fig. 8 which gives a general idea of the position of the stream

lines for all such cases.

5. Conclusion : Here solutions have been obtained only for particular values of

k 2 . )

A(=T‘ Jand k_a' It has not been possible to find a general expression for the solution. The
1 2

equation being very much involved one had to take recourse to numerical methods. While trying

to find out solutions for particular values of A it was found that one could get solutions in the

approximate ranges —0.6<A4 < -0.35and - 0.6< .|T< -0.35. Infact one could not obtain a

solution for A= - 0.3 and A= ~0.7 by the method adopted in the present study.

For more than two vorlices the condilions for them 10 be stationary are much more
complicated. N> attempt was made to find the solutions. But it is interesting lo note thal relations
similar 10 (4.3) and (4.4) are still valid. For n stationary vortices they are of the form

kn

M=

00820y, = .. (51
m=l ﬂl
B
and mea o e (52)
o Z‘ 2k nSin20,

m=1
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