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The problem of cellular differentiation and consequent pattern generation during embryo-
nic development has been mathematically investigated with the help of a reaction-diffusion
model. It is by now a well-recognized fact that diffusion of micromolecules (through
intercellular gap junctions), which is dependent on the spatial parameter (r), serve the
purpose of ‘positional information’ for differentiation. Based on this principle the present
model has been constructed by coupling the Goodwin-type equations for RNA and
protein synthesis with the diffusion process, The homogeneous Goodwin system can
exhibit stable periodic solution if the value of the cooperativity as measured by the Hill
coefficient (p) is greater than 8, which is not biologically realistic. In the present work it
has been observed that inclusion of a negative cross-diffusion can drive the system into
local instability for any value of p and thus a time-periodic spatial solution is possible
around the unstable local equilibrium, eventually leading to a definite pattern formation.
Inclusion of a negative cross-diffusion thus makes the system biologically realistic., The
cross-diffusion can also give rise to a stationary wave-like dissipative structure.

1. Introduction. The origin of biological form and pattem generation is a
problem which still poses a challenge to the biologist. According to molecu-
lar biology, an organism starts its life as a single cell. Every detail of every
phase of development is coded in the genetic material of this single cell and
embryological development proceeds with almost clocklike regularity. It is
still not clear how the genetic information induces the formation of a
pattern of differentiated cells. Some additional information is provided by
the interaction of developing cells with their environment, generally termed
positional information, and the information is coded in the form of concentra-
tion gradients before the actual differentiation. In the latter stage differen-
tiation occurs according to the assigned positional information (Wolpert,
1969; Lewis et al., 1977).

The general model of RNA and protein synthesis using the feedback
mechanism in which the end product acts as a repressor molecule was
discussed by Goodwin (1963, 1965), Griffith (1968), Walter (1970), Rapp
(1975a, b, 1976), Tyson and Othmer (1977), Murray (1977) and others.
Griffith found that the model system possesses a periodic behaviour provided
the cooperativity of the repressor metabolite as measured by the Hill co-
efficient (o) exceeds a high value, namely p > 8, which is biologically not
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realistic. Generalizing the Goodwin model by extending the chain length
Tyson and Othmer (1977) showed that if p < sec”(n/n), where n is the
Iength of the chains, there can be no sustained oscillation. Since biologically
p < 4, it is deduced that a feedback network with chain length exceeding
5 can exhibit such phenomena. It is observed that the mode! developed by
Tapaswi and Bhattacharya (1981) for transcription and translation during
embryogenesis can exhibit a stable periodic solution when p > 4. Including
time-delay, a small value of p indicates sustained oscillation (Tapaswi, 1982),
Turing (1952), and Othmer and Scriven (1971) showed that the instabilities
of the uniform state may arise from the interaction of reaction and transport
(involving large distance) and these instabilities may lead to non-uniform
spatio-temporal concentration patterns. The role of transport in the dynamics
of a control circuit assuming that species involved in a feedback loop are free
to diffuse through a three-dimensional region with no flux boundary condi-
tion, was studied by Othmer (1977). He showed that if the steady state is
stable to non-uniform disturbances, then all small amplitude uniform perio-
dic solutions are asymptotically stable. He conjectured that spatially uniform
periodic solutions in a repressible system are asymptotically stable, and
non-uniform spatial pattermns with diffusive transport may not be possible
with single loop feedback circuits. In coupled circuits involving 10 enzymes,
each of whose products may activate or inhibit the other and diffuses
through the compartment, it was shown by Glass and Kauffman (1972)
and Glass and Perez (1974) that for appropriate diffusivities and decay
rates the system could exhibit sustained oscillation where the diffusion
matrix is diagonal. This 10-enzyme system becomes more relevant if one
considers gene control where an enzyme may be looked upon as operator
for a structural gene and others localized in the cytoplasm. It is generally
believed that when transport is an important mechanism many simple
schemes in non-uniform systems can mimic the behaviour of a complicated
network in uniform systems.

One of the most successful concepts in the studies of morphogenesis
is the morphogenetic field, a kind of prepattern formed by concentration
gradients of ‘morphogens’ which serve the purpose of positional informa-
tion and trigger cell differentiation and localization. Most of the studies in
morphogenesis and pattern formation have been based on the models
developed by Lefever and Prigogine (1968) and Gierer and Meinhardt (1972,
1974) who have followed the concept of Turing (1952) and utilized the
general principle of lateral inhibition giving rise to a morphogenetic field.
Important contributions to the further analysis of these models have been
made by Martinez (1972), Babloyantz and Hiernaux (1975), Nicolis and
Auchmuty (1974), Auchmuty and Nicolis (1975, 1976), Granero et al.
(1977), Haken and Olbrich (1978), Erneux et al. (1978), Berding and Haken
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(1982), and others. Much work has been done on a model biochemical
reaction called the Brusselator and the idea of structures arising out of
instabilities in succession has been developed by a number of authors
(Auchmuty and Nicolis, 1975; Boa and Cohen, 1976; Maher and Matkawsky,
1977). An excellent discussion on self-organization and dissipative structures
can be found in Nicolis and Prigogine (1977).

In the present paper we are considering a generalized reaction-diffusion
model including diagonal and non-diagonal diffusion. Taking into account the
transport mechanism namely, self- and cross-diffusion in a three-component
system the non-uniforrm model is constructed. The main idea is to investi-
gate whether inclusion or diffusion terms in a stable uniform system can
drive it into instability and give rise to a dissipative structure (stable wave-
like pattern) leading to morphogenetic pattern generation. A spatio-temporal
solution of the model around the equilibrium point has also been obtained
to exhibit the formation of the earliest layers of the differentiation process,
i.e. generation of endoderm, mesoderm and ectoderm, during embryogenesis.

2. The Homogeneous System (Without Diffusion). The Goodwin model of
synthesis of mRNA(X), protein (Y) and repressor molecules (Z) is given by
the following:

X L_ﬁxx

“1+h2z°
Y=0,X—B,Y )
2=0Y 3,2

where denotes the derivatives with respect to time; o, o, &, and /& are
the rate constants associated with the reactions; Sy, 8, 8; are the rate con-
stants of degradation and p is the Hill coefficient, indicating the number of
repressor molecules essential for cooperative inhibition of the regulatory
system. The system (1) has a unique steady state which is globally stable.
Griffith (1968) has shown that for p > 8, there exists positive bifurcation
values of the parameters such that the steady state is unstable, and by Hopf
bifurcation theorem it was proved by Tyson (1975), Murray (1977) and
others that the system possesses a small amplitude limit cycle solution in the
vicinity of the bifurcation values. In an extended and modified model of
RNA and protein synthesis by Tapaswi and Bhattacharya (1981) the result
was improved so that the system could possess a limit cycle solution for
p > 4. But a more realistic value of p is either 1 or 2. We now construct a
model taking into account the transport phenomena. Since information
transfer at the cellular level from cell to cell occurs by the process of diffu-
sion of some micromolecules rather than macromolecules of RNA and
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protein, the most efficient and flexible system of transmitting chemical
information from one part of a biological system to another is to couple the
chemical reaction and biologically accepted transport mechanism. The possi-
bility of the reaction-diffusion mechanism giving rise to spatially inhomo-
geneous structures in a finite, closed domain with zero flux of the species
at the boundary is of fundamental importance in developmental biology. It
is observed that diffusion-driven instability gives rise to dissipative struc-
tures, i.e. stable, spatially heterogeneous structures.

3. General Reaction-Diffusion Model. Let us first consider a general
reaction—diffusion system involving mRNA(x), regulator (which is itself a
protein enzyme or a product of protein) y and morphogen (z) taking into
account the self-diffusion and cross-diffusion terms in the rate of formation
of the regulator and morphogen. One can then write the following kinetic
equations in dimensionless form with zero flux boundary conditions.

bx _ 1
&6¢ 1+ y*° Tix
&y 2 2
37=X_‘72y + DA%y + Dj3A%z (2)
8z 2 2
FYSmE AR £X + DaaA?z + D3 Ay
where A?is the Laplacian (diffusion) operator and
8 [ I3
ox = =% =0 (0<r<L). (3)
8rilp=o,L or r=0,L 87 l=0,
The system can be conveniently expressed in the matrix form
Sw
m =f(w)+DA*w 4)
n‘Aw=0 on 6B )

where

w=w(,x,y,z)

.—aylx+l+yp 0 0 0

fw) = D=10 Dz Doy

X ="y
0 Dy Dy
B A £¥4
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8B is the boundary of the finite domain B and n is the outward drawn unit
normal to 8 8. Expression (5) denotes zero flux boundary condition.
For small perturbations from the steady state (xo, Vo, Zo)

x=xg9+ta
Yy=yot+b
z =zp+c

the linearized equations for the small perturbations a, b and c, neglecting
terms of second degree, become

ba

§= —ma—kb

&b 2 2

E=a—'y,b + Dy A2 + Dy Afc (6)
6¢

§= b —yc + Dy3A%c + D”Azb

where k = py§~(1 + y§)2
The three eigenvalues A, , j are given by the characteristic equation:

PN+ p, AN +p A+ po=0 @)
where
Po =MM2¥s + 1173m2 D+ m2Dy3(vy 12 + k) + mPy Dy3(1 —m?Dyy)
+ 71m*DyDyy + ks
Py =2t vavs+ vam + mADy (v + v3) + miDg(v + 1)
+m2Dy3(1 —m?Dgyy) + m Dy Day + k
P2=m+ 12+ 7 +m*(Dy + D3a)
and
p3=1
with m as the basic wavenumber.
The eigenvalues govern the time evolution of perturbation. If any of the
values of A has a positive real part, the system is unstable with respect to the
pattern size 2w/m. If X is complex with a positive real part, the system shows

oscillatory instability with a frequency equal to the imaginary part divided
by 2.
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When the system is homogeneous, D,, = Dy3 = D33 = Dj3; = 0, the Routh-
Hurwitz condition for stability of the system is

Mmmtnarntrnrti+rtyn) —mnrytin)>0
ie.
M +7)r+1)+k>0

which is always satisfied since 7v,, v,, o3 and k are positive and hence the
system is uniformly stable.
In the absence of cross-diffusion, D,3 = D,, = 0, the system is stable if

(1 + 73+ M D33)y, + v3 + m2Dyy + m2Dy) + k > 0. (8)

Since D,, > 0 and D33 > 0 the above condition is always satisfied and hence
the system in this case is also stable. Thus a dissipative structure is not
possible without cross-diffusion.

4. Reaction-Diffusion Model of Morphogenesis and Pattern Generation. We
shall construct here a simple model of morphogenesis and pattern generation
during embryogenesis including a cross-diffusion term in the rate equation of
the regulator enzyme y and a self-diffusion term in that of the morphogen z.
The self-diffusion of z produces a morphogenetic gradient which serves the
purpose of positional information and the cross-diffusion term specifies the
reaction of the regulator enzyme to this gradient.

In this section it is shown that inclusion of a negative cross-diffusion can
maintain wave-like solutions and give rise to a dissipative structure withina
realistic value of the cooperativity p.

Let us consider a simple system where the regulator enzyme y diffuses
only under the concentration gradient of the morphogen z and z diffuses
under its own concentration gradient.

Sx_ 1

6§t 1+y° nx

by ®
— =x —v,y + Dy3A%

13

6z

— =y — 3z + Dy3A¥z
51 Y =7 33

L 8_2 = 8_2 =0
0<r<1L, A or /L
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From the linear stability analysis the characteristic equation is given by

23N +p At +p A+ po=0 (10)

where

p=1

Pr=n+ratrs+tmiDy

=71+t NYs+ va+ miDas(v + v) + m Dy + k (1)
and

Po="N72Ys + M Dy(vy 12 + k) + ¥ m2Dy5 + ks,
When

p1>0 and py,<O,

that is

+ v7a + + k + k
_nm 23T N7 <mi<— YiY273 Y3 (12)
Doz + (71 + 72)D3, Y1Das+ (v172+ KD
the homogeneous steady-state solution undergoes a non-oscillatory insta-
bility with respect to inhomogeneous perturbation and the system may
evolve toward a dissipative (regular spatially ordered) structure.

Since m?, vy, 72, va, k and Dj, are all positive, it is evident from the rela-
tion (12) that D,; must be negative in order to achieve dissipative struc-
ture.

The Routh-Hurwitz criterion for oscillatory instability (through complex
roots) requires

_ Y1+ 7
m*(yz + v3 + m®Dsy)

X (1 + 7)va +73) + miDa3(vy + 12 + 273 + m2D3y) + k).
(13)

Thus in this case also, D, is negative. Hence in order to achieve a dissipa-
tive structure either through oscillatory instabilities or non-oscillatory
instabilities, the cross-diffusion coefficient must be negative. In other words,
inclusion of negative cross-diffusion in the system leads to a dissipative
(spatial) structure,

In the special case when

Dy <

pPo=0 and p,>0,
that is
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N2 Ys+ ks
Y1 D33+ (vi72 + K)D33

mi=— (14)

where
—(n +'72)<Dza/033<_[72+(k/71)] (15)

the dominant eigenvalue is A, = 0, and a stationary dissipative structure
evolves. The computer solution for infinite time where 8x/8¢t = 8y/6t =
8z/8t = O is given in Fig. 1. The numerical analyses were carried by a fourth-
order Runge-Kutta method. The rate constants are y; =y, =73 = 1,033 =1,
D,y = —1.403. The initial conditions are spatially uniform: x(0) = x, =
0.615, p(0) =y =0.615 and z(0) = z, — 0.05 = 0.565.

The number of unit cells is » = 30 which can be calculated in advance
from (14).

m? =361
2Lm 10X 19
e P
2L = 10 is the length of the system,

09
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Figure 1. Stationary spatial pattern formation for the diffusive epigenetic
system (9) with negative cross-diffusion.

Y1=72=73=1, Dsz=1, Dy3=—1.403,
Initial concentrations:
x(0)=xg=0.615, y(0)=ypg=00615, z(0)=2z4—0.05=0.565

n = 30 unit cells.
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4. Patrern Formation During Embryonic Development. In this section we
shall verify the applicability of the above model as expressed by (9) in
investigating the mechanism of spatial pattern formation during early
embryonic development. The primary layers of differentiation evolve as
early as the gastrula stage. The layers from within outwards in a spherical
mass of embryonic cells are arranged as (i) endoderm, (ii) mesoderm and
(iii) ectoderm. In order to study the evolution of these concentric circular
layers the geometry of interest is a circular membrane which represents the
cross section of the spherical embryonic mass at about the gastrula stage.

The linearized form of the problem (9) with zero flux boundary condi-
tion is

]
§=Mu+DA2u, n-Au=0, r€B (16)
where
X — Xo - —* ]
u=|(y—y,l, M= 1 —m 0
z =2z, 0 I =y
0 0 O
D=0 0 Dy
0 0 Dy

Let the eigenvalues for the geometry of interest be m?, that is the eigen-
values of

A*u+m?u=0, n-Au=0, reB. (17)

The characteristic equation of (16) has already been obtained in Section 3
[equation (10)]. The necessary and sufficient conditions for diffusion-driven
instability of the system (9) are

2>0, i=0,1,2,3 (18)
and
P1P2 —PoP3 <0

that is, when
“>m2£33[h +m?Dss + k/(g + m*Day)) 19

where



222 P. K. TAPASWI AND A. K. SAHA

n= ~Du. 5 (since D13 < 0)
D33

f=n+7, €=mtm, h=ntm

and
1
Dy >;,lkf/(k—‘7¥) —gl (20)

with respect to the eigenvalues m? > O given by
H(m?) = m*D3}(f — u) + m*Dy3( flh +8) —gul + flgh + k) <0. (21)
This determines a critical 4 = u., such that H(m?) = 0O for some m? > 0,

Bifurcating stable time-periodic spatial solution corresponding to the eigen-
values A = tiw evolves when

S
m2Dy,
with respect to the eigenvalues m? given by

o=pe = [h + m?Dyy + k/(g + m*D33)] (22)

1 1
— k —~2)— <ml=— — —
Dn lefitk =) —gl <m 2D33(u—f)(uh &u—nN]
+ ((fh—gu— N + 4 — )k + h)]'?),

(23)

A direct measure of the scale are the parameters D33 and u = | Dy3/D3s
which for given geometries has a critical bifurcation value u. for the exist-
ence of spatial structures, all other parameters f, g, 4, k being kept fixed. In
the following part of this section it will be seen that they play a critical role
in maintaining the size invariance of the pattern, that is, the property of the
same pattern forming in large and small embryos.

For the geometry of a circular membrane of radius r the eigenvalue prob-
lem in the coordinate system r, 8 is

§%u  18u 1 6u
— +t——+——+m2u=0 (24)
82 rér r?é6?
with
n*Au=0, reB.

We shall consider the solutions u(r) of this equation which are radially
symmetric, that is which do not depend on 8.
Then equation (24) reduces to the form
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82u _ 16u
— F~— 4+ m2u =
572 e m*u=0, 25

Since the membrane has a fixed boundary r = R, we have the boundary
condition

u(R, t)=0 forall ¢t=0 (26)
Let
s=mr, ie, ds=mdr,

then (25) becomes
+>—+u=0. @7

This is a Bessel’s equation of order » = 0. Then the solutions of (25) are of
the form

u,(ry=Jo(mur), n=1,2,.... (28)
Where Jo(m,r) is the Bessel’s function of the first kind and m, = «,/R,
o, (n =1, 2,...) being the positive zeros of J,.

The bifurcating time-periodic spatial solutions of the system correspond-
ing to the eigenvalues A = #*icw,, are then

U, (7, t) = (a, cosw,t + b, sinw,, r)J0 (m,r) 29)

wheren =1,2,...,anda, and b, are constants.
With m? from (28) the relation (23) becomes, after simplification

fR? Do kR?
- =—|h+ + , (D23<0) (30)
Dzs o? R? R% + Djy0 Dz
where
R2
D33>&—2[kf/(k— ) —¢gl an
n
In this relation we have «,, (n = 1, 2, . . .) as constants and R, the radius,

is different for different embryos necessitating different values of D,; and
D,, in each case in order to satisfy (30). Similar patterns will be formed in
different sizes of the embryos the radius of each of which lie in the domain
as prescribed by (30).

Size invariance of the pattern is controlled by the parameters D,; and
D3, that is, the cross-diffusion coefficient and self-diffusion coefficient,
respectively.

The solution (29) thus resembles the solutions of vibration of a circular
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membrane of radius R with frequency w,/2r cycles per unit time. For each
n the expression (29) is a mode or eigensolution and represents a specific
spatial pattern. For n = 3 so that a,, = 8.6537, the solution is as shown in
Fig. 2. The circular membrane represents the central cross-section of the
spherical mass of embryonic cells. The figure shows how the pattern is
generated. The base line through the smooth curve corresponds to the
homogeneous steady-state value y, of y. The wavy pattern of solution of y
acts by switching on and off particular genes. For example, the large ampli-
tude wave above the base line (¥ 2 y,) switches on the genes the activities of
which result in the formation of the endoderm in the area bounded by the
innermost circle (innermost nodal line). Similarly the small amplitude wave
below the base line (y <y,) is responsible for the formation of mesoderm in
the area bounded by the intermediate circle and that above the base line
(¥ > yo) stimulates the generation of the outermost layer namely, ectoderm.

Figure 2. Bifurcating time-periodic spatial solution leading to the formation
of the earliest occurring patterns—endoderm, mesoderm and ectoderm,
at about the gastrula stage of the embryonic development. The straight line
through the wavy curve is the base line which represents the steady-state
value y, of the morphogenetic regulator y. The central large deflection of
y above yp (¥ ® yo) switches on the genes responsible for the formation of
the endodermal tissues the downward deflection (y < yg) on both sides of
the former switches on the genes corresponding to the mesodermal tissues,
The small deflection above the base line (¥ > yo) on the extreme sides
switches on the genes corresponding to the ectodermal tissues as depicted in
the circular membrane below the curve, When one set of switches are ‘put on’
the remaining sets of switches remain in the *off" position.
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It may be assumed that when one set of genes is switched on by its corres-
ponding threshold value of y (greater than or less than y,) the other sets of
genes remain switched off, that is inactive.

5. Discussion, That negative cross-diffusion plays an important role in
achieving a dissipative structure for the model system (9) has been shown
in this paper. Jorne (1977) has shown that the diffusive Lotka-Volterra
mechanism can give rise to a stationary dissipative structure by the inclusion
of a negative cross-diffusion coefficient. For the diffusive epigenetic system
(9) investigated here we find that by inclusion of a negative cross-diffusion
the system evolves into such a stationary dissipative structure. The system
also undergoes a time-periodic spatial structure if the cross-diffusion co-
efficient is negative,

The term negative cross-diffusion coefficient implies active counter
transport. In self-diffusion, that is, passive transport, the diffusion coefficient
is always positive and the diffusive substance moves from a higher to a lower
concentration, In active transport the diffusion coefficient is negative and
the diffusion takes place in the opposite direction, that is, from a lower to a
higher concentration of the same substance. We have used the term cross-
diffusion with negative diffusion coefficient to imply active counter trans-
port, that is, the diffusive substance moves towards a higher concentration of
another substance,

Active transport is one of the most important features of life processes.
It resolves the contradiction between the preservation of spatial hetero-
geneity and metabolism—the exchange of matter and energy with the
surrounding medium. The source of free energy for active transport is ATP
(Volkenshtein, 1983).

An increased concentration of K* ions and a decreased concentration of
Na* jons inside the cell are determined by the active membrane transport
which proceeds against the electrochemical gradient. The movement of
amino acids into the cells also takes place by the active transport process.

The examples of negative cross-diffusion or active counter transport are
not rare in biology. Studies on squid axon reveal that calcium can cross the
axon membrane by counter transport with sodium, and high intemmal sodium
concentrations would be expected to increase calcium influx (Marchbanks,
1970). Counter transport of methionine by histidine in brain cells has been
shown by Nakamura (1963). Jomne (1975) has shown that negative cross-
diffusion coefficients are possible in electrolytic solutions, since ions diffuse
interactably and are influenced by the resulting diffusion potential.

Like active transport, active counter transport also may take place in two
ways: in the simple case the diffusive substance diffuses itself to the opposite
side of the cell membrane against the concentration gradient of another
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substance. In the other case the substance to be transported, being immobile
itself, cannot diffuse except by forming a complex with a carrier molecule
which can cross the membrane to the opposite side having a higher concentra-
tion of another substance. The substrate—carrier complex then breaks down
and the free carrier molecules return to the original side to carry more sub-
strate molecules to the opposite side of the membrane.

The particular example given in this paper represents the second case of
active counter transport as discussed above. The regulator enzyme y which is
a product of mRNA and which is simultaneously a regulator of mRNA
synthesis, is itself immobile but forms a complex with the molecules of the
morphogen z which acts as a carrier. The enzyme-morphogen complex ina
cell then diffuses towards its neighbouring cell having a higher concentration
of z (D;3 <0). After reaching the neighbouring cell the complex then breaks
down and the free z molecules return to the original cell (with passive diffu-
sion) to carry more molecules of y by the same process of active counter
transport, that is, by a cross-diffusion with negative diffusion coefficient.
However, z diffuses under its own gradient which plays the role of positional
information.

The scheme as mentioned above is merely a postulation and like the
morphogenetic gradient theory the particular negative cross-diffusion mechan-
ism acting during early embryogenesis as postulated has not yet obtained
any experimental support by laboratory findings. But, that negative cross-
diffusion, that is, active counter transport, plays an important role in pattern
generation during embryonic development has been shown in this paper.

It has also been demonstrated that the pattern is size invariant, that is, the
property of the same pattern formation in large and small embryos is main-
tained. This size invariance can be achieved by controlling the parameters
D,3 and Dj,, that is, the cross-diffusion coefficient and the self-diffusion
coefficient respectively.

It has been experimentally observed that the earliest layers of differen-
tiated cells, endoderm, mesoderm and ectoderm, can be traced in the
gastrula stage of embryogenesis. It is shown in this paper that the concentra-
tion of the regulator enzyme y varies spatially corresponding to the morpho-
genetic gradient established by z and the different sets of genes the activities
of which are responsible for the formation of different types of tissues are
activated at different ranges of concentration (threshold concentration) of
the regulator y as depicted in Fig. 2.

We wish to thank Mr S. K. Dey, Indian Statistical Institute, Calcutta for
drawing the figures for this manuscript.



PATTERN FORMATION AND MORPHOGENESIS 227

LITERATURE

Auchmuty, J. F. G, and G. Nicolis, 1975, “Bifurcation Analysis of Nonlinear Reaction-
Diffusion Equations—I: Evolution Equations and the Steady State Solutions.”
Bull. math, Biol, 37,323-36S.

and . 1976. “Bifurcation Analysis of Nonlinear Reaction-Diffusion Equations
—1II1: Chemical Oscillations.” Bull. math. Biol. 38, 325-350.

Babloyantz, A. and J. Hiernaux. 1975, **Models for Cell Differentiation and Generation
of Polarity in Diffusion Governed Morphogenetic Fields.” Bull. math. Biol. 37, 637-
657.

Berding, C. and H. Haken. 1982, “‘Pattern Formation in Morphogenesis.” J. math, Blol
14, 133-151.

Boa, J. A. and D. S. Cohen. 1976. “Bifurcations of Localized Disturbances in a Model
Biochemical Reaction.” SITAM J. appl. Math. 30, 123-135.

Erneux, T., J. Hiernaux and G. Nicolis. 1978, “Turing’s Theory in Morphogenesis."
Bull. math. Biol. 40, 771-789.

Gierer, A. and H. Meinhardt. 1972, *“A Theory of Biological Pattern Formation,”” Kyber-
netik 12, 30-39.

and . 1974, “Applications of a Theory of Biological Pattern Formation Based
on Lateral Inhibition.” J. Cell. Sci. 185, 321-376.

Glass, L. and S. A, Kauffman. 1972, “Co-operative Components, Spatial Localization and
Oscillatory Cellular Dynamics.” J. theor. Biol. 34, 219-237.

and R, Perez, 1974. *Limit Cycle Oscillations in Compartmental Chemical Systems.”
J. chem. Phys. 61, 5242-5239,

Goodwin, B. C. 1963. Temporal Organization in Cells. New York: Academic Press.

. 1965. *“Oscillatory Behaviour in Enzymatic Control Processes.” Adv. Enzyme
Regulat. 3,425-438,

Granero, M. 1., A. Porati and D. Zanacca. 1977. *Bifurcation Analysis of Pattern Forma-
tion in a Diffusion Governed Morphogenetic Field.” J. math. Biol. 4,21-27.

Griffith, J. S. 1968. *Mathematics of Cellular Control Process I: Negative Feedback to
One Gene.” J. theor. Biol. 20, 202-208.

Haken, H. and H. Olbrich. 1978. “Analytical Treatment of Pattern Formation in the
Gierer-Meinhardt Model of Morphogenesis.” J. math. Biol. 6,317-331.

Jorne, J. 1975. “Negative lonic Cross Diffusion Coefficient in Electrolytic Solution.”
J. theor. Biol. §5, 529-532.

——. 1977, “The Diffusive Lotka-Volterra Oscillating System.” J. theor. Biol. 65, 133~
139,

Lefever, R. and 1. Prigogine. 1968. “Symmetry-Breaking Instabilities in Dissipative
System—IL." J, chem. Phys. 48, 1695-1700.

Lewis, J., J. M, W, Slack and L. Wolpert. 1977. “Thresholds in Development.” J. theor.
Biol. 65, 579-590.

Mahar, T. J. and B. J, Matkawsky. 1977. “A Model Biochemical Reaction Exhibiting
Secondary Bifurcation,” S/TAM J. appl. Math. 32, 394-404.

Marchbansk, R. M, 1970. “lon Transport and Metabolism in Brain.”* In Membranes and
Ion Transport, Vol. 2, E. Bittar (Ed.). New York: Wiley.

Martinez, H. M. 1972, “Morphogenesis and Chemical Dissipative Structures: a Computer
Simulated Case Study.” J. theor. Biol. 36, 475-501.

Murray, J. D. 1977. Lectures on Nonlinear-Differential-Equation Models in Biology.
Oxford: Oxford University Press.

Nakamura, R. 1963, “The Transport of Histidine and Methionine in Rat Brain Slices.”
J. Biochem. §3,314-332,

Nicolis, G. and J. F, G. Auchmuty. 1974. *“Dissipative Structures, Catastrophes and
Pattern Formation: a Bifurcation Analysis.” Proc. natn. Acad. Sci. U.S.A. 71, 2748-
2751.



228 P. K. TAPASWI AND A, K. SAHA

Nicolis, G. and 1. Prigogine. 1977. Self Organization in Non-Equilibrium Systems. New
York: Wiley.

Othmer, H, C, 1977, “Current Theories of Pattern Formation.” In Lectures on Mathe-
matics In Life Sciences, S. Levin (Ed,), Vol. 9, pp. 55-86. American Mathematical
Association,

and L. E. Scriven, 1971. “Instability and Dynamic Pattern in Cellular Networks.”
J. theor. Biol. 32, 507-537,

Rapp, P. E. 1975a. “Biochemical Oscillators—a Search Procedure.” Mathl Biosci. 23,
289-303.

. 1975b, “A Theoretical Investigation of a Large Class of Biochemical Oscillators,”

Mathl Biosel. 25, 165-188.

. 1976, “Mathematical Techniques for the Study of Oscillations in Biochemical
Control Loops.” Bull, Inst. Math, Applics. 12, 11-21,

Tapaswi, P. K. 1982, “Time Lags in an Extended Mathematical Model of Transcription
and Translation During Embryogenesis.”” Cybernerica 25, 151-162.

and P. Bhattacharya. 1981. “An Extended Mathematical Model of Transcrip-
tion and Translation during Embryogenesis.” Cybernetica 24, 61-84,

Turing, A. M, 1952, “The Chemical Basis of Morphogenesis.” Ph{l. Trans. R. Soc. B237,
37-72.

Tyson, 1. J. 1975. “On the Existence of Oscillatory Solutions in Negative Feedback
Cellular Control Processes.” J. math, Biol. 1,311-315.

and H, G. Othmer. 1977, “The Dynamics of Feedback Control Circuits in Bio-
chemical Pathways."” In Progress of Theoretical Biology, Vol. 5. New York: Academic
Press.

Volkenshtein, M. V. 1983, Biophysics. Moscow: MIR Publishers.

Waddington, C. H. 1956. Principles of Embryology. London: George Allen & Unwin,

Walter, C. F. 1970. “The Occurrence and Significance of Limit Cycle Behaviour in
Controlled Biochemical Systems.” J. theor Biol. 27, 259-272.

Wolpert, L. 1969. “Positional Information and the Spatial Pattern of Cellular Differentia-
tion.” J. theor. Biol, 25, 1-47.

RECEIVED 24-85
REVISED 10-18-85



	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228

