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A note on the countable chain condition

and sigma-finiteness of measures

K.P.S. Bhaskara Rao and M. Bhaskara Rao

The objectives of this paper are the folloving:

(1) to show that a theorem of Flcker is incorrect;

(2) to show that & stronger version of Ficker's Theorem is
valid for a certain class of measures;

{3) characterize all 0-algebras on which every measure is a

countable sum of finite measures.

1. Introduction, notation and definitions

A measure U 1is an extended real valued, nonnegative, countably
sdditive function defined either on a O-algebra A of subsets of a set X
or on & boolean J-algebra B venishing at the empty set 9 or the zero

element of B8 . Ficker [1, p. 242] proved the following theorem.

THEOREM (*). Let u be a measure on a ©-algebra A of X and N
denote the collection of all sets in A of u-measure zero. Then A - N
satisfies countable chain condition (CCC) <if and only if u can be

written as a countable sum of finite measures.

We give an example to show that this Theorem (*) is incorrect.

2. Example

Let B Ybe a boolean ©O-algebra satisfying CCC such that there is no

strictly positive, finite measure on B . For example, one can take the
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boolean O-algebra of all Borel subsets of the real line modulo first
category Borel sets. Let X be the Stone space of B , A the Baire
g-algedbra on X and I the collection of all first category Baire subsets
of X . By Loomis' Theorem (see, for example, [Z, p. 1021), the quotient
boolean O-algebra A/l and 8 are O-isomorphic. Since I is a
o-ideal, the function U defined by the formula, u(A) =0 if A ¢ [ N
W(A) == if A € A -1, is a measure on A . Note that A/l satisfies
CCC and so A - I satisfies CCC . If Ficker's Theorem (") vere to be
true, we can write u as a countable sum of finite measures on A which
implies that B is equivalent to a finite measure A on A . Since 1
is precisely the collection of all A-null sets, we have a strictly
positive finite measure on A/l . But this is a contradiction.

3. Semi-finite measures

A measure U on a O-algebra A of X is said to be semi-finite if
FeA, u(lF) =« implies there exists E € A such that E is contained
in F and 0 < u(E) <= , For a measure U on A , there are two

definitions of u-atoms.
(I) Aset 4 in A is seid to be a M-atom if
(i) w(4) >0 and
(ii) B¢ A, B contained in A implies u(B) =0 or =n(4) .
(I1) Aset 4 in A is said to be & WU-atom if
(i) wu(4) >0 and
(i1) B €A, B contsined in A implies u(B) =0 or u{A-8) =0 .

These definitions are not equivalent. It is easy to construct an
example. However, when M is semi-finite these two definitions are
equivalent., Ficker [1] adopted definition (II) in the course of his proof
of the Theorem (*). Under this definition, his Lemma 3 [/, p. 239] is not
correct. However, if U is semi-finite all his proofs are valid and hence

for such & class of measures his Theorem (*) is true.

Here we prove a stronger version of his Theorem (*) directly for

semi~finite measures.

THEOREM 1. Let U be a semi-finite measure on a O-algebra A of
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X . Let N denote the ocollaction of sets of u-measure gsero. Then A - N
satisfies CCC if and only if u ia o-finite.

Proof. If u 1is O-finite, it is obvious that A - N aatisfies
CCC . Conversely, if p(X) < @ , there is nothing to prove. If
u(X}) == , choose A4, in A such that O < u{d,) <« ., Choose Ay in A
such that A, 1s contained in X - 4; and 0 < W{A;) <% . Thus we can
find a sequence of disjoint sets A, A, ... in A such that each
A € A~ N and ufa,) <= . Ir U(X-UA.]<'°,Lhenvehavea
T 1 .

Tzl
decomposition of X which implies that U is O-finite. If
u()( - -u Ai] = , choose Am in A such that Am is contained in
121

X- U A and 0< u(Aw) <@ , wvhere w 1s the first countable ordinal.

Tzl

Continue this process. Since A - N satisfies CCC , there exists a

& @ ., This implies that u

countable ordinal a such that u{){- u Ae
B<a

is o-finite.

4. Some characterizations

Let A be a O-algebra on aset X . Aset A in A is said to be

an atom of A if
(i) A4 #9 ana

(1i) B in A, B contained in 4 implies B =9 or =4 .

A O-algebra A on X is said to be atomless if there are no atoms of
A

The following result is known. See Remark 11 of [3, p. 203]. For
completeness sake, we give a proof of this result.

PROPOSITION. Let A be a 0-algebra on a set X . A 18 atomless if
and only if every nonempty set in A contains R, disjoint nonempty sets
in A.

Proof. Let A in A be nonempty. Fix z € A ., Find A4; in A

such that :QAI , Aj # ¢ and A; 1is contained in A . Choose 4, in
A such that x § A, , A, # @ and A, is contained in 4 - 4,
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Continuing this process, we obtain a family Aa : a < _of nonempty

disjoint sets contained in A , where I is the first uncountable ordinal.
The converse part {s trivial.
THEOREM 2. Let A be a O-algebra on a set X . The following
statements are all true:
(i) A satisfies CCC if and only tf A 1is isomorphic to the
power get, that is, the class of all subsets, of eome countable
(fintte or infinite) set;

(ii) there exists a strictly positive finite measure on A if and
only if A ia isomorphic to the power set of some countable
8et;

(ii1) every measure on A can be written as a countable swn of
finite measures if and only if A +is teomorphic to the power
set of some countable set;

(iv) every measure on A 1is equivalent to a finite measure if and
only if A 1is iesomorphic to the power set of some countable

set.

Proof. A proof of (i) can be obtained using the Proposition proved
earlier, Since A sstisfies CCC , the number of atoms of A is
countable. From X remove all atoms of A . In view of the Proposition
the remaining part is empty. The proofs of (i1), (iii) and (iv) are easy.

Profeasor Ashok Maltra suggested an alternative proof of (). Since
A satisfies CCC , it is complete as a boolean algebra. For z in X,
the infimum of all sets in A containing z is an atom of A . This
implies that A is atomic. Again by CCC , the number of atoms of A is

at most countable.
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