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1. INTRODUCTION

The use of a discriminant function in assigning an individual
as a member of one of certain well defined groups is well known.

An extended formulation of this problem recognizes the possi-
bility that a given individual may not beloag to any of the specified
groups but to an unkaown group whose existence has not been
established earlier. Thus, rules have to be formulated for assigning a
pew individual to one of a specified set of groups or to none. Such
decision rules enable us to bring to light new groups by the chance
occurrence of individuals from them.

A generalization of the classical problem is the assignment of
an observed individual as a number of one of specified clusters of
groups. We shall first consider the classical problem and then
discuss some extensions and generalizations.

The problem of assigning a new individual to one of a finite
number of groups to which he may belong is referred to in statistical
literature as one of classification or discrimination. It has been
recently suggested that [demtification is a more appropriate
terminology.

In the statistical approach to the problem, we first characterize
each group (of the possible groups) by the distribution of certain
measurements on individuals of that group. The characters must
be such that their distributions in the different groups are all different.
Thea, on the basis of the measurements ascertained on & new indi-
vidual, a decision rule (a procedure) is provided for deciding on the
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individual's membership in oneof the groups. We shall first con-
sider the situation for which a satisfactory solution is available.

Let X denote the vector of measurements (random variable)
and f(¥),......, i{¥) the probability density functions of X in the k
groups. Furthermore, let us consider a new individual to be assigaed
to one of the groups as randomly observed from a mixed population
consisting of individuals of the k groups in known proportions
Tyeenn®g  The quantities m,......, x, are relerred to as prior pro-
babilities and if the value of X on an observed individual is X, then
by applying Bayes theorem the pasterior probabilities of the k groups
(given x) are
mA) m filX)
SrflX) P B fd®)

Knowing these probolities, the consequences of any decision pro-
cedure can be examined.

)

A general decision rule is to throw a'k faced die with pro-
babilities
ME) ey MlX) 5 SR(E) =1 (2
for k faces, depending on the observed value . and decide on the
ith group if the ith face appears. Sucha procedure is known as a
randomized decision rule. If ¥y is the loss resulting in assigning a
member of the ith group to the jth group thea the expected loss for
given x is
=337 SEONERV  Er filD] - (MBS (D4 .+ MDSW)...(3)
if i

where
8 =—3V,m, fi(2)|Zm fi(x) (@)
i 1

is called the fth discriminant score. It is clear that the expected Joss
(3) is & minicum whea the A(X) corresponding to the highest dis-
criminant score is unity and zero otherwise. Or, when there is no
unique highest discriminant score the probabilities \(X) correspond-
ing to the highes: scores can be chosen arbitrarily while the proba-
bilities for the rest are chosen to be zero.

In a wide variety of problems we may choose V=0, V;y=1

for 1#]. In such a case, the expected loss corresponds to the expected
proportion of wrong identifications and the ith discriminant scoore is

S«(*_)=[—x'zﬁ@+'cfo(£)]+'xmﬁ(:) w(®)
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Since the decision rule involves only a comparison of the S, values,
we may drop the constant term —3r,f;(x) in (5) and define the
discriminant score simply as

Sixl =, fi(x) «(6)

which is proportional to the posterior probability of the ith group
given the observation X.

A slightly different choice of the loss elements is V=V, for ij
and V=0, ie., the loss essentially depends on the group to which
an individual belongs but not on the particu'ar wrong group to which
he is assigned. In such a case

S0 =[—5V,m i+ Vime (0] + S, fi(x) (N
Dropping the constant terms in (7) we may define the ith discriminant
score simply as

S=Vim, fi(x) .{8)
Whatever may be the choice of the discriminant scores like (4) or (6)
or (8), the decision rule is as follows :

(a) If there is a unique highest discriminant score among
S,'x),....5:(x), then assign the inividual to that group for which the
discriminat score is the highest.

() If there is more than one group for which the discriminant
scores are equal and the highest, thea assiga the individual arbitrarily
{o any one of such groups.

2. APPLICATION OF rHE OPriMuM RULB

There are 2 pumber of difficulties in the application of the
optimum decision rule in practice.

(i) The quantities needed, viz., the prior probabilities

LI (9)
and the density functions
o o (10)

for an application of the optimum decision rule may not be known,
However, they may be estimable from data suitably collected.

(1) While the optimum decision rule lays down a strict
procedure of coming to a decision in all cases, some caution is
necessary in practice. If one discriminant score is considerably large
compared tu the others, there ne¢d not be any mental reservation ia
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arriving at a decision. On the other haod, when the next highest
discriminant scores are close to the highest value, itis probably
wise to consider the individual as belonging to one of the groups in a
subset chosen on the basis of the highest discriminant scores and
look for further evidence. What is the exact procedure to be follo-
wed in such cases?

(/if) In practice, it may not be possible or desirable to obtain
all the measurements on an individual referred to for identification
in one stage. A sequential approach with the possibility of arriving
at a decisin before all the measurements are completed is desirable.
Such a procedure may result in considerable saving (in the long run)
of the measurements some of which may be very expensive to obtaia,

(iv) What are the considerations for arriving at the best choice
and sequence of measurements ?

(v) The apriori information that an observed individual belo-
ngs to one of the k given groups may be wrong. In fact he may
belong to another unknwn group and it is, therefore, necessary to
develop a theory which takes into axcount such a possibility. This
is important in two ways. Firstly, it may enable us to discover a new
group whose existence in the population under consideration has
not yet been established.  Secondly, it admits the posstbility of dis-
covering any contamination taking place in the population (on which
we are applying a decision rule) by the injection of individuals from
an outside group. An example is the discovery of cholera cases in
Japan a couple of yearsago. The symptoms might have been mistaken
as rare manifestations of one of the ailments ordinarily occurring in
Japan if the possibility of a sporadic contamination from an outside
source had not been kept in mind.

We shall consider these difficulties one by one and suggest
suitable modifications in the procedure laid down in section 1 of the
paper.

2a. ESTIMATION OF THE UNKNOWN QUANTITIES

Estimation of the density fimctions

In practice it may be possible to obtain a sample of indivi-
duals from each identified group in which case we may be able to
estimate the distribution of chosen measurements in each group
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separately.

Generally we will have samples of individuals from a mixed
population. If we denote by fi(x.8,) the density function in the i
group, where f; is a known function but §; is an uaknown parameter,
then the probability density at observed values ¥,, ..., X, on » indivi-
duals i

n

]] ["lfl(‘\:l- )+ vt e falxy, 9:)] w(11)
i=1

We can then use the method of maximum likelihood or any other
appopriate method o estimate all the unknown parameters, 0,,... 8,
and m,,...%,. Insuch a scheme, as new individuals come in, fresh
estimates of parameters could be made based on carlier data and the
data on new individuals, considering them as samples from a mixed
population. The estimates so obtained could be used to classify the
new individuals. As observations accomulate more precise estimates
of parameters will become available and the loss duc to errors of
estimation thus gels continuously diminished.

Estimation of prior probabilities

The optimum rule depends on the relative frequencies =;,...,x,
of the indidvidueals of the k different groups in the population from
which an idivicual to be identified is drawn (=,,...,=; may also be
considered as the relative frequencies with which individuals from
different groups present themselves for identificali on). At the begin-
ning, we may have only crude estimates of =, but as the measure-
ments.on individuals referred to for identification accumulate, precise
estimates will be available leading to improved decision rules.

For estimating =,,... . , m; let us assume that the deosity func-
tions fi,......, fi are known, Let X, X,,......, X, be the observations
on n individuals referred to for identification. Then the probability
density at the observed values is

L=] T im0+ et mfitd) (1)

i=1
We may then apply the method of maximum likelihod to estimate
Tgy wernen , 73 But the computations will be extremely heavy.

In the problem of differential diagnosis of diseases, the fre
quencies of individuals likely to suffer from different diseases may
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change over time and they may even exhibit seasonal viriations
during the course of a year. Estimates appropriale to a given season
and point of time have to be used to obtain the best possible results.
The estimation of relative frequencies as functions of time may not be
easy. Some research is necessary in this direction.

2. (b) SEQUENTIAL DECISION RuLes

Let S be the discriminant score for the ith group based on
the first j measurements. A sequential decision rule is of the following

type :

(i) Stop further measurements after the jth if
max {$,%,......, Si"} > S, w.(13)
and if S, is the maximum, assign the individual to the ith group.
(#f) Take additional measurements if
max{Sy,......, SiM}<S$, (14)

(#if) If no decision is reached before the pth measurement,
then assign the individual to ith group if

SIB8E2,0ne, SilP ..(15)

IF it were possible to contioue taking further measurements till
the condition (13) is satisfied, then the decision rule has the property
that the expected risk is smaller than (—S,). But if the process is
truncated at the pth stage and rule (iii) is adopted, the expected- risk
will be larger than (-~ S,). The exact computation of the expected
risk would be difficult. But it may be possible to obtain some idea
by Montecarlo techniques.

The oplimum sequence of measurements depends on the costs
of making the different measurements and the discriminatory power
of different subsets of the measurements. The sequence for which
the total of the cost making the measurements and the loss of wrong
assignments is a minimum at each stage has to be preferred.

2 (¢) DETECTION OP “‘OUTSIDB CONTAMINATION"

As mentioned earlier, we should keep open the possibility that
a new individual does nmot belong to any of the k specified groups,
That is, we sbould incorporate in our decision rule the possibility
of declaring that a given individual belongs to an unknown group.
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Let us suppose that the measurements have a p variate normal
density in each of the k specified groups and also in the unknown
group to which an individual may belong Then, on the basis of
measurements X on an individual, the likehood ratio criterion for
testing the hypothesis that the individual is a member of one of the
k specified grou)s is

[ =m i) +...... +m fulx) ..(16)
If fix) < ¢ (where ¢ is chosen such that the level of significance
has a specified value), we reject the hypothesis and decide that the
individual belongs to an ouiside group. If f1x) 3¢, then we apply
the optimum decision rule for deciding the individual's membership
in one of the k specified groups. The determination of ¢ for a given
level of significance does not seem to be easy. It would be worth
examining whether ¢ can be determined approximately in a simple
way.

The problem may also be examined in an alternative way. Let
us suppose that the mean vector of the measurements is i, in the
ith group and that the dispersion matrix is the same in all the groups
and is equal to A. Let us consider a test of the hypothesis that the
new individual belongs to a group with its mean vector as

MBI A, «(17)
where Ay, , A, dre unknown but subject to the condition 3}, =1.
The hypothesis does not necessarily specify that the new individual
belongs to one of the k groups. It keeps open the possibility that
he may belong to an outside group which is related to the specified
groups in a special way, as indicated by the equation (17) connect-
ing the mean values. To test the hypothesis (17) we consider the
test criterion

Xt=min (X=Ar1— .0 i) AT =A== y) . (18)
where minimization is with respect to Ay,......, A, subject to the con-
dition SA;=1. The statistic (18) has a chisquare distribution on
(p—k+1) degrees of freedom, when the measuremeats bave a p
variate normal distribution.

If the x* is significant at a chosen level of significance, then we
decide that the individual belongs to an outside group. Then

A= YA X —p) =22, i=),., K «.(19)

where x? is as in (18). The statistic (19) for given i is distributed as x*

on (k—1) degrees of freedom on the hypothesis that the individual
belongs to the ith group. If

x3>¢ i=l., k . (20)
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then, again, we decide that the individual belongs to an outside
group which is related to the given groups in the manner indicated
in (17). The value of ¢ is determined such that the level of signifi-
cance has a given value (for the null hypothesis that the individual
belongs to one of the k given groups). If such a null hypothesis is not
rejected, we decide to assign the individual to the ith group if
xE=min{x,%,......, X3} .21
The procedure suggested in (20) and (21) does not involve the
priori probabilities. If the priori probabilities are known, thea we
proceed as follows. Let us represent by 7, the vector random

variable
(#-2)

It is known that T is sufficient for the sct of populations with mean
values of the form

PRI RS WY (22)
Let Py(t), ., Px(f) be the probability densities of T according to
the k specified groups and x,,...... , 7y the corresponding prior pro-
babilities. Then instead of the statistic (20) we use the test criterion

Py ...+ TP <a ...(23)

where a is chosen such that the level of significance has a given
value, If the observed ¢ satisfies (23) then again we decide that the
observed individuval belongs to an outside group. Otherwise we
use the optimum rule of section 1 in assigning the individual to one
of the specified groups.

3. DISCRIMINANT FUNCTION BETWEEN COMPOSITE HYPOTHESIS AND
RELATED PROBLEMS

The discriminant function, as introduced by the late Sir Ronald
Fisher, for deciding between two simple hypotheses (alternative
populations) on the basis of observed data is the logarithm of the
likelihood ratio of two simple hypotheses given the observations. The
question naturally arises as to what is a suitable discriminant
function when the alternative hypotheses are not simple but com-
posite. Such a problem is faced if we want to identify an individual
as belonging to one of two sets of populations. Each set may
consist 6f several populations (mixed in unknown proportions) of
organisms of one kind representing different (vnknown) stages of
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growth. The object is to decide as to which of two kinds a given
organism belongs when nothiog is known about its stage of growth.

3. (a) DISCRIMINATION OF CoMPOSITRE HYPOTHESES : GENERAL
METHODS

Let X denote a random variable and P(x/9) the density func-
tion depending on a (possibly vector) parameter 8 belonging to a set
(_’_i). Let H, be the h_ypothcsis_lha(_“i (H),, an| H, be the hypothesis
that 8¢(H),, where (H), and (H), are cxclusive subsets of (H). The
problem we consider is that of choosing between the composite hypo-
theses H, and H, on the basis of an observed value of X, Let us
discuss a few possible approaches to the problem.

Solution based on similar divisions

Let R, and R, be two exclusive regions covering the entire
sample space. The regions R, R, are snid to provide a similar
division of the space if there exist constants e,, e; such that

I ,, Pilxme, forach ¢ i, 24)
and

J'  Plaldxee, for cach 0 € i, (25)
1

Let us decide to choose K, if x€ Ryand H,if X€R,. In
such a case the errors committed are ¢, and e,. For determining
an optimum decision rule, we consider all similar division rule, we
consider all similar divisions and choose the one for which the
magnitudes of errors are the smallest subject to a givenratio of errors,
or for which a given Jinear compound of errors is a minimum,

There are two ways of arriving at such a solution. Let T be
a sufficient slatistic (function of X) for 8 restricted to (H),, and let the
same statistic be sufficient also for 0 restricted to (), Using the well
known factorization theorem, we may write

PeM=PUBP,x[), be@),
=PUOP, X, 6 €, «.(26)
where the functions P,(x/f) and Py(x/!) are independent of 6 and may
be interpreted as conditional dessities of the observations given T=t.
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I we choose two values 8, € (H), and 8, € (@), then the discri-
minant function for distinguishing between 8, and 8, is

log P(x/%,)/P(x/0,).
Using the factorizations (26) we have
P9 _PU, 8 Py(xjn)

R TR X - @0
Taking logarithms
Plx/6)) Pir, 8) Py{x/1)
log Py log P, +log P ..(28)

which provides a decomposition of the discriminant function for the
simple hypotheses 8, 8, as the sum of two discriminant functions,
one based on ! alone and aoother on the conditional distributions
given .

It is easy to see that the second component of (28) has the
same distribution for all 8 belonging to apy particular set @, or
(H),, and so it does not discriminate between parameter values within
a given set. When the conditional densities Py(X/) and Py(x/) are
different, we have diccrimination between parameter values belooging
to the different sets (or between the hypotheses H, and H,) by usiog
the discriminant function log Py(x/0)] Py(x/1).

Note that the success of the method ‘depends on the conditional
density functions Py(x/7) and Py(x/!) being different. If T happens to
be sufficient for 8 over the entire range (B), U (H),, then P,(x/1) and
P,((x/n) are the same and the equation (28) merely shows that the
discriminant function between two simple hypotheses is an explicit
function of the sufficient statistic.

Solution based on ancillary statistics

Another method is to consider a statistic S (function of X) such
that its probability density,

P(48)=P\(s) independent of 8 € (&), - (29)

= Py(s) independent of ¢ ¢ (H),
or, in other words, S is an acillary statistic for 8 € (H), and also
for 8 ¢ (H),. When Pys) and P,(#) are different, the discriminant

function for choosing between M, and Hj is provided by the likeli-
bood ratio Py(8)/Py(s).
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Method of maximum likelthood ratio

A discriminant function which may have wide applicability is

the ratio
sup P(x/8) + sup P(xj8) ...{30)
8¢ Y e @),

It will be difficult to give a general discussion of the appli-
cability or of the relative performances of the various suggested
procedures. We shall, therefore, consider some special cases which
have important applications. In these special cases the various
approaches lead to the same discriminant function.

3. () DiscramiNaTION OF CoMPOSITE HYPoTHESES @ SPECIAL Cases

Let us consider the special cases where X has a p variate
normal distribution.

ProsLEM 1. Let H, and H, be defined as follows, where E and
D stand for expectation and dispersion operators, respectively.
H,: E(X)=a,+80, D(X)=p (31
H,: E(X)=a,+ B0, D(X)=p

where @ and @ are p vectors, 9, Oy are k vectors and B’ is pxk
matrix of rank k. The values of 4, 9, and 5’ are fixed but those
of 9, 8 are arbitrary. The H, and H, are composite hypotheses.

For example, each composite hypothesis may consist of
populations represenling various stages of growth of an organism.
The mean of any character X, (the ith component of X) for organism
with age £ may be written (E(X,)=x;4-B,t, where B; is the regression
coefficient with time. The regression coefficient B is taken to be the
same for two sets of populations but «, may be different. The
problem is to identify an organism as belonging to one of two sets
of population when the age of the organism is not kaown.

Considering the general case of (31) it is easy to verify that
the statistic 8 A~ X is sufficient for 9, and also for 8, Let
B (@=0)+2 ¢, where 9'=Ui—t.
Then
E(B AT X|H)— E(B A-'X[Hy)=B 4~ «{32)
D(E A" XH, ot Hy)=B8 1 & (39)
The discriminant function based on B 4~'X alone is, therefore,
(BAT' ) (BATB)1 BpLX (34)
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The discriminant fuaction based on the entire observation X is
& A-1 X, Hence applying the result (28), the discriminant function
based on the conditional disir'butions of X given BA-! X is the
difference
BAX—(BABY (BA B BATY (35)
Now, writing 8=(a1—a1)+ B’ @, the expression (35) reduces to
(a—a) A X—(m—a) A B (BA By Byt BA-L X
=(@—m)[A~!—A"" B(BATB) B ACY)X -..(36)
which depends only on (%1—4s) and is independent of @ as is to be
expected.

To apply the method of ancillary statistics, let us coosider the
statistic € X where Cis (k—p)xp matrix of rank (p—k) such that
BC'=0. Then

E(C XIH\)=C o, D(C X|H)=CA C
E(CXHy)=C o, D(C X|H)=C A C «(37)
under the hypotheses H, and H, respectively. Thus € X is ancillary

under the alternatives in M, and also in H,. The discriminant func-
tion based on € X is

(Ca-Ca)CAC)yCX -(38)
It may be secn that (36) and (38) are the same.

It is easily shown that the method of maximum likeliho »d ratio
as defined in (30) also yields the same discriminant function.

ProoLEM 2. In problem 1, the dispersion matrices under the
two hypotheses were the same. Let us now coasider the alteroative
composite hypotheses

H,: EX)=a14+8%, D(X)=pm
Hy: EX)=0+8%, D(X)=p (39)
where 9,, 9, are arbitrary as in problem I.

It is easily seen that B Aa~'X is sufficient for 61, while B As-1X
is sufficient for 8,. Since the two sufficient statistics are not the same,
the method of conditional distributions cannot be applied, unless one
considers the statistic (8 A,~'X, B Ar='X) as joinly sufficient for 8
and for 8. But such a statistic is too wide.
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But the method of ancillary statistics is applicable since the sia-
tistic € X where Cis as defined in (37), is ancillary under both the
hypotheses. The distributions under H, and H, are specified by

E(C XIH)=Ca, D(C X|H))=C m &
E(C X|H)=C 93, D(C X[Hp)=C 7y € ...(40)
Taking the loarithm of the fikelihood ratio we have the discriminant
function, Q(X) equal to
XOECHE) (A CYEX~
2o CEA C)T - C(Cn CYCX - (41)
which is quadratic in X. Using the identity
CEMEYV'—AN—AT B (BAT B)T B i=1,2 L. (42)
we cane write (41) in terms of Bonly. It may be verified that the
method of maximum likelehood ratio also provides the same quadr-
atic discriminant function,

The Linear and quadratic discriminant functions have some spe-
cial properties which are discussed in (Rao, 1966).

The Reader is referred to the books by the author (Rao, 1952,
1965) for illustrative examples.
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