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Abstract: The robusiness of some oplimality resulis on repeated measurements designs is investi-
gated when the underlying mode is allowed 1o be dditive i ing an i ion due
to the direct and residual effects of treatments. The procedure involves the checking of some
orthogonality conditions and the calculus for factorial arrangements is applied for this purpose.
Some new constructions of optimal repeated measurements designs have also been considered.

AMS Subject Classification; 62K0S, 62K1S.

Key words and phrases: Circular model; Interaction; Non-circular model; Strongly balanced
uniform design; Universal optimality.

1. Introduction sad preliminaries

In repeated measurements designs (RMD’s) each experimental unil is exposed to
a number of treatments applied sequentially over periods. For a general review of
such designs, including a discussion on practical applications and a comprehensive
bibliography upto that stage, reference is made to Hedayat and Afsarinejad (1975).
The pioneering work in the area of optimal RMD's is due to Hedayat and Afsari-
nejad (1978) and further significant contributions, covering the optimality and
constructional aspects, were made by Cheng and Wu (1980), Magda (1980),
Constantine and Hedayat (1982) and Kunert (1983, 1984 a, b); for an excellent
review of the literature on optimal RMD’s see Hedayat (1981). Applying a funda-
mental tool due to Kiefer (1975), many of these authors considered the problem of
universal optimality under fixed effects additive linear models incorporating direct
and first order residual effects of treatments apart from effects due to units and
periods.

In some situations, however, an interaction due to the direct and first order
residual effects of treatments is likely to be present. John and Quenouille (1977,
Pp. 211-214) present a practical example on grass yield where such interaction turns
out to be significant. Interesting results on the problems of construction and ana-
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lysis under such non-additive models were obtained among others by Patlerio
(1968, 1970) and Kershner and Federer (1981) (see also the discussion by Feders
following Hedayat (1981)). Patterson (1973) considered some orthogonality cos-
ditions in this context. The present work primarily investigates how far the opti
mality results in Cheng and Wu (1980) and Magda (1980) remain robust when the
direct versus residual effects interaction is taken into account. Some new cos
structions of optimal RMD's are also presented.

Following the standard jons and definitions (vide Hedayat and Afsarincjad
(1978), Cheng and Wu (1980) and Magda (1980)), an RMD with n experimental
units, p periods 0,1,..., p— 1 and ¢ treatments 0, 1,...,#~ 1 will be abbreviated by
RMDA{/, n, p) and the class of all such designs will be denoted by 02, , ;. Let 44 j)
be the treatment assigned by an RMD d in the i-th period to the j-th unit and ¥,
the response under d(i, /). The observations are assumed to be homoscedastic and
uncorrelated. The underlying model is called circular if in each unit the residuals in
the initial period are incurred from the last period. Otherwise, i.e. if there is no
residual effect in the first period, the model is called non-circular.

Taking the direct versus residual effect interaction into account, the circular
model is given by

E(Yij)=“+"I+ﬂj+£d(“)d(l—l‘]) (Osisp-1 1sj<n) (LY

where i—1 is reduced mod p, and the unknown constants u, @;, §; represen
respectively the general mean, the i-th period effect and the j-th unit effect. Also,
the unknown constant &, », (0<hy, hy<1-1) represents the effect produced when
the treatment A, is applied in the current period with the treatment h, being applied
in the immediately preceding period.

For the non-circular model, E(Y,;} is as in (1.1) for 1sisp-1; I<j<n, while
for i=0,

E(Yo)=p+a;+ B+ 140 (1sjsn) (1.2)

where
1=1
p=t"" hzo &y Oshsi-1). (2)

A design will be called uniform if in each period the same number of units is
assigned to each treatment and on each unit each treatment appears in the same
number of periods. Under the non-circular model an RMD is called strongly
balanced if the collection of ordered pairs {d(i - 1, j),d(i, )}, | sisp-1; 1sjsn,
contains each ordered pair of treatments, distinct or not, the same number, say A,
of times; under the circular model an RMD is called strongly balanced if the same
holds considering ordered pairs {d(i - 1, j), dli, )}, 0si<p—1; | Sjsn. A strongly
balanced uniform RMD{¢, n, p) will be abbreviated by SBURMD(, n, p).
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2. Application of the for

Since this paper takes into account the interaction between the direct and first
order residual effects of treatments, it appears convenient to apply the calculus for
factorial arrangements, introduced by Kurkjian and Zelen (1962) and strengthened
further among others by Zelen and Federer (1964), in the subsequent development.
Consider the 2=y treatment combinations (hy, k), 0< hy,hyst=1, such thal the
Iirst (second) ber of each ion represents the treatment contributing a
direct (first order residual) effect 10 an experimental unit. The direct and first order
residual effects of treatments may then be looked upon as the main effects of
factors, say, F\ and F, (each at 7 levels) respectively, while their interaction is given
by the interaction F, F;.

For any positive integer g, let /, be the a x a identity matrix, 1, be an ax | vector
with all elements unity and E,=1,1;. Define the vx | vector

[T (7 { TSN T SUSTAY SN TORUY FUrYIY 1A
Then by (1.1), {1.2), for a design d€Q, , ,. the coefficient matrix of the reduced
normal equations for §, under both the circular and the non-circular models, is of
the form

)

CY*P=Vy=n""NgNy—p~'MgMy+ (np) " (NG )Ns LY, (1)
where
p-1 n
Vo= L Eo Aydj, (2.20)

i0 je

p-1 n a
M,‘,"""’=( L e & lu.)' N,(,“’)=( Y Ao T ‘p-lj>;
=0 =0 I J=1

(2.2b)
Ay=eq y®eg-1.)y Osisp-1; 1sjsn) @.3)
for the circular model;
Ay=ey,  ®eg_1,y (Isisp-1;1sj<n)
,10/=r'¢dm)®1, (1=j<n) (2.4)

for the non<circular model; e, is a 1x I vector with I in the A-th position and zero
clsewhere and @ denotes Kronecker product.

Note that typical contrasts belonging to main effect £\, main effect F, and inter-
action F, F are respectively of the form (m,®1,)%¢, (1,@w))'{, (w,®w,)'§, where
W\, Wy are any /X 1 non-null vectors satisfying wit,=wjl,=0. Defining Z, = /,®E,,
Zy=E,®1,, one has the following lemma from Mukerjee (1980) which will be
helpful in the sequel.
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Lemma 2.1. In a design d, the best linear unbiased esti of ¢ bel
1o main effect F, (F,) are orthogonal 0 those of ¢ belonging to main ej/z;
F, (F,) and interaction F\F, i and only {f Z,C4(ZyC,) is symmetric.

3. Optimality results under 8 non-circular mode

Throughout this section, the underlying model is non-circular. The aim is 10
examine the robustness of the main results in section 3 of Cheng and Wu (1980) and
to develop some further results. Let d® be an SBURMD(/, 1, p). Cheng and Wu
(1980) proved the universal optimality of d* over Q, , , for the estimation of direct
as well as first order residual effects. The next result establishes the robustness of
their findings for the direct effects under a non-additive setting.

Theorem 3.1. Under a non-edditive model, d * is universally optimal over Q, , , for
the estimation of direct effects.

Proof. In view of Theorem 3.1 of Cheng and Wu (1980), it is enough (o show thal
in d*. under the non-additive model, contrasts belonging to main effect F; arc
estimable orthogonally to those belonging to main effect Fy and interaction F F..
Hence by Lemma 2.1, one has to establish that Z,Cy. is symmetric. Let 1=1,§1,,
E=E,%E,. Then by (2.3), (2.4) and the delinition of SBURMDI{t. n, p), it follows

that for d°,

n p=t n
):I Ag Ao, =nt” U®E). IZI EI Ad5=np- 1) @),
- BN

(3.1a)
n ) p-1 a
T ag,=nl, T L a=npp-th, (3.15)
14 =1 ge)
z,( T 1,,)=m"| ©sisp-1),
J=1
p-1
2( T W)=p1 asjsn @19
Hence by (2.2),
Vo=t LQE) +nlp- ) X181, (.29
Npd,=npt™, 2,NgpNyj=npt™’E, Z,My.Mj.=np*t~3E.
(3.20)

It is now clear from (2.1) that Z,Cy. is symmetric. O
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As in the above theorem, an SBURMD 4 is universally optimal over Q,,, for
the residual effects under the non-additive model provided d® allows orthogona!
estimation of the residual effects contrasts, i.e., by Lemma 2.1, provided Z,C,. is
symmetric. Unlike in the case of direct effects, however, not all SSURMD’s satisfy
this criterion as the following example illustrates.

Example 3.1. Consider-the designs d)’, dy’, each an SBURMD(2, 4, 6):

units

a’ a5

periods

0
0
periods ?
1
1

—o—-—0 o —
——=—ooeo

[}
[}
|
0
0
0

~ 00 e - -
o—-0o—-~-o

1
0
I
0
1
0

0B~ —=—=0

If one computes Cye, Cyp by (2.1), then an application of Lemma 2.1 shows that
while d>' allows estimation of the residual effects orthogonally to direct effects and
direct versus residual effect interaction, d,* does not. In fact, a direct computation
shows d;* to be inferior to 5’ in so far as the estimation of the (single) residual
effect contrast is concerned.

In view of the above example, the problem of identifying those SBURMD’s 4 *
which allow orthogonal estimation of the residual effects contrasts becomes non-
wrivial. Essentially, this calls for a combinatorial characterization of the commuta-
tivity of Z, and Cy.. In general, it appears that such a characterization may
become 100 involved to be helpful in actual construction and hence one has 1o look
for simpler sufficient conditions. In the special case n =12, p=21, Patterson (1973)
considered sufficient conditions in this regard. A more general set of sufficient
conditions with a very wide coverage is presented below.

For any d€ R, , ,, let Sy, be the set of units receiving the treatment A 0<hs<
- 1) in the last period. Then the following holds.

Theorem 3.2. Under a non-additive model, an SBURMD(1, n, p) d * allows ortho-
gonal estimation of the residual effects contrasts and hence becomes universally
optimal over R, ,, , for the residual effects if (i) for each h,h’ (0 h,h'<1~1), there
are exactly ni~* unils receiving the treatments h and h' in the initial and the last
periods respectively and (ii) for each h (0shst—1), in the collection of ordered
pairs {d *(i - 1, j),d*(i, )}, 1 <isp—-); je Sy each ordered pair (h hy) (0shy<
1~ 1} occurs the same number (say v;) of limes while each ordered pair (h,, hy)
(O<hy, hy<1-1; h £h) occurs the same number (say vy) of fimes.

If d* satisfies the condition (i) above then by recalling the definition of an
SBURMD, one may coun in two ways the number of times each treatment appears
in $4. 10 get v, =n(p-n173, u,=npl". Theorem 3.2, which has been proved in
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the Appendix, is seen to cover almost all situations where an SSURMD may exist.
Note that an SBURMD{/, n, p) exists only if #*{n and ¢}p (with p>{ for obvious
reasons). Now if *|n and pt~' is even, then it may be checked that the SSURMD's
constructed through Theorem 3.2 of Cheng and Wu (1980) satisfy the conditions of
Theorem 3.2 of this paper and are hence universally optimal for the residual effects
under the non-additive model. It may be remarked that in particular if #=¢? and
p=21 then this finding also follows from the sufficient conditions in Patlerson
(1973).

Turning to the situation where (*|n and pr~" is odd, let pt ' =2m+ 1 (m= 1) and
consider the following method of construction which is successful for £#6. First let
1#2,6. Then a pair of mutually orthogonal latin squares, Q, and Q, with entries
0.1,....,t=1, of order r exists. Let g, be the k-th column of Q,, g, be a 1x1
vector with all elements equal 10 &, Gy=(qip g 8s) (0ShsI-1; ¥=1,2) and
G=(Gy, Gy, ..., G, ). 1T 1=2, let

100101
G“[ooonll]‘

For ¢#6, define
01 o t-1)
B":[o 0 - 0 ]

and for 1shst-1, let B, be obtained by adding 4 (mod 1) to each clement of B,.
Let B=(By, B,, ..., B,_;) and define the 1xp array Ay=(G, B, ..., B), where the
array B is repeated m— | times. Let A, be obtained by adding h (mod 1) to each
element of Ag. Then the px 1} array A=(A, Ajy..., Aj_), with columns and rows
identified with units and periods respectively, is seen to be an SBURMD(, 1%, p)
satisfying the conditions of Theorem 3.2. An SBURMD(, n, p) satisfying the same
conditions is obtained considering nt =2 copies of 4. Evidently, such a design is
universally optimal over £, , for the residual effects under the non-additive
model.

In the above, which is essentially a method of differences, the choice of G for (=2
has been made by trial and error and the design dy’ in Example 3.1 serves as an
illustration. Yet another example is presented below.

Example 3.2. Let 1=3, n=9, p=15. Onec may take

012 012
Q=|120|, @=|201]|,
20 1 120

0
B=|1
2
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000 111 222
G=|120 201 012
210 021 102

Then Ag=(G, B). Form the arrays A, A; by adding 1 and 2 (mod 3) respec-
tively to each element of A,. Now the 15x9 array A=(Ag A{, A}) gives an
SBURMD(3, 9, 15) satisfying the conditions of Theorem 3.2.

By Theorems 3.1, 3.2 and the discussion above, under a non-circular non-additive
model an SBURMD(/, n, p) which is universally optimal over Q,, p for both the
direct and the residual effects exists whenever 2|, ] p (> 1) except when ¢ =6 and
p is an odd multiple of 6. Derivation of such an optimal design for t=6 and p an
odd multiple of 6 is left as an open problem.

Remark. If, however, one ignores the conditions of Theorem 3.2 then as indicated
below an SBURMDY{/, 1, p) exists even when +=6 and p is an odd multiple of 6
provided £’jn. Let p=(2m+1)6 (m=21). Define the 36 1 vector

3=(0,1,2,3,4,5,1,2,3,4,5,0,...,5,0,1,2,3,4)’
and the 36 X 2 matrix

A=[oooooo 111111---555555]'
012345 012345 01234S5["
Construct the 36x(2m +1) array Ly=(4, 4,..., 4,8), where the array 4 is re-
peated m times. Let L, be obtained by adding 4 (mod 6) to each element of Ly
(0<h<S5). Then the px 36 array L =(Lg, L), ..., L)', with columns and rows inter-
preted as before, gives an SBURMD(6, 36, (2m + 1)6). An SBURMD(6, n, (2m + 1)6)
is obtained considering n/36 copies of L. Although the design does not satisfy the
conditions of Theorem 3.2 (and hence nothing can be said about its optimality for
the residual effects under a non-additive model), the findings in this remark are
important since they, together with the preceding discussion and Theorem 3.2 of
Cheng and Wu (1980), establish that the conditions l’|n, t|p (p>1) are not only
necessary but also sufficient for the existence of an SBURMD(t, n, p).

Before concluding this section, the robustness of another result in Cheng and Wu
(1980) will be examined. Let d, be a strongly balanced RMD{t,n, p) which is
uniform on the periods and is uniform on the units in the first p— I periods. In their
Theorem 3.3, Cheng and Wu (1980) show that such a design is universally optimal
over 2, , , for both the direct and the first-order residual effects under an additive
model. When the model is non-additive it may be seen along the line of Theorem
3.1 that their result for the residual effects remains robust. Simple exampies may,
h , be cited to d ate the non-robustness of the corresponding result for
the direct effects,
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4. Optimality resnlts and constructions under a circular model

Throughout this section the underlying model is circular and let d be an
SBURMD(t, , p) under such a model. Under an additive set-up, Magda (1980),
Theorem 3.1) proved the universal optimality of d over £, , , for both direct and
residual effects. The next result proves the robustness of his findings under a non-
additive model.

Theorem 4.1. Under a non-additive model, d is universally optimal over Q, , , for
the estimation of direct as well as residual effects.

The proof is similar to that of Theorem 3.1 and may be worked out by checking
that Z,C; and Z,C; are both symmetric.

Turning to the problem of construction, note that for the existence of an
SBURMDY{/, n, p) in a circular setting, it is necessary that f[n, 1]p (p>1).

Theorem 4.2. Under the circular model, if t|n and pt =" is an even inieger then an
SBURMD({, n, p) exists.

Proof. First let ¢ be even and define the 2/ x 1 vector
$o=(0,1-1,1,1=2,...,1-1,0)".

Observe that each of 0, 1,...,1— 1 occurs twice in @, and also among the differences
(N=Tofa=Tr oo Suar=Su-2 Jo=Su-\} (mod 1), £, being the u-th element of ¢,
(0<u<2-1). Hence if ¢, be obtained by adding 4 (med ) to each element of ¢,
(I1shsi-1), then the 21Xt array [@g, @1s....@,-1), With columns and rows
identified with units and periods respectively, gives an SBURMD(/,4,21). An
SBURMD(/, 1, p) is obtained taking nt~"' and § pr~" copies of this 21 array
along the directions of the units and periods respectively. The proof for odd /
follows in a similar manner starting from the 2/x | vector

0,1,0-1,2,1~2,...,t-2,2,1-1,1,0)’
instead of ¢g. O

Example 4.1. The designs d),d; in this example, constructed by the above method,
represent an SBURMD(4, 4, 8) and an SBURMDY(S, 5, 10) respectively.

a: ay:

—oNwwNO —
LNO - —O N W

2
]
3
0
0
3
1
2

CwePmN=-wo
C—aNWwWLUNAa—©O
—NOowaswON—
-
wANO=—ONAw
P T
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1t has recently been shown by Roy (1985) that when |n and pr™" is an odd
integer, an SBURMD(/, n, p) exists provided 1=0,1 or 3 (mod 4); however, such a
design may be non-existent if £=2 (mod 4), e.g., as a complete enumeration reveals,
an SBURMD{2, 2, 6) is non-cxistent.

5. Concluding remarks

Restricting to a subclass of £, , , consisting of the equireplicate designs, Cheng
and Wu (1980, Theorems 3.4, 1.5) and Magda (1980, Theorem 3.2) proved some
further optimality results on SBURMD’s in terms of minimization of the variance
of the best linear unbiased estimator of every contrast belonging to the direct or the
residual effects. These results remain robust under the non-additive model whenever
the relevant orthogonality properties, as in Sections 3 and 4, hold.

Hedayat and Afsarinejad (1978), Cheng and Wu (1980) and Magda (1980) also
derived universal optimality results on uniform RMD’s which are balanced in the
sense that each treatment never precedes itsell but precedes each other treatment the
same number of times. With notations as in Section 2 under a non-additive model
this means that the treatment combinations (h, k) (05 hs 7~ 1) never appear in such
a design so that not all contrasts belonging to direct or residual effects remain
estimable. Therefore, the optimality results on balanced uniform RMD’s become
non-robust.

As a final remark, in the present work the underlying model was non-additive but
the emphasis was on the optimal estimation of the direct or residual effects, i.e. the
main effects, contrasts. If interest lies also in the optimal estimation of the inter-
action contrasts then some other, possibly larger, designs should be tried. It is
intended 10 take up this problem in future.

Appendix, Proof of Theorem 3.2

By (2.2), (3.1), (3.2) and the definition of an SBURMD, it is not difficult to see
that for every SBURMD d* the matrix Z; commutes with Vgu, NyuN;. and
(Ngel NNgo1,). Hence by (2.4), Lemma 2.1 and the discussion preceding
Theorem 3.2, it remains to show that Z;M,. M. is symmetric when d'* satisfies
the conditions of Theorem 3.2. From (2.2) note that

n p=1 p=1 ’
MgaMy= Y ( T A,])( T 1,,). (A1)
i=l i i=D
As d* is an SBURMD(, n, p), by (2.3), (2.4), for each j (I sj<n),

p=1 -1 p-) ]
2( 5, w)-18[ne g e,.‘,_.,,,]
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=1,@p+ ™"~ egop-y, ).
This together with {A.1) yields

A p-l ’
ZyMyMye=(p+ 1):"(1,@1,)( /)-:n ’)_:o .l,,)

2 p=1 '
-z (L@‘wu-n.n)( ) )-u) .
i=l =0
While by (3.1) the first term in Z, Mz M. is symmetric, by (2.3), (2.4), the second
term equals

! /Zl (1,850, )) R (€4+p-1,17
L] =t
+ E’ (h@‘ﬂu-l./))( E} ‘9'(1.1)@‘3*11-1_/))
=1 p-1
=nt"NEQE)+ ngo (L@‘n)( “)s:“ En 89~(L/>®‘2-u-l.n)

1=1
=nt"(EQE)+ n);u (1,@e)(1;® (0217 - (v~ v1)ej))

=7+ 0} E®E) - 2 - uERT), (A2
applying the conditions (i) and (ii). Since (A.2) is symmetric the result follows.
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