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SUMMARY. For given k normal populations with unknown means and common known 

variance, Alam (1970) suggested a two-stage procedure to select the population having the largest 
mean. He conjectured that under this procedure, the least favourable configuration (L.F.C.) 

would be the slippage configuration. This procedure has been subsequently studied by Tamhane 

and Bechhofer (1977, 1979) and Miescke and Sehr (1980) while in the latter another two-stage 

procedure has been given and a similar conjecture is made about the LFC. In this paper both 

these conjectures have been settled and both are found to be true. Though the conjectures here 

were made for normal distribution, the proofs given in this paper hold for any distribution whose 

sample mean has MLR property. 

1. INTRODUCTION 

Let 7r1? 7T2, ...,nk denote k normal populations with unknown means 

?il9 ?i2, ...,fik respectively and a common known variance cr2 > 0. Let 

/?[i] ^ /?[2] < >< /*[*] denote the ordered set of values of the means. The 

problem is to select the population with the largest mean ju,[k]. 

For given sample size nvlet (X^, ..., Xin ), i = 1, 2, ..., k denote k 

independent samples from nx, n2, ..., nk respectively. Define Xi 
? 

n^ 

(Xgl+ ... 
-\-Xin ),i 

= 1,2, ...,k. Beehhofer's fixed sample procedure (?Z) 

is to choose the cell corresponding to the maximum of X< for i = 1, 2, ..,, k. 

Let PCS ([i, ?Z) be the probability of correct selection under 3 with the 

true mean {jl 
= 

(fix, /?2, .., ?ik) such that /?2 < /?2 ̂  ... ^ ?ik^ < ?ik. Noting 

AMS (1980) subject classification : 62F07. 

Key words and phrases : Two-stage selection procedure ; Least favourable configuration ; 

Logconcavity. 
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where ci ( ) is the c.d.f. of standard normal var?ate, one can show the 

monotonicity of PCS ((jl : 3) in /?i/?2> >/to-i by showing 

aPOB(|i:.g)<ov.= 1>8> k_l} (11) 
oy?? 

Alam (1970) proposed the following two-stage procedure P1 : 

Stage 1 : Take k independent samples (X^, ...,Xin ) of size nv 

i = 1, 2, ..., k, from 7TV 7t2, ...,nk and compute X$ 
= 

nj1 (Xix+...+Xin ) 

for ? = 1, 2, ...k. Select all population ni with Xi !> max {Xj :j 
= I, 2, ...k,} 

?c where c is a fixed positive real number. If only one population is selected, 

stop and assert that, this one has the largest mean, otherwise proceed to 

stage 2. 

Stage 2 : Take additional independent samples (YiV ..., Yin ) of size 

n2 from the populations selected in stage 1 and compute Y i = 
n^1 

(Ya+... + Yin ) for them. Then select the population giving the maximum 

of (n^i+n^i). 

Thus procedure P1 is a combination of two classical one-stage procedures 
where the first one (in stage 1) is due to Gupta (1956) and the second one is due 

to Bechhofer (1954). In Alam (1970) the following conjecture was made. 

Conjecture I : Let S0 > 0 be fixed. Consider 

^0 
= 

fa e Rk : /?[*-i] < ?*]-*o} 

where for \LeRk, /?tl) < ... < /i[k] denote the ordered co-ordinates of (x. 
Then for every t e R, 

inf PCS (ji : Px) 
= 

PCS((?, t, ...,t+SQ) : P?). 
V-e?o0 

Another procedure P2 was given by Miescke and Sehr (1980). P2 differs 

from Px only in stage 2 where the final decision is made in terms of the Y%& 

instead of (n^i+n^ifs. A similar conjecture is made here, conjecture 
II (say) : 

inf PCS ((jl : P2) 
= 

PCS((i, t, ..., t+d0) : P2) V ? e R. 

I*e0a0 

From now onwards we shall denote 

PCS((A : P}) 
= 

PCSjGa) for j 
= 1, 2. 
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Remark 1 : Gupta and Miescke (1984) has shown that procedure P2 

is inferior to Pv Procedure P2 is only reasonable if the data from stage 1 

are lost and only the information about the subset decision is available at 

stage 2. 

It can be seen that both the conjectures I and II hold for indepen 

dent samples from populations nl9n2, ...,nk where 7r$ has density g(x?/it), 
1 < i < k for some g, such that the sample mean of n{ is MLR in ?ii. This 

can be verified by noting that in both the proofs we have used only the MLR 

property of Xi and Y i in ?1% and the fact that ?ii is location parameter. In 

particular equation (1.1) is also valid for such distributions since MLR in ?ii 

implies stochastic ordering in fi(. 

Remark 2 : g(x?/i) is MLR in ?i if and only if g is logconcave 

(Karlin, 1968). Also note that logconcavity is closed under convolution 

(Dasgupta, 1980). 

We first give the proof of conjecture II for k > 2 in Section 2. The 

proof of conjecture I is similar to that of conjecture II and is given in 

Section 3. 

2. Proof of conjecture ii 

The main idea of the proof is to introduce a function PCS2({Ji) (need 
not be probability) such that PCS2((Ji) > PCS2(jji) V" |* and then to show 

inf CSP*(fJi) 
= 

PCS2(?, t, ..., t+d0) VteR. 

Let us now define, PCS2(fji | x) 
= 

Probability of correct selection given 
that x ? 

(xv ..., xk) is observed in the first stage, 

PCS,(|i) = 
J PCS^I*)/ (x)dx ... (2.1) 

xeR* 
* 

where/ (x) is the density of (Xl9 X2, ..., Xk). Let jx0 
= 

(0, 0, ..., 0, S0). 

Now, to prove conjecture II it is sufficient to show 

PCSa(ji) > PCS2(jji0) V {A < {?o, with ?im = d0 ... (2.2) 

as the PCS2 is invariant under translation i.e. 

PCSaGoj, /?2, ..., /ijt) 
= 

PCSg^+a, fc+a, ..., /ik+a) ^J-aeR. 

Without loss of generality we consider /ik 
= 

/i[k], where ?i 
= 

(/il9 ...,/ck). 

Define PCS*(jx) = f PCS2(f*01 x)f(x)dx. ... (2.3) 
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As in P2, the final decision is based only on Yfa a result similar to (1.1) holds 
and we have for all jji ̂  (ji0, with ?ik 

= 
d0 

PCS2(li|ir)>PCS2((ji0|a;). 
... (2.4) 

Hence from (2.1) and (2.3), 

PCSa(|i) > PCS*((ji). ... (2.5) 

Again as PCS2(^0) 
= 

PCS2(fji0), to show (2.2), it is sufficient to show 

PCS*(n) > PCS*^), ... (2.6) 

where (i 
= 

(ju,v fi2, ...,/i?c) ^ ?j.0 
= 

(0, 0, ..., 0, S0) with /ije 
= 

80. Now to show 

(2.6), without loss of generality we consider /ix ^ ju2... ^ [ije_1 < fi^ 
= 

80. 
For this we may have any of the following configuration for 1 <; r ^ 1c? 1, 

H 
= 

^2 
= = 

N < pr+i < < /%-i < H 
= 

<V 

Hence (2.6) (i.e., conjecture II), follows from the following result by considering 
directional derivatives in the direction (1, 1, ..., 1, 0, 0, ..., 0) (with r many l's). 

Result: - zvri 
^ 0 ,2.7) 

Now for fixed s > 0 and c( > 0, used in stage 1 of P2), define 

Cs 
= 

{(x2> xa> ..., xk) : \xi?x}\ > s, \xi?x}-\-c\ > e Y i,j 
= 2, 3, ..., k} 

As 
= 

RxGt. 

Clearly, At C ?* 

Let PCS^ : 5) = J PCS2({ji0 | x)f^ (x)dx. 
xeS * 

Consider PCS^jt : At), 

lim 
d PCSSfr : ?e) 

= lim f PCS^I?) {4~f(x) )dx 

9 
-PCS??jx) [As A81?*, as s-> 0]. 

Hence if we prove the following Lemma (2.1) the above result will be proved 

and thereby proving conjecture II completely. 

Lemma 2.1 : d 
PCS^ 

: Ab) < 0 V s > 0 fixed. ... (2.8) 
o?ix 
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Proof of Lemma 2.1 : Fix 0 < 8 4. s i.e. ?is very small compared to e. 

Let e1 
= 

(1, 0, 0, ..., 0)e Rk and 

u(8) = 
VG%((V.+8e1):At) 

u(0) = 
PCSJG* : At). 

at * +u 4. ,tM ^ PCS?(|i : Ae) 
Note that u(0) =-=-^--. 

For 2 <; i0 ̂  fc, define 

1P+0) = 
?ef|{i*e.B* : *i > a* Y ? ̂  1 

and 
(zio+c-?) 

< ?! < (a^+c)}. 

^-(i) 
= 

A,ft{xe& iz^? x?Y i *io 

and 
xio-c 

> ^ > ar^-c-*}. 

Note that Wf(8), i0 
? 2, ..., ifc and Tfr(?), ?0 

= 2,..., ?are all disjoint, for the 

structure of At and the fact that ? <^ e. 

Now tt(*) = 
PCS; ((/*+&!) : ?,) 

= 
JPOS^I*)/^^^)*? 

= 
J PCSadAolap)/^??, #2, ..., a&) dap. 

= 
J PCS2({ji01 fo+i, a;2, .. 

.a?*))/p(?)cte 

(by change of variable and the fact that Ae 
= 

RxCe 
does not change with any location change of xt) 

= I J TCSMI (y (x)+c.eMl})U(x)dx 
*o=2 w+w 

*0 

+ 1 J PCSl(|i0|/<0(y<0(a;)-c.e1)U{l,ia})/n(*)*B 
?0 

+ J PCS2((jl0 I ?t+i, x2,..., xk) fn(x)dx 

= I A? (8)+? A-(8)+Bs(8)(mj) ... (2.9) 
?0=2 

?"5 
i0=2 

?'5 
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where W(S) = ? (W+(?) (J Wr(?)), 

y?Q(x) 

= 

(x.o, 
x2, ...,xk), 

I% (x) 
= 

(subset selected in stage 1 when x is observed)?{1, i0} 

and 

PCS2 (/?0| J(x)) 
= 

Probability of correct selection given that subset J(x) 
is selected in stage 1, when x is observed. Here J(x) Q {1, 2, ..., k}. 

Note that PCS2(|*01 J(x)) = 
PCS2(|x0|a?). 

Again, 

u(0) = 2 J PCS2fa0|J (7iM+c-eJU^i^UWdx 
to^wh?) 

? ? 

+ S 
J YCS^lI^W-ceJUiioWvWdx l(T2 W, (?) 

+ f PCS2(no!#) Mx)dx 
A-W(?) 

= 1 A+(d)+?A7(*)+B0(i)(B*Y). ... (2.10) 
?0=2 

t0'? 
?0=2 

'0?0 

Note that 

lim \ ?Af (8)-Af (5)1 

[PGS2(lL0\IiQ(7.o(x)+c.e1) U {lD-PCS^fXof/.^ (aO+ceJ U {1, ?o})] 

r i *<0+c i 
/*, ...^fe **) hr i" /^i)^i *** *** i2-11) 

[Since from definition of Ae, W+ (8) = A f) {x : xt +c ^ Xi -V i ̂  I and 

xf +c?8 < x1 <; ^ -f-c} and as 
yi (x) does not depend on xx, (2.11) is 

well-defined]. 

f [PCS2(fii011 (yt (x)+c.e1) (J {1}) 
O n{(*a. > **) : *? +c > *? "V ? * 1} 

? ? 
e o 

-PCS2(tx,0|/io (y^aO+cej) |J {1, i0})]/fi(*io+c, 
?r2, x3 ... xk)dx2 ... d% 

= 
2)+(Bay). ...(2.12) 
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1 
[(2.12) follows by noting that lim 

?->o ? 

r Ve 
J 4 (*? =/^+c) i 

? 

f?xV 

and then by Dominated Convergence Theorem]. 

Similarly, 

lim -I ?A- (S)-A- (?)} 

Genii**, ... xk) : xi0 > x, Y ?= h] 
L ^ ? * ? 7 ' 

-PCS2 
^jx0|?iiJi^-ce^ 

\J {1, 
?0}j 

1 
fJxio?c9 

x29 ...xk\ dx2...dxk 

--^(say). 
... (2.13) 

Let x. = z, -f-c and 2j = ^?i^ V 

Then from (2.13), for all i0 ̂  1, ?. 

?>L = J ^ [PCS2(^01 i?0 (y, (z)+c.e1) U {!}) 
# fl {(*2,.. **) : z<0 + c > ziY* ^ 1} 

-PCS^ol/^y^J+ceO |J {1, i0})]. Mz?q9z2 
... 

z^l9 

\+C> \f 
1> ?*) ̂ 2 ^3 - <k* ... (2.14) 

[(2.14) follows by noting that in the relevant region for all i0 ̂  1, k, 

PCS.^II^y^-c.eJUW) 

=PCS,(|io|/<0(r<0(*)+6.ei)U{l}) 

and PCS,(m | Ii?(yi(x)-c.ex) \J {1, ?0}) 

=PCS2 ({to | I^M+ceJ U {1, ?o})] 

Now note that B0(8) = B3(8) as 

PCS2(fto|x1, x2 ... afc)=POS,Gio|xx+8, x2, xz, ... xk)*t xe A,- W(8) ... (2.15) 

This is because the subset J(xv x%, ...,#*) differs from Jfa+S, x%, ..., xje) for 

x e Ae, only if xx lies close to x^^ or xmax?c. These causes have been taken 

into account in W(8). Also note that, by the structure of Av (2.15) holds 

for Xnzx?8 ^X1< Xjmz. 

A 1-18 
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AT aPCS*({x:^8) 1/m 
Now -%r--? 

= 
ul(0) 

9/h 

Te k 
= 2 D+ - 2 Zr 

*o=2 'o *o=2 <o 

< 0, by the following observations : 

(i) D* > 0 [follows from (2.13)] 

(ii) D\ < 0 [In (2.12), for i0 = fc, PCS2(,ji01 /^ (y^aO+c.^) (J {1}) 
= 0 

as the set (If (yf (x)+c.e1) [J {I}) does not contain k] 

(iii) D+ < Dj for i ̂  1, k, follows from (2.12) and (2.14), by noting that 

Jti\zi?~^~c> 
z2> zz> > ̂ *) 

fn fo ) "/? fo +C) 
> 1 

as / is MLR (or, totally positive of order 2), 

This proves Lemma 2.1. 

3. Proof of conjecture I 

As the proof of conjecture I is exactly similar to that of conjecture II, 

only the important steps are given here. Here also we consider 

/?i ^ /?2 ̂  ^ fik-i < flu without loss of generallity. 

Observe that 

pcSid*!?) = 
pcs,( (i*+^ ?) |?), 

where PCS2 ( ? jj,+ 
? x\ \ x Weans the probability of selecting the &-th popula 

tion by choosing the population corresponding to the maximum observation 

(maximum among the populations given by J(x)). Here for given x, the obser 

vations follow 

*(*+5<4 
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Hence PCS^) = J PCSa( ((i-f-1 a?) \x)f(x)dx 
... (3.1) 

As in the earlier proof, define 

PCS*(|i) 
= S 

VC82({l,0+^x)\x)f[?(x)dx 
... (3.2) 

xeRk 2 

Now by analogous argument, to prove conjecture I, it is sufficient to prove 

the following lemma. 

T Q 1 d PCS?(fji : Ae) , . _, . - 
Lemma 3.1 : -~?--- < 0 V* fixed e > 0, 

where 

P0S;(|i:?.) 
= J ?CS2(L0+^x)\x)f(x)dx 

... (3.3) 

Proof ?f Lemma 3.1 : As the proof of Lemma 3.1 is similar to that of 

Lemma 2.1, only the main steps have been shown here. 

PCSJidH-^):^.) 

= J PCS2 ( (|*o+ J1 {xi+?, ?c? ... xk )) |a^+S, x2, ...xk)f (x)dx 

< S J PCS2(/i0+ -i (y^aO+ceJ|/,0(Y,0(aO +ce1)(J U})/? (*)?* 
?0s2 IPt(a) 

2 

+ S f PCSrf|io+^Yio (*)-^ 
*0=2 1^7 (<$) 2 

+ J- PCS^+^(x1,a:2,...^)I^+*,?2,...^)/(a?^ 
... (3.4) 

a?w(?) 
U2 

[(3.4) follows in exactly the same way as (2.9) and the inequality is 

due to the fact that, for y > 0, ~PCS2(v.+x+7?.e1\ J(x)) < PCS2 

(pi+ae| J(x)) as in (1.1)] 

= 1 At (8)+i AT0? (S)+B?(8) (say) 
?0=2 

' 
i0=2 

' 

= ? (8) (say). 
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Now 

PCS?(|i:?6) > S J 
f0=2 

W*o 
(?) 

VCS2(p0+^(yio(x)+c.ei)\Iio (r{o(x)+c.ei)C]{l, i,})f?x)dx 

+ i J PCS, (/?o + ? (yAx) 
- cej | IM*) - 

c.e^^f^dx 
?0=2 Tf- (?) n2 ? ? ? 

+ 
?8-L> PCS2(/c0+ ^?|*)?(?)cfe ...(3.5) 

[(3.5) is defined like (2.10) in exactly the same way as (3.4)] 

= I 2+0 (5) + I 2^ (5) + 20(*) (say) 
?q?2 ?q=2 

= w(0) (say). 

As in Lemma 2.1 Ba(8) 
= 

j?0(#) as PCS2 (/*0 H-(#i,. ,#*) I (#i + #, x2...,xk)) 
n2 

-PCS2(^0+ -^fe...,xk), I(?i,.... a?)), Y xe Ae -W (?). 
n2 

Now 

dVCS\(/i:Ae) 
fa 

-- lim 5-1 [PCS! (/?+5-?! : ?6)-PCSJ fo? : Ae)] < lim ?-1 [? (i)-?(0)] 
3??0 i->0 

: ! lim?-i[i+ (i)-i+ (*)]+ I lim *-i[J- (*)-2- (*)] 
i0=2 S-?0 ?'6 ?'? 

?n=2 3-?0 ?>? ?>? 

l0=2 
? 

i0= 

< 0, [since Di ^ O, Z>? < 0 as in Section 2. 

S 5+- S Df (say) 
?ft=2 

? 
*n=2 

? 

Also 
Df ^ 2)?", y- iQ y?= I, k by deriving equations analogous to (2.12), 

(2.13) and (2.14).] 
Thus the proof of Lemma 3.1 follows. 
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