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SUMMARY. For given k normal populations with unknown means and common known
variance, Alam (1970) suggested a two-stage procedure to select the population having the largest
mean. He conjectured that under this procedure, the least favourable configuration (L.F.C.)
would be the slippage configuration. This procedure has been subsequently studied by Tamhane
and Bechhofer (1977, 1979) and Miescke and Sehr (1980) while in the latter another two-stage
procedure has been given and a similar conjecture is made about the LFC. In this paper both
these conjectures have been settled and both are found to be true. Though the conjectures here
were made for normal distribution, the proofs given in this paper hold for any distribution whose
sample mean has MLR property.

1. INTRODUCTION

Let my, my, ..., mp denote k normal populations with unknown means
M1 Moy -, pr Tespectively and a common known variance o2 > 0. Let
M < fgy < ..., < pgky denote the ordered set of values of the means. The
problem is to select the population with the largest mean ;.

For given sample size n,let (X, “"Xml)’ 1=1,2,....k denote k

independent samples from 7,7, ...,mx respectively. Define X;= ni?
X+ ... +X""1)’ t=1,2,..., k. Bechhofer’s fixed sample procedure ()

is to choose the cell corresponding to the maximum of X for ¢t =1, 2, ..., k.

Let PCS (1, &) be the probability of correct selection under 7 with the
true mean @ = (4q, Uy, ..., #x) such that u, < py, < ... < -y < px. Noting

PCS(x : 2) =£’”§1 ¢(\/n—1(9;-—m)) d¢(\/771(92—/tk))
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where ¢ (-) is the c.d.f. of standard normal variate, one can show the
monotonicity of PCS (@ :.2) in py yy, ..., ix—; by showing

IPCS(w: 2) <K0vwi=12,..,k-1, .. (L1)
Opy

Alam (1970) proposed the following two-stage procedure P, :
Stage 1: Take k independent samples (X, ..., X m]) of size n,,
t=12, ..., k, from =, m,, ..., 7y and compute X; = n7? (Xt1‘|“-~+Xm1)

for i = 1,2, ...k Select all population 7; with X; > max {X;:5=1,2, ...k}
—c where ¢ is a fixed positive real number. If only one population is selected,
stop and assert that, this one has the largest mean, otherwise proceed to
stage 2.

Stage 2 : Take additional independent samples (Y, ..., Yinz) of size

n, from the populations selected in stage 1 and compute Y; = nj?
(Yt .+ sz) for them. Then select the population giving the maximum

of (n, Xy+n,Yy).

Thus procedure P, is a combination of two classical one-stage procedures
where the first one (in stage 1) is due to Gupta (1956) and the second one is due
to Bechhofer (1954). In Alam (1970) the following conjecture was made.

Conjecture I : Let 6, > 0 be fixed. Consider
Qoo = {we B¥ : ey < per— 0o}

where for weRE, u,) < ... < gxy denote the ordered co-ordinates of .
Then for every f¢ R,

inf PCS (w:P,) = PCS((¢¢, ....t+6,) : P,).
5“980

Another procedure P, was given by Miescke and Sehr (1980). P, differs
from P; only in stage 2 where the final decision is made in terms of the Yy’s

instead of (n,X;+n,Yy)’s. A similar conjecture is made here, conjecture
II (say) :

inf PCS (@ : Py) = PCS((¢, ¢, ..., t+6;) : Py) ¢+ te R.
p.eﬂso

From now onwards we shall denote

PCS(w : Py) = PCSy(w) for j =1, 2.
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Remark 1: Gupta and Miescke (1984) has shown that procedure P,
is inferior to P,. Procedure P, is only reasonable if the data from stage 1
are lost and only the information about the subset decision is available at
stage 2.

It can be seen that both the conjectures I and II hold for indepen-
dent samples from populations g, m,, ..., 7 where m; has density gle—ps),
1 < ¢ < k for some g, such that the sample mean of #; is MLR in g;. This
can be verified by noting that in both the proofs we have used only the MLR
property of X; and Y;in p; and the fact that g; is location parameter. In
particular equation (1.1) is also valid for such distributions since MLR in gy
implies stochastic ordering in p;.

- Remark 2 : g(x—p) is MLR in g if and only if g is logconcave
(Karlin, 1968). Also note that logconcavity is closed under convolution
(Dasgupta, 1980).

We first give the proof of conjecture II for k > 2 in Section 2. The
proof of conjecture I is similar to that of conjecture II and is given in
Section 3.

2. PROOF OF CONJECTURE II

The main idea of the proof is to introduce a function PCSy() (need
not be probability) such that PCSyw) > PCS)() ¥ ¢ and then to show

inf CSPj(w) = PCSy(¢, ¢, ..., t+6,) v te R.
peQs,

Let us now define, PCSy(@| ) = Probability of correct selection given
that & = (%, ..., z) is observed in the first stage,

PCSy(w) = [ PCSy(u|a)f, (x)de @)

Wherefp‘(w) is the density of (X,, X,, ..., Xy). Let p,=1(0,0, ..., 0,d).
Now, to prove conjecture II it is sufficient to show
PCSy(p) > PCSy(pe) ¥ 1 < o, With sy = & . (22)
as the PCS, is invariant under translation i.e.
PCSy(uy, pho, -.., pr) = PCSy(uy+-a, pota, ..., ux+a) ¥ a € R.
Without loss of generality we consider uy = gz, where p = (u,, ..., ig)-
Define PCS; () = ijk PCSz(;L0|a:)fp(w)dw. .. (2.3)
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As in P,, the final decision is based only on Y;’s, a result similar to (1.1) holds
and we have for all p < py, with g = 8,

PCS,y(w|x) > POSy(1o| ). ... (24)
Hence from (2.1) and (2.3),

PCS,(p) > PCSy(w). ... (2.5)
Again as PCS,y(p,) = PCS;(p,), to show (2.2), it is sufficient to show

PCS(w) > POSH(u,), .. (2.6)

where @ = (1, fhoy > i) < o = (0,0, ..., 0, &) with pz = 6,. Now to show
(2.6), without loss of generality we consider u, < fo... < a1 < g = 6.
For this we may have any of the following configuration for 1 < r < k—1,

= fhp = oo = o < firyy < ... < Py < Pk = 0y
Hence (2.6) (i.e., conjecture II), follows from the following result by considering
directional derivatives in the direction (1, 1, ..., 1, 0, 0, ..., 0) (with » many 1’s).
Result : 9 POS; () < 0. . (27)
Oy
Now for fixed € > 0 and ¢( > 0, used in stage 1 of P,), define
Oz ={(x2’ L3y ooy lxi_xj' g, Ix’i'—xj-l_cl E'V"' .7 - 2 3 k}
A, = Rx0C,.
Clearly, A, C Rk.
Let PCSy(u : 8) = [ PCSy(wo|®)f, (w)dex.
a:eS B

Consider PCSy(u. : 4,),
lim a PCS2(!"' : Aa)

20 Oy

= lim [ PCSype|®) (727 fu(w))dac

e —> 0 784,

= —a——PCS;(p.) [As A, 7T RF, ase— 0]
Opty

Hence if we prove the following Lemma (2.1) the above result will be proved
and thereby proving conjecture II completely.

0 PCSy(w: 4,)

Lemma 2.1 :
Opy

< 0N € > 0 fized. .. (2.8)
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Proof of Lemma 2.1 : Fix 0 < 8 £ ¢ i.e. 8is very small compared to .
Let e, = (1,0,0, ..., 0) R* and

u(d) = POSY( (u+8e,) : 4,)
u(0) = PCS3(w : 4,).

) PCS s 4

Note that w'(0) = 7 1y

For 2 < 1y < k, define
W;;(&) A, N{®eRx 10y >y 1 5#1
and (xio—l-c—a) <z < (xio—l—c)}.
W@ =A,N{xeRr 2, > ¥ i #14
and Ty —C> T > xio—c—c?}.
Note that W;;(B), g =2,...,kand W,;(&), to = 2, ..., k are all disjoint, for the
structure of 4, and the fact that ¢ < «.
Now  u(d) = PCS; ((u+3e,) : 4,)

= [POS, 2N, 1s, @M

®+de;

=Aj' PCS,(wg | ®)fu(2,—96, 2, ..., xx) dee.

(by change of variable and the fact that 4, = RXC,
does not change with any location change of z,)

k
= X I PCSy(pg | L3, (@) +c.e) {1} wle)dae

k
+ 22 I ( POSy(o | Iy, (v4, (@) —c.e)\U{1,i}) fulee)dee
= Wi 8)

+ 1 PCSylpolartd, .., ) ful)i

8

k
-3 af O+ 2 Ag (3)+By(d) (s2y) . (2.9)
-

io=2
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k
where Weo)= U (W;(’)(é) U Wé;(é‘)),
i0=2

'yio(x) = (xio, Zgy ooy T,
I; (x) = (subset selected in stage 1 when @ is observed)—{1, 7o}
and

PCS, (1| J(x)) = Probability of correct selection given that subset J(x)
is selected in stage 1, when @ is observed. Here J(x) C {1, 2, ..., k}.

Note that PCS,(w,|J(®)) = PCS,(p, | x).
Again,

w0)= 5 [ POSy(pol, (v, @-+oe) U {1, ighful@ide
to=2 w;;(.s)

k
+ 2 [ POCSy(me]I io(yfo (@)—c.e;) U {ig}) ful®)de
=2 Wi“o(a)

+ [ PCSy(wy|x) fu(x)da
A-W(5)

k k
- 022 A%.o(a)Jr,OEz A (O)+By(o) (say). . (2.10)
Note that
. 1
611—1110 3 [A:Oyd(a)_AZ;):O (8)]

= lim
330 0 n{(@, .. @) i wigte > 2 W€ # 1}

[PCSa(po| Ly (v, (®)+Fc-e1) U {11) —PCSy(pe | I, (7, (@) +-c.e0) U AL, i})]

z, +c
1 1
Toy .. Xg). | 2, )dx, | dx, ... dxg. ... (211
N [M,.ofcqsfff 1)z | day .. do (2.11)

[Since from definition of A, W;B 0)=deN{x: xio—l—c >V i#1 and
acio—l-c—8< x5 < xz.o-|—c} and as Vi (x) does not depend on z,, (2.11) is
well-defined].

= f [PCSy(o | Iy, (74, (@)+-c.e0) U {1})
Oen{(z,,...,xk):w‘o+c>x;‘v"i¢l} 2*"0' fo 2o ! U{}

—PCSy(w | Iio (’)’,-0(‘1’)4‘0-‘31) U {1, 9] fu(x,;o—FC, Ty, Xy ... Tp)ATy ... dig
= D;‘; (say). ... (2.12)
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z; +¢
[(2.12) follows by noting that lim 1 ,: 0{ fu, @ dxl] = J,, (wi +¢)
5>

0 é‘ Z‘0+0‘
and then by Dominated Convergence Theorem].

Similarly,

lim l[ RO~ 47 0]

s—0 0

= CeniEn . 20 :a;;j> iy [PCSz(l"o(I¢0<7io(iﬂ)—c.e1) U {’50})

—PCS, (p.OII (yio(a:) c.e;) U {1, zo})] ( —c, Z, xk) dx,...dwy

= — Dj (say). . (2.13)
Let ¢, =z, +c and z; = x; ¥ ¢ F 1.

Then from (2.13), for all 3, # 1, &.

Dy, = [ [POSymo]dig (ys (@)4c.er) U (1)
Oen{(z2,- - 2): 24°+c>z¢’v"z # 1}

—PCS,(ue | 1 io(yio(z)—[—c.el) U {1, 2] fp.(zio, 2y Gy 1
z¢0+°’ 2t e 2g) dzy dzs ... d2g .. (2.14)
[(2.14) follows by noting that in the relevant region for all ¢, # 1, k,
PC8y (o 1, (7;, (@) —c.e2) U {io})

=POS, (ol 1, (7, (&) +0.20 U {1)

and  PCSy(gto| L (v (®)—c-e2) U {1 éc})
=POS, (o] £ (7, (®)-+c-e0) U {1, %0})]
Now note that By(8) = By(d) as
POS,(io | 2y, o ... 2x)=PCSy(g |21+, Ty, 25, ... Tp) ¥ T € A4,—W(@©) ... (2.15)

This is because the subset J(x;, @, ..., xx) differs from J(x;+0, @, ..., Tx) for
@ € A,, only if z; lies close t0 ¥,y OF Tpax—¢. These causes have been taken
into account in W(3). Also note that, by the structure of 4,, (2.15) holds
for Zpax—0 < % < Tmax

4118
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- OPCSy (. : 4,)

No
O

= u}(0)

k k
= X Dt— % D™
=2 iy ig=2 1
— D}-Dj+ T (DF-D7)
ip=2 0 0
< 0, by the following observations :
(i) Dz > 0 [follows from (2.13)]
(i) D} < 0[In (2.12), for ¢y = k, PCS,(wo |/ 0 (7,;0(“’)4‘0-@1) Uu{p=o0
as the set (I io('yio(w)—l—c.el) U {1}) does not contain k]
(iii) Di; < D;O for ¢ # 1, k, follows from (2.12) and (2.14), by noting that

fp‘(zio, 2o eees By zzoo‘H” 2y e 2k)

fulz, +c¢,25,25, ..., 28)
)

_ .ful(zio) ) fu,-o (zi0+c) 51
ey T Ty )

as f is MLR (or, totally positive of order 2),
< Mig and ¢ > 0.

This proves Lemma 2.1.

3. PROOF OF CONJECTURE 1

As the proof of conjecture I is exactly similar to that of conjecture II,
only the important steps are given here. Here also we consider
M K Yo < oot K pr_y < px without loss of generallity.

Observe that
POS,(1 @) = POS, (w472 @) | ),

where PCS, ( ( p.—l—z-l a:) |w)means the probability of selecting the k-th popula-
2

tion by choosing the population corresponding to the maximum observation
(maximum among the populations given by J(x)). Here for given @, the obser-
vations follow

N (p.—l—;-% x, %:Ik) .
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Henoe POS,() = | POS, (p,—l—% z)|@)f @de .. (1)
X6R
As in the earlier proof, define
POSIp) = | POS( (p.o—l—% 2) |21 (o)dae . (3:2)
xeR

Now by analogous argument, to prove conjecture I, it is sufficient to prove
the following lemma.

dPOSI(w: A

Lemma 3.1 : u ) < 0% fized € > 0,
1

where

POSIw:d) = | POS,( (ot 2 w)lw)f (x)dae . (3.3)

Proof of Lemma 3.1 : As the proof of Lemma 3.1 is similar to that of
Lemma 2.1, only the main steps have been shown here.

PCS; ((1+0e) : 4,)

= [ POS,( p.o—}— (wl-l—t)‘ Xgy ... T )) | X1 +6, o, ...xk)f“(:n)dw

4e

k
< D POt @) toe) | (Y@ el U f, @i

ip=2 W'ﬁ) (8)

k
+ I POt vi, () —ce) | 1, (¥, @) —ce)ULL, i) f (@)
o= wy @ 2

+ 4 | PCS (l"o‘|‘ (xb &, ... Tp) | 2,40, X, Tk) fp.(m)dm e (3.4)
e W(5)

[(8.4) follows in exactly the same way as (2.9) and the inequality is
due to the fact that, for 7> 0, PCSy(utx+7.¢,|J(@)) < PCS,

(k2] J(x)) as in (1.1)]

k. ~
_ 3 Af ,,(3)+‘22 4i,, 0)+B;(0) (say)
-

1 0=2

= (8) (say).
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Now

k
PCSi(p:4e) > = [
(e AN

P8yl 3.20%4, (0) .0 17, (v, (@) ee) L, i) @)l

+ B[ POS, (i + My, @) — o) |1, (7, @) — ce) i) ie
1p=2 W;'O(J) Ty ‘

+ adve PCS, (g + %mla}) £, (@) do ..(3.5)
[(3.5) is defined like (2.10) in exactly the same way as (3.4)]

= ;5 Al ) + ﬁ A5 )+ Bod) (s2)

= %(0) (say).

Asin Lemma 2.1 E, (0) = E;,(c?) as PCS, (u, + %: (Tgs..., Z) | (21 + O, o..., TF))

=PCSy(ye+ 1:;: (@y,...., %), | (X1, ..., X&), ¥ xe Ac — W ().

Now
0PCS; (p: A¢)
Oy
= lim 8-1[PCS; (u+8-¢, : A)—PCS? (& : 4¢)] < lim 8- [u (8)—u(0)]
§—0 6—>»0
k ~ ~ k ~ ~
— 3 — + _ . 1T A~ -
N ¢oz=z gﬂ 08 G, ©) Ao @ +4[§=2 61_1_1:1 0 d [A’M ©) Aio,o(a)]
E ~ E ~
= X D}— = D; (say)
=2 0 =2 °

< 0, [since ]3,; >0, f)',; < 0 as in Section 2.
Also BtT, < 13;;, ¥ iy # 1,k by deriving equations analogous to (2.12),
(2.13) and (2.14).]
Thus the proof of Lemma 3.1 follows.
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