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A CONSISTENT METHOD OF ESTIMATING THE ENGEL CURVE
FROM GROUPED SURVEY DATA!

By N. SREENIVASA IYENGAR

1. NTRODUCTION

IN AN EARLIER paper [9], a simple graphical method was developed for computing
Engel elasticities from ation curves. This method, which has since been
used in some of the Indian studies on consumer behaviour [10, 12] rests on two
basic assumptions—the log-normality of the income (or total expenditure) distri-
bution and the constancy of the Engel elasticity—which admit empirical testing,
It has been used with advantage in empirical work involving the calculation of &
large number of elasticities from the available National Sample Survey data,
which usually provide aggregate consumption patterns either in fixed size classes of
income (total consumer expenditure per capita) or in fixed fractile classes.2 The
latter type of tabulation has certain advantages in economic analyses [15] and
provides the primary data for the application of our method.

Perhaps the question that has not yet been adequately ined is the foll
Does this method, apparently so simple and probably less expensive, yield in any
statistical sense a better estimate of the Engel curve than the one provided by the
regression method under similar assumptions? The present paper seeks to answer
this question and shows that our procedure is consistent. An expression for the
asymptotic variance of our estimate, which may be computed from the given data,
is also worked out for the slope of the double-log Engel curve. The regression esti-
mate of the elasticity computed from group means under the double-log hypothesis
is shown to be asymptotically biased with the bias increasing with the “true”
elasticity. Under certain conditions, which arise in actual practice, it is shown that
our method yields asymptotically more efficient estimates than Wald's in the
double-log case, at least for relative luxuries.

In Section 2, the basic notation is developed and some empirical tests are pro-
posed for verifying the basic assumptions. An alternative procedure of estimation,
based on the concepts of specific and Lorenz jon ratios, is idered in
Section 3. The classical method of least sq! is d with our method in

Section 4. In Section 5 we consider alternative hypotheses for the distribution of

1 The studies reported in this paper were initiated at the Indian Statistical Insﬁlutomdcom
pleted at the Harvard Economic Research Project under & R F Tlowshi
The author gratefully acknowledges the heip and support received from thess lnsumﬂons. 'nnnks
aredus to Professor H. S. Houthakker for taking kind interest and offering several usaful comments
on the original manuscript, to Dr. J. Roy and Dr. J. Sethuraman for giving vnlunbb mmdom
in the initial stages, and to Professor P. C. Mahalanobis for providi
Thanks are also due to Mrs. lomCochnnfonypomphhlmnoe.

1 These studies are yot unpublished.
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income and the Engel curve and suggest appropriate estimation procedures,
Finally, we make a few genoral remarks in the last section. Some of the derivations,
tables, and charts are given in the Appendix.

2. SOME METHODOLOGICAL CONSIDERATIONS

This section deals with the estimation of the parameters of the double-log
Engel curve defined by

@)  Px)=8plx)=Ax",

in which y and x represent respectively the household expenditurs on the specific
commodity and income (or total expenditure). The latter is supposed to be log-
normally distributed with the parameters (6, A). That is to say, the random vari-
able x has the density function g(x) given by

) o= e (- 4], x>0,

Equations (2.1) and (2.2) constitute our basic assumptions and may be easily
tested given grouped survey data; this has been done at the Indian Statistical
Tnstitute using the National Sample Survey data [3).

Under the assumptions stated in (2.1) and (2.2), we propose the following
procedure: Let

=5 .

@3 a X +X, ad Q Jiti2’

In (2.3) the ¥’s represent the mean incomes, and j's the mean specific expenditures
corresponding to two fractile classes of income [15]. In other words, we divide the
households into two equal groups on the basis of income and compute the pro-
portionate shares of total income and consumption accruing to the lower income
group. Such proportions may be obtained directly from the fractile data. But, in
the fixed interval case, these have to be computed by interpolation from concentra-
tion curves. The elasticity # is estimated according to [9]:

[
(24) = ,—j.

where ¢ denotes the standard normal deviation defined by

25 & =,,%‘ :mexp(— ;)dt.

The remaining parameters in the equations (2.1) and (2.2) may be estimated as
follows:
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l=—t,,
26 Od=logz-if,
A=3(=)'"exp {}15(t—10)}
where ¥ and y are the observed mean income and mean specific expenditure of
households for both income groups combined.
1t now remains to be shown that the above estimates are consistent for their
respective parameters. In order to do this, we shall use a basic property concerning
the asymptotic joint distribution of the fractile means (21],
Let (31, X1), (25 X2), - « .» (Va» X,) Do n independent observations on the random
variable (y, x) defined in (2.1) and let us rearrange the sample as follows:

Dy xh Day X -« Yoy )

X SXHE . L Xy
Assuming n=2m, we define the sample fractile means thus:

1 - 1
Z= ot Xy B = (et X
@n 1 1
W =;0’(1)+---+.V(.>)- ) =;0’(-u)+ vt YW

Let us normalise the above fractile means and write

u=ymE-p), i=1,2,
CY Y-, i=L2,

where the corresponding parameters (i, v)) are defined as the truncated means,

(29) m=8(xx<C), m=£&xix>C),
v=80Ix<C), v,=8(Ix>C),

C being the median of x. It may be shown that the joint distribution of {u,, u,’
vy, 0,} tends to a multivariate normal distribution with zoro mean and variance-
covariance matrix
IE
(2.10) (—T) .
The partitioned variance-covariance matrices are systematically evaluated and
presented below:

u=&(x)=exp(0+14%),
v=£())=£,8(y|x)= A exp(nf+11*n%) ,
m=2®(=2), p=2u72),

@1 C=median=exp(6),
v =200(—=2n), vy=209(4n),
{=P(C)=AC".
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Let us now introduce a set of deviations of the fractile means from their re-
spective median positions.
M=M}=C-p,, M;=Mi=p,—C,
@12 TATVITETA B
N =Ni{={-v, Nz=N3=v,—-{.

The next step will be to derive the truncated variances and covariances in the
given fractile classes:
A} =Var(xlx<C)=24 exp(¥') H(—~20)— 4,
a2 =Var (x[x> C)=2u2exp (%) V) —u? ,
2 =Var (ylx< C)=2v* exp (*n*) &(—2n)—v{ ,
=Var (ylx>C)=2v" exp (A*n®) $2An) -3,
p10,7,=Cov (x, ylx<C)=2uv exp (A’ n) &(~2—An)—py vy ,
26,1, =Cov (%, ylx>C)=2uv exp (2’ n) B+ M) —ptyv; .

The elements of the matrix (2.10) are obtained from (2.12) and (2.13). We have

I___[);n Eu] _ [Uf""}Miy? zngMg 0]
1 Za M M; o HIMa M,

(2.13)

(214 E= Ey; Eu]= P10y M, N M N ]
21 )

Ej; M, N} 20373 +4M, N3
T=[Tu Tu]=[r‘1+&NxN? N, N3 J
Ty T N NS t3+IN, N3

Formulae (2.11) to (2.14) are involved in the asymptotic variance of our estimates
of the parameters, particularly of 1.

The consistency of the estimate (2.4) may be easily proved by observing that it is
primarily a function of the observed fractile means which, in large samples, tend
to their respective population values:

5 m (=)
X+E mtm 2

q =¥-3),

A v _ 2v(—dn)
2, = — ~ = = @(~
@15 ¢ A % H(—4n),
=fe lgew
' fy  tee-n "

It should be noted that the denominator involved in our estimate cannot be
2ero for, by definition, 2 is positive. This implies that 4 is a continuous function
of the observed means and therefore consistent. By similar argument we may estab-
lish the consistency of the estimates of the remaining parameters (2.6).
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The asymptotic variance of the estimate of elasticity is found, after some routine
mathematical drill, to be

LLVer©@ , Covig0) , wVara)
@16 mVer @~ 570~ znzan * Tz 1

where

Z)=2(-)=0(@) = Vzln o (-5),
uz)‘t“ (

5 (5],
7 (5],
(

Var(g) = 16;1[

am V@ = g

4}

Cov (0.0 = 15 (&

1610 Ea

B
Hi) (V2 By
() e+ ) (5)em]

A consistent estimate of Var (4) may be obtained by replacing the populati
values in (2.16) by their respective estimates. Once this has been done, Lhc usual
large sample statistical tests of significance may be devised for the elasticity.
We shall not venture to work out variances for all the other parameters found in
equations (2.1) and (2.2), except for the inequality parameter A. This inequality
parameter plays an important role in interregional, intertemporal, and international
studies on income distribution; it is directly related to the Lorenz measure of
inequality L {1] by the equation

.18 L=2¢(%) -1

As noted carlier in (2.6), the inequality parameter is estimated by 1= s,
which has the asymptotic variance

Var(q)

z() °
The above expression, which incidentally appears in the formula for the asymptotic
variance of ), may also be computed either directly from the group means or from
quantities which may be derived therefrom.

It might be appropriate at this stage to indicate certain procedures to test the
uaderlying basic assumptions. A simple grapluml test for log-normnhty of income
distribution and income elasticity of d d is provided in terms of the
following proportions computed for variable levels of income:

P: proportion of houssholds (or individuals) earning a given incoms (x) or less,

@19) Ver(d) =
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q: proportion of aggregate income carned by the above stratum of households
(or individuals), and

Q: proportion of aggregate consumption accruing to the above stratum of houss-
holds (or individuals).

The test for the log-normality of income distribution is that the standard normal
deviates, ¢, and 1,, as defined in (2.5), are linearly related by the equation ty=t,—2,
where 2 is the inequality p For i elasticity besides log-
normality, t, and ¢, are likewise related by the equation to=1,—An, whete 5 re-
presents the income elasticity of demand.® These conditions indeed ensure sym-
metry of the corresponding concentration curves relating g and Q with p [9, p.
884]. The above tests, though necessary, need not be sufficient, just as symmetry of
the Lorenz curve does not ensure log-normality.

The tests proposed above are perhaps stronger then the customary linear log-
probit test and are easily adaptable to both fixed-interval and fractile forms of
grouped data. It may be noted that a log-probit graphical test can be performed
with the usual frequency distribution in fixed classes of income. However, while
one has size distribution data giving distribution of households as well as total
income in income brackets, such as in the case of income tax statistics or family
budget data, the log-probit test does not fully utilize the latter information and is
therefore weaker than our tests.

Analytical tests such as the use of the frequency chi-square statistic, y*=
Z(0-E)*|E, where O is observed and E is expected frequency, are inappropriate
when the sampling scheme is other than simple (stratified, multistage, pps, etc.).
If the sampling scheme is better than the simple one in some sense, the 2 statistic
would on the average be smaller than the actual y? and would therefore underesti-
mate the significance. If there are g classes and #,is the sample estimate of the relative
frequency in the ith class, an appropriate statistic for examining the goodness of
fit can be given in terms of a consistent estimate ((d,))) of the dispersion matrix of
the #,'s. However, since the cost of computing ((d)) is often much higher than the
cost of computing the #,'s, the dispersion matrix is seldom computed.

Roy and Dhar [20] have performed some tests based on the concept of distance
between two populations. Their approach may bo summed up as follows: Let
d(g,7") be a distance function between two discrete probability distributions
g={n,} and g°={n} in g classes. Let Q be a family of distributions of which 3*
is a typical member. The distance between 7% and R is defined as

(220) A= h‘n‘fd(u. 7)

If §={#,} be an estimate of g, then D=inf d(g, n°) is taken as an estimate of 4.

 Theso equations readily follow from the definition of p, 9, and Q. If the distribution of income
(x) is log-normal, and the Engel curve is of the form P(x) = A4, thea p = &X1), ¢ = Pt — 4),
and Q = &(¢ — A7), whero ¢ = (log x — )/ is N(0, 1).



THB ENGEL CURVE 597

Under certain conditions, a normalising constant g, depending on the sample
size n can be chosen so that a,(D—4) is asymptotically distributed as N(0, 1),
provided that 4 #£0. If two interpenetrating subsamples each of size n are available,
as in the National Sample Survey of India, there will be two independent estimates
D, and D; of 4, and asymptotically (D, + D, —24)/|D, — D,| has a t-distribution
with one degree of freedom. From this a confidence interval for 4 can be buift up,

The measure of consistency used by them is defined by C = Z':Vm, which is
=1
equivalent to using Bhattacharya’s distance function {2]

@21) d5,1)=cos™! (‘z';l V).

Using the estimates of log-normal parameters, 8 and 4, puted from two sub-
samples in each round of the National Sample Survey separately for rural and
urban India by Bbattacharya and Iyengar [3], the measure of consistency in each
case is computed. In most cases C has been found to be of the order of 0.98, con-
firming thereby the findings of earlier studies [3, 19].

The test, though admittedly inefficient, is a valid procedure, particularly in the
context of a complex sampling design in the National Sample Survey, which readers
customary statistical tests somewhat inapplicable [14].

3. AN ALTERNATIVE PROCEDURE

In this section we shall briefly indicate another possibility for obtaining Engel
elasticities using grouped expenditure data. One may argue that our estimate
# developed in the previous section, though istent, need not be the best in the
sense of minimum variance, especially when one has more than two fractile classes.
The National Sample Survey of India, for instance, provides consumer expenditure
data for certain commodities by ten or twenty fractile groups (16, 17). Our method,
if applied to such data, possibly ignores much of the intergroup variation by com-
bining the given classes into two median classes and probably yields inefficient
estimates, Under these circumstances, a somewhat different but intuitively satis-
factory procedure was proposed by the author in an earlier paper (10]. We shall
presently show that the alternative estimate, say f),, which makes use of all the g
pairs of group means (¥, X)), is asymptotically unbjased for large values of g. The
alternative procedure consists of the following steps:

First, let us compute the cumulative proportions (4;, §,) of total income and
specific oxpenditure corresponding to the ith fractile class:

Fyt ... +F

4'="‘1+-—'-:+f.' @(i=1,2...,9),

g,-H_ (=1,2,...4).

G.1)
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Second, we calculate the Lorenz ratio L, and the specific concentration ratio
L, (for definition of these pts, see [9, p. 884]) using the cumulative propor-
tions (3.1):

L=1-1% @+a.),
(3.2 dimt

L=1- %I_il @i+0i-0)s

where (40, Go)=(0, 0), and (4,, @p)=(1, 1).
Last, we compute the Engel elasticity by using the formula:

_ ho+ty

R R VO
where ¢ is the standard normal deviate defined in (2.5). It will be noted that the
proportions 3(1+L,) and 4(1+L,) are respectively nothing but the areas above
the Lorenz curve and the specific concentration curve contained in the unit square.

This procedure is applicable also for grouped data classified according to fixed
class intervals, in which case, of course, the definitions (3.1) and (3.2) will have to
be slightly generalised (see [10, p. 385])).

We shall next examine whether (3.3) is consistent for n. In order to do this, let g
be fixed. With a given g (> 2) it is easy to verify the following statement, in view of
our assumptions (2.1) and (2.2):

1 g
Lo~ — 7 Y, [8(4,— N+ 8t~ A1,
34 =1

1 [

L~1- E;Zx [o(t—An)+ &(ti-y— )] .
Thus for fixed g the estimate (3.3) is not unbiased, but is negatively biased for items
for which n exceeds unity. The magnitude of the bias is not small enough to ignore
when g is small.

We shall now show that as g— co, this estimate approaches the true elasticity. For
this purpose, let us consider the sequence {a,} whore

[
69 a,=15% o6,

Applying the law of large numbers to the above sequence, which is permissible
under our assumptions, we see that as g— oo,

(6 o, £0(-1n)
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where & denotes the expected value. It is easy to show that the right-hand side of
(3.6) is equal to the probability that any two independent standard normal variates

do not exceed each other by — Az [11]. This probability is simply & ( — An/y/2). There-
fore, as g— 0,

3.7 L_~1—2¢(—%) .

Similarly, Ly, being a special case of (3.7) in which 5 is set equal to unity, tends to
1—2&(—A/Y —2). It follows at once that as g— o,

m+£.)~¢(f,—§) .
(3.8 2

*(1+£o)~¢(ﬁ) ,
so that

tt1nly2)
3.9) f, ~ S o
¢ ¢ e

This establishes the asymptotic unbiasedness of our estimate (3.3).

Perhaps it will be possible to derive an expression for the asymptotic variance of
A, In fact, when g is fixed, this can be worked out using the elements of the general-
ised matrix (2.10); this and other related problems are being investigated. It
should be emphasised that the alternative procedure does not yield coosistent
estimates for moderately low values of g, and it is conceivable that it may not be
superior to the conventional method of least squares. We shall return to this
problem in Section 4.

Without sacrificing any information, we may use the method discussed in
Section 2 for obtaining a consistent estimate of the Engel clasticity. Let g=2k
where k is a positiver integer. Now we extend the definition of ¢ and Q:

(10) gq= Bt ot _ it tH

X+ ... +% 0 7 S

It is easy to verify that, for a given g, as m—o0, g and Q tend respectively to
@(—2) and ®(— An). This is because %,~gu{P(/;—A)—&(t,-,—A)} and y,~gv{P
(=) —&(t;_, — An)} with to= — 00, 1,=0, and f,= + 0.

The estimate of the elasticity is, as before, given by ff =tg/t,, where the g and Q
are defined in (3.10). The asymptotic variance of this estimate takes the form

GAD  mVar (D) ~ 2[R 1 =2Ry2n+Rasd s
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where
(8 52 () ) S+ () 5
Ry = 16;412 D {(I‘ o YA u

62 R = temzaay (D)5~ E)E) 5w - E)E) s

2
Rar = sy ((2) 52 E) 5o+ (3) S} -

The S’s in (3.12) may be obtained from the generalised matrix (2.10):

j=y jumi
k ] (] k :
= =2 Zy=2 N
@13 Seu=See 4211-;'“ u l-;+1;-| “
[ ] [
Spe= Y X Iy

We may note in passing that the s in (3.12) are simply sums of elements of the
matrix £ equally partifioned into four quadrants. Similarly, expressions which
appear in Ry, and R,, of (3.11) can be derived in terms of the elements of the
partitioned matrices of E and T respectively.

4. THB LEAST SQUARES ESTIMATE

In this section we return the main question—whether or not the above method
apparently so simple and probably inexpensive, is better than the commonly used
method of least squares, under the given assumptions. In what follows it will be
shown that the method of least squares yields asymptotically biased estimates.
We shall mainly focus our attention on the estimate of elasticity.

Suppose with the same data (%, X,, 1, #2) we compute the regression coefficient
b, assuming the double-log form for the Engel curve. Then

2
E‘(log %,—log X)(log 5,—Tog y))
2

3 (log %,—log X))

@1 b, =
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which simplifies to
log 7,—log 7,
log %;—-log X, *

This estimate obtained from the linear double-log hypothesis is the same as
Wald's, which was derived to estimate the slope of the linear regression in two

variables when both the dependent and independent variables are subject to errors

of measurement [23).

It is easy to see that b, is not consistent for y, for we observe that b, is consistent

for
_ log 0(in)—log &(—in)

4 B0 =Togoty-Tog #=D *
which is in general not equal to y except for the values —1, 0, and 1. In fact, the
asymptotic value § is a monotonic function of n with the asymptotic bias increasing,
constant, or decreasing according to whether

Z(4n) 1
0(M)0(—M)§ 7llog #(N)~log &(— 2} .

By means of numerical examples we may show that, for a given value of 2, the
left-hand side in (4.4) is smaller than the right-hand side for some values of n,
while for other values of # the opposite holds. For illustrating this, we assume
1=0.6, in which case the right-hand side becomes 1.6215, Table I gives the values
of the left-hand side for A=0.6 and n=—1.0, —0.5, 0.5, 1.0, 1.5, and 2.0, as well
as the percentage asymptotic bias,

@2

44

TABLE [

n -0 —0.5 0 0.5 1.0 LS 20
LHS —1.6739 —1.6154  2)/2/n 1.6154 1.6739 1.5 1.9067
By —10 —0.4940 0 0.6940 1.0 15303 21201
bias
R 0 —12 0 1.2 o 202 6.00

From Table I it is clear that the asymptotic bias in percentage terms is small
within the range of elasticities we have idered. The bias, h A
fast enough as we move along the n-axis. The asymptotic bias regarded as a func-
tion of n resembles the letter w intersecting tho elasticity axis at p=—1.0 and 1
(Figure 1). We should now examine whether the bias in the least squares estimate
is accompanied by an increase or decreass in its variance.

‘The asymptotic variance of the regression ostimate may be calculated from the
variance-covariance matrix (2.10):

45 mVar(b,) ~ %,-(S“B‘—?-Suﬂ*'sn) ,




Blos
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Fioure 1.—Asymptotic bias of least squares estimate.

where
4.6)  k()=log ¥(N)—log H(~2),

S TRIPY PR

W b g

E E E E
47 Sp=—u_2_ - "
© My BVa Vi B2’

Ty _,Tu, T

v W v

The comparison of the variances (2.16) and (4.5) is not quite straightforward;
it involves three sets of comparisons of the coefficients of like terms. The direction
of inequality of those coefficients depends on the magnitude and sign of the elements
of the variance~covariance matrix.

The expression (2.16) for the variance of § may be rewritten in the form

Sy =

@9 mVar() ~ 5 (Run=2Rpan+Raa)
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in which
Ru = m () 225 )z (45,
69 R = ez () ()50 - () ()5s- (&) ()5
+ () ).
R = ez ((5) T2(2) () o (397
Expression (4.8) is a special case of (3.11) in which thero are only two fractle

groups. In order, therefore, to show that Var (§) < Var (b,) we have to examine
whether the folowing inequalities are simultaneously satisfied:

Ry ¥ Ry 2 Ru x
@) 3 <E 5,7B 5, B

These inequalities may be numencally verified by choosing arbitrary values for
the parameters involved, but this is beyond the scope of the present paper. A de-
tailed investigation in this direction is still underway. We shall, however, consider
a special case and show that our estimate has a smaller asymptotic variance.

Let us write the variance difference in the form

4.11) m{Var(§)—Var(b,)}=a,, Var (9)—2ay,)/ Var (9) Var (Q) peg
+ay; Var (Q),
where the a’s are given by
n B
W =T T EER =D’
4.12)

o B
2= TZZ) ~ IO~ °
1

a2 =

1
B2~ BRIy
We observethat the a’s are all negative for 7 >1* by virtue of the following in-
equality.
THeoReM 1: For all nonnegative A andn)l,

@13)  H(n) = $(dn) 4;; . bl)
where k, as dsfined earlier in (4.6), is equal to log &(X)—log &(—2), the equality
holding when A—0,

4 Computationally it has been verified that this proposition is trus for ) > 0.7.
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The proof of the theorem consists in showing that H(1)is a monotonic decreasing
function of 4 and is less than A/k for all 2 >0, Differentiating k with respect to A,
we have
__ 2N
TR (-’
which is simply the reciprocal of H(2). Thus it is enough to show that k' is monoto-
nically increasing, i.e., k'’ >0, and that the elasticity of k with respect to 1 is larger
than unity, i.e., A’ >&. Both these propositions can be established if we prove a
basic lemma concerning the normal distribution.

4.14) K

LemMa: If &(r) is the standard normal distribution function, &(t)=[" , Z(t)ds
when Z(1)=1/y2r ™" and k(ty= log ()~ log ®( —1), then k(t) is strictly convex
in t for t >0 and strictly concave in t for 1< 0.

Proor: Noting that &'‘(t)= —tZ(r), the derivatives of k(¢) are

? — z(‘)
@15 K@= TOH=D "
and

@16) K@) = ﬂ—t)zg,)(ft) Ar),

where
@17)  AW=[e()—H(—-N)Z() - 1() B(-1).

Since lim,, ., "®(—1)=0, we have 0=A(—c0)=A(0)=A4(c0). We shall now
prove by contradiction that A(f) >0 for 1 >0. Suppose this were not the case. Then
there exists at least one point ¢ in (0, c0) such that 4(¢")< 0, and, since 4(0)=
A(0)=0, 4'(t)=0, i.e.,

“18)  A()=2ZX()- ) H(~1)=0,

so that, say,
4.19)  A()=[d()-B(—1))Z(t') -2 23(Y=Z(1) B(t") ,
where

420)  B(n)=[o(-S(—N]-22(r).

But B(0)=0, B(c0)=1, and B'(t)=21*Z(t)>0. Hence, B(t") >0, a contradiction
of our assumption. Therefore A(f) >0, and consequently, for ¢ >0, £(r) >0, that
is, k(?) is strictly convex.

Since ®(1)+P(—1)=1, we have k(—f)= —k(1), so that k"(—1)=—k"()<0,
showing that for ¢ <0, k() is strictly concave.

COROLLARY: The function w(t)=|k(t)| is strictly convex and lak(f)| > |k(as)i for
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all 0< a< 1. Equivalently, for a given 1, |k(nt)/n| i3 a strictly increasing function of
5 for all n>0.°

The proof of Theorem 1 follows directly from the above lemma. However, for
purposes of comparing the magnitudes involved in either side of (4.13), tables and
charts have been provided in the Appendix.

Now, since a,, < 0, the necessary and sufficient condition that Var (§)< Var (b,)
is that the discriminant of the quadratic form (4.11)

811 @42 Pag) >0;
312 Pe0 822

or, in other words,

a41a
@) plp <22
a2

As an illustration of this, let 1=0.6, as before, and n=2.0. From the available
tables for the normal distribution we compute the a’s and see that the condition
(4.21) takes the form p2o< 0.9251. As long as p,p, the correlation between shares
of total income and consumption possessed by the lower income class, does not
exceed 0.96, our estimate will have a smaller asymptotic variance than Wald's
estimate in the double-log case. The a’s are, of courss, functions of A and », and the
condition (4.21) varies numerically from one situation to another.

Theoretically it is possible to show that the right-hand side of (4.21) is less than
one and is exactly equal to unity for some values of 4 and », in which case

42) Hy =L Han.

For a given level of income inequality there do exist some commodities whose
income elasticity satisfies equation (4.22). This is t Hisa icd
ing function while the asymptotic regression f is larger than the true elasticity
for luxuries and smaller for necessities. In such situations, equation (4.21) is auto-
matically satisfied since, by definition, the correlation cannot exceed unity, implying
that our estimate has greater asymptotic efficiency than Wald’s. In the Appendix,
the values of H(A) are tabulated, in order that one may find the values of 1 and n
that satisfy (4.22).

Regressions based on only two pairs of observations {%, 7,}(i=1,2) do not
seem realistic in actual practice. We shdll, therefore, consider a situation in which
wo have g pairs of observed means (%, 7)) corresponding to g given fractile groups.

¥ The suthor gratefully scknowledges the help recoived from Dr. McFadden and Dr. J. Tsukul
in this proaf.
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The regression coefficient in the double-log model is computed hy using the earlier
expression (4.1) in which the summation of squares and products of deviations
is carried over g classes:

% (log %~ Tog %) log i ~Iog 39
(423) b, ="t .
Y. (log %,—log )*
imq

By a generalisation of our argument, we may show that (4.23), for a given g,
is asymptotically biased, the bias increasing for larger values of the elasticity.
However, if in (4.23) the arithmetic means are replaced by the corresponding geo-
metric means, the regression estimate preserves the desirable small-sample pro-
perties such as unbiasedness and efficiency. But geometric means are not usually
computed in practice because of **zero” observations as well as because of compu-
tational inconvenience.

Let Cy=0, C,, Cy,..., C,y, C,=0 bo the 0, 1/2, 2/g, ..., (g—1)/g, and the
last fractiles of the distribution of x, assumed to be log-normally distributed with
parameters (6, 1); let ¢, be the standard normal deviate corresponding to C((ty=
-0, t,=m), i.e.,

4.24) C,=exp(6+Ar).

We have the following general expressions for the truncated means:

m=gn{®(t,— )~ (1, -},
(425)  vy=gv{®(t,~In)—(t;_—n},

where p, v, and @ are already defined. In a somewhat similar manner it may be
proved (22] that the joint distribution of {uy,...,u,'0,,...,,}, where u=
ym(%,—p) and v,=ym(5,~v), is asymptotically multivariate normal with zero
mean and the generalised variance-covariance matrix (2.10). The elements of the
generalised matrix are shown in the Appendix. Applying the foregoing remark to
b, we observe that the latter is consistent for the expression (4.23), in which the
observed means are replaced by their corresponding population means, but not
for n except for certain values of the elasticity. To evaluate the magnitude of the
asymptotic bias in general terms is difficult, but the numerical course is open to us.
We assume plausible values for A and 5 and compute the asymptotic regression
coefficient B, taking g=5 and g=10.
Let"us write

q=0(,~)—d(t)-,— 1),
426)  Q;=0(t,—An)—P(ty~1—An).
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The asymptotic regression coefficients B is giwn by

] —
L (logq,—Tog2)(log ;- Tog 0)
@ p==

‘)_:“.l (log g,~log 3)’

We shall assume the following values for A and n: 1=0.6; n=—1.0, ~0.5, 0, 0.5,

1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. The putational results are ised in
Table 1I:
TABLE I
n Bn) bias (%)
=35 g=10 £8=3 g=10
—1.0 —0.9975 —0.9988 —0.2499 —0.1212
—05 —0.4966 —~0.4986 —0.6871 —0.2828
0 0 0 0 0
0.5 0.4972 0.4988 0.5632 0.2360
1.0 1 1 0 0
L5 1.5137 1.5060 09145 0.4063
20 2.0440 2.0197 2.2008 0.9838
2.5 2.5970 2.5434 3.8797 1.73713
30 31791 3.0808 5.9698 2.6919
35 3.7961 3.6352 84772 3.8622
40 4.4555 4.2097 11.3884 .24

In the computations a sufficient number of decimal places were kept in view of
the anticipated magnitude of bias. It is seen that the percontage bias does not appear
to be very serious, though for large elasticity values it cannot be ignored. The bias
tends to diminish with an increase in the number of fractile groups. Perhaps with
£=20 the bias may almost tend to be neghgbl& This fact alone is not a sufficient
justification for choosing the hod unless we have also explored
the rolative speed of convergenee of the estimate to its population valuoe as the
number of groups increases. The asymptotic bias is plotted in Figure 1 for chosen
values of g, namely, =5 and g= 10. The graph shows that as tho bias is monotonic
in the elasticity, no uniform correction for the regression estimate can be suggosted.

An expression for the asymptotic variancs of the least squares estimate (4.23) can
also be worked out, although this involves some tedious algebra. Let us write for
eachi{i=1,2,...,¢):
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L= 7,1? [{103 2 ;m _ (los o ;WQ.)] _

o [logai—logas _ (1°s 9 —log q.\]]
4.28) | @ _ o Ik

m

[los g—Toggqy _ (los % &IOT‘L)] ’

=% [

l
d= ‘Zl (log 4,—log 9)%,

where the ¢'s and Q's are as defined in (4.26). The asymptotic variance is given by

(4.29) m Var ()~ [Zl'+1Eny’ + Ty’

in which {=(y, 15,..., 1) and m=(my, m,,...,m,) are g-dimensional vectors,
The variance comparison between the least squares estimate and our estimate is

quite difficult as has already been noted even in the simple case of g=2. Numerical-

graphical devices, however, are powerful aids in these circumstances, though ad-

mittedly they lack in mathematical rigour.

5. ESTIMATION IN THE LOG-LOGISTIC CASE

In this section we relax some of the assumptions of previous sections and assume
alternative forms for the distribution of income and the demand relationships.
First, we shall consider some plausible hypotheses for the income distribution,
retaining the constant elasticity assumption, and then proceed to consider an im-
portant case of “‘variable” elasticity.

As before, let x denote household income, and let us assume that the variable x
has a log-logistic distribution [5] which is characterised by the equation

F(x)
G1)  log——— 1=F)
where F(x) is the cumulative distribution function, Further, let £(y|x)=¥(x)=
Ax", as in (2.1). The problem then is to investigate whether we could still use the
methods of Sections 2 and 3 for estimating the distributional parameters of (5.1)
and those of the Engel curve. This éxamination would help us to ses whether our
methods can be applied to situations where the log-normal hypothesis is replaced
by some other plausible alternative, such as (5.1), which may in practice be verified
from given size distribution data. We shall be concerned in the main with the esti-
mation of Engel elasticity, though other parameters are by themselves important.

=a+blogx,
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For the log-logistic distribution, the Lorenz curve is given by the parametric
equations

(52 pe= %
LI N L
G =BT e e

where =e*x?; I=1+1/b, m=1—1/b, 50 that [+-m=2. Elimination of § between
(5.2) and (5.3) yields the Lorenz curve in the form

L (" g-1q_gpmia
(5.4) q=m_|'° (L=t Yde.

Similarly, the specific concentration curve for the given commodity takes the form

1
B, m")

where I'=1+1/b, and m*=1—n/b, so that '+ m"=2. It should be pointed out that
the distribution of income assumed above should have 5>1 and n<b, so that
(5.4) and (5.5) are defined for all 0< p< 1.

It is a simple exercise to show that for the log-logistic distribution (5.1) the
Lorenz measure of inequality is given by 1/b, whereas the specific concentration
ratio is n/b.% That is, L,=nL,, in the notation of (3.2). Intuitively it appears that
the ratio of the specific concentration ratio to the Lorenz ratio gives in this case a
consistent estimate of the Engel elasticity. Also, the other distributional parameter
a can be computed by

) 1. (F1+L)I(1=Ly)
(55) 2=p-log (—"g——) .

(55 Q= j: Y-,

Let us compute the proportions ¢ and ( corresponding to p=1, i.e.,, =l s
¢ Since
1 w P
R (ms )01,
we have for the area under the specific concentration curve

1 BU*+ 1,m*) me
tu= [0t = 1 - S
The specific concentration ratio L, s, by definition, 1 — 24, so that
"—m
b=

Also, since [* = 1 + nfb, m® = 1 — nfb, the result follows, i.0., Ly = /b, Similarly, the Lorenz
ratio Ly is obtained as a special caso by puiting n = | n the above,
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(}, m) and Q=1 «(I', m") where I (I, m) is the incomplets B-function. The interest-
ing problem then is to apply the formula (2.4) and determine the nature and mag-
nitude of bias, if any. To do this, let 1/b=0.4 (which is roughly the position in the
case of consumer expenditure distributions in urban India). That is, /=1.4 and
m=0.6. For these values of (/, m), the incomplete B-function corresponding to
p=0.5 gives g=0.2453,521. Similarly, for the specific commodities with assumed
elasticity values such proportions may be computed. For example, if n=—1, then
I'=0.6 and m"= 1.4, so that 0 =0.7546,479. In this manner, the proportions Q and
their dard normal deviates are computed for n=—1.0,-0.5,0.5, 1.0, 1.5, and
2.0, and the main results are summarised in Table III. Column 4 gives estimates
of elasticity computed by using the formula (2.4), and the bias is shown in the last
column,

TABLE I
] Q fo f % bias
—10] 0754647 0.6891,733 —1.0000 0
—05  06273,40 03247748  —04712 —s.18
0.5 03726760 ~0347,748 404712 -5.18
10 [Ko0.2453,521 —0.6891,733 1.0000 0
15 01346750 —1.1045,950 1.6028 68
20 0.0311,000 —1.8648,900 2.7060 353

The bias appears to be considerable and, again, increases with the “true”
clasticity. It is thus clear that our method does not mecessarily possess all the
desired properties of good estimators if the basic assumption of log-normality is
changed. However, for the log-logistic case, the ratio of the specific concentration
ratio to the Lorenz ratio appears to be more logical.

At this stage it is worth considering the unconventional approach of Section 3
versus the least squares estimate in the log-logistic case, that is, to see the nature of
the bias that may arise due to our using the group “arithmetic” means instead of
geometric means. We shall briefly outline the procedure and leave out the computa-
tions for the present.

For the log-logistic distribution (5.1), the mean is fonifd to be,

(56) &(x)=0—""B(l,m).

If there aro g fixed fractile classes (Cy, Cy44), i=0,...,g—1, then the truncated
means are given by

5D m=8(|C, K x< Cryy)=ge~ L, (4, m)—L (1, m)],

where z=¢/(1+¢), and I,(J, m) is the incomplete B-function of the first type (0<z
<1); 23+ + + Z,— are the g—1 fractiles of the B,-variate with parameters (I, m).
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Now, since £(y|x)=Ax" by assumption, the truncated means of y are given by
(58  w=gde WL (', m)-L, (', m").
An interesting problem will be to assign specific values to the parameters involved
in (5.7) and (5.8) and compute the series {y,, v;} for chosen values of g, and finally
work out the regression of , on v;. Computations on these lines are omitted as they
are expected to yield results similar to those presented in Figure 1.

In an exactly similar manner, we may work out the consequences of the well-
fmown Pareto hypothesis of income distribution. The Pareto distribution is
characterised by the double-log linear relationship

(59) log {l—F(x)}=—alogxi°, X>Xg,

where F(x) is the cumulative distribution function; x, is the lower income limit;
and a > 1 represents the inequality parameter related to the Lorenz measure by the
equation

1
(5100 Ly = =1
This, however, is omitted from our consideration as a trivial exercise.

Prais and Houthakker [18] in their monumental work The Analysis of Family
Budgets have made use of five basic forms of Engel curve including the double-log
case which gives constant income (expenditure) elasticity. Forms leading to variable
elasticities are often found more realistic in economics.” The semi-log case, for

ple, falls in this category.® Stated in symbols, the semi-log hypothesis takes
the form (5.11) with an implicit additive error term distributed as N(0, o,):

(5.11)  &(ix)=y+5logx.

Also implicit in this hypothesis is the assumption that the marginal propeasity to
consume is, on the average, inversely proportional to income. This hypothesis has
found some empirical support especially for necessities such as food articles
[18, p. 96]). The “variable” elasticity is given by

(542) n(x) = FTETogx"

For purposes of projection, the elasticity is usually computed at the mean income
by the principle of least squares.

? These are indicated by the of the specific curve,
'mfomobviMymﬁmuunhnonwﬁhennpo<up(—y/d)<x<ao Hmee.
in the derivation of the Lorenz curve, as well as of the specifi curve, the i

will hava to bs performed over the incoms rangs x > exp (—y/4). But, since the proportion of
incomes below tha “threshold” leve! is usually small and concentration curves for most necessities
seom to rise above the horizontal axis right from ths origin, ths effect of ignoring the truncation
may not be serous,
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We shall show below that the method of concentration curves can be used also
in the semi-log case, thus relaxing the constant elasticity stipulation of (2.1). The
assumption of log-normality will, however, be retained for of simplicity

Under the log-normal hypothesis the Engel elasticity, computed at the median
income C, is given by

)
613 "0 =75

A consistent procedure for estimating the parameters (y, 8) again involves the
use of concentration curves. As pointed out earlier, the Lorenz curve of income
distribution is given by t,=t,—1 while for the semi-log Engel curve (5.11), the
specific concentration curve has the equation

(5.14)  Q=p—n(C)AZ(t,).

The specific concentration ratio is given by in(C)/}/n, so that the semi-log form be-
comes realistic as long as n(C) < y/n/A.

At the median income, p=0.5, #,=0, and /1=—V;M, so that the ‘‘median”
elasticity is estimated by

0.5—0o.s

120) °’
where Z(0)=1/y2r; 0.5 2nd 4, s are obtained directly from fractile data, or com-
puted from concentration curves in the case of fixed-interval data. Now, since the
denominator in (5.12) is estimated by 7, the overall mean of specific expenditure,
4 has the estimate A(C)y. If the estimates of § and 6 are substituted again in (5.13),
an estimate of y can be obtained in terms of 4(C), §, and 8. Finally, elasticities for
the various fractile groups (income classes) can be obtained by substituting group
means ¥,'s in (5.12), if desired.

On the other hand, the elasticity n(x) computed at the mean is obtained by

(515 O =

(5.16)  np) = 7¥5ToR A’
which is related to 5(C) by the relation
1
(5.17) = 2
() "(C)[Hy(C)%]
80 that

(5.18)  n()<n(C),

provided that the commodity in question is not “inferior”; for inferior goods, the
expression (5.15) becomes negative, since in that case the specific concentration
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curve lies above the Egalitarian line. Also, it will be noted that the *‘constant”
elasticity » is larger than n(C). This at once leads to the inequality
(5.19)  n)<n(C)<n.
This inequality is empirically confirmed by Prais and Houthakker [18, p. 94] for
six food dities in their analyses of British family budgets,

The standard errors of the above estimates are difficult to compute, though not
impossible, at least in large samples. Some of the empirical studies along the lines
suggested in the foregoing sections will be reported in a subsequent note.

6. SOME CONCLUDING REMARKS

The commonly used method of least squares has its general applications in
estimating linear regressions in which the equations are subject to error. Among
other restrictive assumptions is that the residuals are serially uncorrelated and are
also uncorrelated with the explaining variables; the latter are assumed to be
free from observational errors. Also, data on individual uaits, be they households
or individuals, are required for obtaining best statistical results. But in situations
where we are required to estimate the Engel elasticity from grouped survey materials
which are available in the form of grouped arithmetic means in size classes of in-
come (or total expenditure), these assumptions are less likely to hold. Also, from
grouped size distribution data with coarse and unequal class intervals, it is not
possible to obtain very satisfactory estimates of, for example, the income inequality,
though this is often attempted in empirical work [13].

Our method does not require that data on individual units be available. While
estimating the Engel elasticity, it explicitly makes use of the knowledge of the dis-
tribution of income. The basic assumptions underlying our estimation procedure
are casily testable. In the regression, however, the assumption of normality of the
residual terms, taken additively or multiplicatively, is often taken for granted.

The fixed class interval data with unequal frequencies has certain disad B
such as heteroscedasticity from the estimational point of view. The method of
fractile analysis seems to be a better method of analysingeconomic data, particular-
ly in the context of our method of estimation, sincs it readily provides the basic
raw material for our study.

The regression estimate in the present case is shown'to belbiased; the bias, which
arises due to aggregation, increases with the true value of the elasticity and does not
tend to vanish even in large samples. The method of fractiles, on the other hand,
provides consistent estimates of the Engel curve; the problem of ‘“zero™ entries
does not seriously arise in it [6, p. 26). Asymptotic variances which can be estimated
in large samples as well as subjected to the usual tests of significance are provided
for our estimates. Approximate tests of significance may be readily devised, given
W0 interpenetrating subsamples, by using the fractile error [15).
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It is not suggested, however, that our method is a substitute for the general
method of least squares, which can be used in a variety of situations involving
several variables. But where we have a priori knowledge about the distribution of
income and the nature of demand relationships, it may be appropriate to devise
special methods which give consistent results, such as those we have proposed.
1t is generally agreed that the choice of a particular method is dictated by the type
of data that are easily and readily available.

An immediate generalisation of our method to cases involving more than two
variables seems possible. In that case we may be able to apply this method for
estimating, for instance, the well-known Cobb-Douglas production function or the
household demand relationships involving family income and family size {7, 4).
Such possible generalisations are still under investigation. It seems also possible to
apply our method to estimate the Engel curve in the additive logarithmic forms
[8] as well as extend it to other well-known forms [24].

A few important and difficult statistical problems remain. The estimates of
standard errors, etc. are all based on random sampling assumptions. It is therefore
necessary to build up a satisfactory theory of estimation of the demand curve,
at least in large samples, when the sampling has been done by a multistage design.
Also, in some family budget surveys the households are classified according to per
capita total expenditure, and not according to household income; this must be
pointed out. Moreover, in the framework of general equilibrium, the additivity of
the Engel curves and the simultaneous character of the system are also important
econometric problems that require some consideration, but these complications are
not considered in this paper.

Haroard Economic Research Project and
Indian Statistical Institute

APPENDIX

1. Let # bo the #g-th quantile of the standard normal distribution, and C; the cc di
quantiles of the distribution of x, which is assumed to be log-normal with parameters (8, A).
Then we have

CG=ap@+ W) (=1,2..,0—1)
with fo = — c0 and 4, = + 0,
2Let &i=&0lx= C) = ACH,
= 8(x|Ci-1 € x € C) = gu(®(ts — ) — D(ti-1— D],
whare 4 = §(x) = exp (8 4 #A7. Similarly, let
= &EWICi1 & x € C) = pP(ti — An) — Pt — An)],
where v = A exp(nf + $A%%).
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TABLE Al
(SEx ALSO MIOURE ON NEXT PAGE)

t 2() [ 0] k(ry H(1) ke
. @ @) @ ® ®
0 0.3989 0.5000 0 0.6267 0.6267
0.10 0.3970 0.5398 0.159569 0.6257 0.6267
0.20 0.3910 0.5793 0.319897 0.6233 0.6252
0.30 0.3814 0.6179 0.480571 0.6150 0.6242
0.40 0.3683 0.6554 0.642903 0.6131 0.6222
0.50 0.3521 0.6915 0.806916 0.6258 0.6196
0.60 03332 0.7287 0.973047 0.5975 0.6166
0.70 03123 0.7580 1.141665 0.5872 0.6131
0.80 0.2897 0.7881 1.313461 0.5764 0.6091
0.90 0.2661 0.8159 1.488848 0.5644 0.6045
1.00 0.2420 0.8413 1.667897 0.5516 0.5996
110 0.2179 0.8643 1.849870 0.5383 0.5946
1.20 0.1942 0.8849 2.039648 0.5242 0.5883
1.30 0.1714 0.9032 2.233341 0.5099 0.5821
1.40 0.1497 0.9192 2.431501 0.4963 0.5758
1.50 0.1295 0.9332 2.636915 0.4811 0.5688
1.60 0.1109 0.9452 2.847808 0.4671 0.5618
1.70 0.0940 0.9554 3.041294 0.4532 0.5590
1.80 0.07%0 0.9641 3290640 0.4380 0.5470
1.90 0.0656 0.9713 3.521638 0.4253 0.5395
2.00 0.0540 0.9772 3.757926 0.4130 0.5322
210 0.0440 0.9821 4.004946 0.4000 0.5244
220 0.0355 0.9861 4.261822 0.3859 0.5162
230 0.0283 0.9893 4.526157 0.3746 0.5081
240 0.0224 0.9918 4.794962 0.3616 0.5008
2.50 0.0175 0.9938 5.077028 0.3543 04924
2.60 0.0136 0.9953 5.355640 0.3456 0.4855
270 0.0104 0.9965 5.651429 0.3365 0.4778
280 0.0079 0.5974 5.988942 0.3291 0.4675
290 0.0060 0.9981 6.263962 0.3167 0.4630
3.00 0.0044 0.9987 6.644026 0.2954 0.4515

1 20) = exp(—12D); B(t) = 1. o2()dt; k(e) = log D{)—log H{—1); H(t) = D)YK—1)/2(s).

Llet ol= Var(x|Ci1 € x € C)
= Plge? [ B(1 — 20) — Bty — 20)) — 1 ;
7 =VarGiCi-1 € x € €)
= RlgeP 7 (B0 — 20r) — B(tey ~ 2] —9};
@arm = Cov(x, yiCi-1 € x € C)
= prlge? (O — AT+ 1)~ Bt — A + ) — pun.
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4. Let us define the following:
M= i(Ci— p)— (( — D(Ci1— pe) U=2...8— 1.
Mi=C—m My=—(— NG1—pai
M =(g—NCi—p)— =i+ D(Ca—p) U=2...8—1);
MY =(g— D(Cr—m); M= ~(Cor— o)
NM=ih—w— G- DEm—v (=2...g—1):
M=E—n); N=—@E—Dér—w);
M=@g-DE—~w—@—i+DEa1—» (=2...g—1;
N =(g— DEr—n); Ni=—(Co1— 7).

5, Wo shall next define the variance-covariance matrices Z, 7, and E. The clemeats of Z are

given by:

Ly=-MMy, > 1,

MM, <,

OQ | = O | =

1
=a!+;M.M?+(c.—;u)(c.-.—m). 1=j# 1.8,
—dtimmd 1=j=1,

g
—atimM, i=)=g.

Similarly, the elements of T are defined, replacing the o’s by 7°s and the M°s by N’s. Lastly, the
elements of the £ matrix are given by:

1 [
By=~-MNy, J>1,
4
1 °
=-NiM;, J<lI,
8
1
=M«1«+;M:Nf+(C«—Au)(e«-z—v«). 1=]# g,
1 )
=910|11+;M1N1. l=j=1,

1 )
=Mﬂv+;M’Nh l=j=g.
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6. Then, If i = }/m(% — pe) and os = Ym(5i — ), the theorem states that the distribution
of w = (i1, ..., Uy} O1,...,0p) is asymptoticaily normal with mean zero and variance-covariance
matrix given by
I:E
) -
For proof of this theorem, see Sethuraman [21, 22).
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