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This short note is an application of some 1h of graph theory to the problem of the
minimum number of counter-cxamples needed o show that a special class of theories is
compleie.

0. Introduction

Let us consider a set of properties P = {p,, p»,...} and a set of theorems of the
type: “property p, implies property p,*. These theorems can be represented by a
directed graph G, with vertex set P, where (p, p,) is an arc iff it follows from one or
more of the given theorems that p, implies p;. Suppose that we want to show that no
arc of the complementary graph G is good to represent a true implication of that
kind: more precisely, with each arc (p, q) with p# q and (p.q) € G. we assign a
student who has to find an example where p is fulfilied but not g (i.e., a
counter-example to the statement that p implies g).

In this note we determine the minimum number of students needed to show that
all the possible (pairwise) implications are already represented in the graph G. In
Section 2 we solve this problem under the assumption that the students work
independently and in Section 3 we consider the problem without this assumption.

Consider the graph G in Fig. 1. Here it suffices to disprove the implications
represented by the five arcs 3,4, 5, 7 and 10 of G for then the falsity of the other
possible implications follows. For example, we have p, 32> p, for otherwise
p> => p, =>> p, which contradicts the statement that arc (p,, p,) is bad.

Let H be a graph whose vertices represent the arcs 1,2,.. .. 10 of G and where an
arc is drawn from { to j iff “arc i is good" implies “arc j is good™, see Fig. 1. In H,
the set K =(3,4,5,7,10} is a kernel, i.e.,

(i) every vertex of H which isnot in K is the initial end of an arc going into K,

(if) no arc connects two vertices in K.

From (i) it follows that if arcs 3, 4, 5, 7 and 10 are bad, then all the arcs 1,2,...,10
are bad, and from (ii), K is a minimal set with this property. Since K is the only
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kernel of H. it follows that five counter-examples are needed to show that all the
arcs of G are bad when the students work independently. Otherwise, i.c., if
counter-examples to statements like ‘'properties p,.p,.....p, together imply
property p," are also considered, it is sometimes possible to do better. In the above
example, lo show that all the arcs of G are bad, it is enough to disprove the
following three statements:

(i) p- and p, together imply p,,

(ii) p» and p, together imply p,,

(iii) p, implies p..

—

. The anti-bases of a theory

A theory T = (X, €) is defined by:

(i) a set X whose elements x,, x;,... may be thought of as propositions,

(ii) a closure relation € on X; for S C X, €(S) denotes the set of all the
propositions in X which can be proved from the propositions in S.

For convenience we write 4 (s) instead of €({s}) for s € X.

A theory T = (X, €) is unitary if x € €(S) implies the existence of some sE S
such that x € €(s). Otherwise T is pluritary. If a theory T is unitary, it can also be
represented by a transitive graph with vertex set X, where (x.y) is an arc iff
x € €(y). An axiom basis for T is a set B C X such that €(B)= X and which is
minimal with respect to this property.

An anti-basis for T is a set A C X such that €(x)N A # £ for all x € X and
which is minimal with respect to this property. The interpretation of this definition
is that if all the propositions in A are false then all the propositions in X are false
and A is minimal. The inverse T' = (X, €'} of a theory T = (X, €) is defined by:
X € €'(S)iff €(x)NS# M. It can be easily checked that T' is a theory.

The closure relation €’ can be interpreted as: if for T all the propositions in §
are false, then x is false.

Lemma 1.1. The inverse T’ of a theory T is unitary.

Proof. Let SC X and x € €’(SY Then €(x)NS#F. If s€€(x)NS, then
x € €'(s). Thus T’ is unitary.
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Theorem 1.2. In a theory T, all the anti-bases have the same cardinality.

Proof. A set A C X is an anti-basis of T iff A is a basis for the inverse T'. By
Lemma 1.1, T can be represented by a transilive graph H. Clearly a basis of T" is a
kernel of H and conversely. By Corollary 1 to Theorem 3 in Chapter 14 of (1], all
the kernels of 4 have the same cardinality. This proves the theorem.

In fact, for a transitive graph H, any kernel is obtained by choosing one vertex
from each terminal strong component.

2. The graph of implications

Let G be a transitive directed graph whose vertices represent propositions and
whose arcs represent implications and let x,, xa, ..., X» be the arcs of the com-
plementary graph G. Let X ={x,. x3,.... X }. and for § C X, let €(S) denote the
implications which can be derived from the implications in §, i.e., all the arcs of X
in the transitive closure of G + S. The pair T = (X, €) is a theory.

Theorem 2.1. Inthe theory T = (X, 4). defined as above by a transitive graph G. all
the anti-bases have the same cardinality, and this cardinality is the absorption
number of the graph H = (X, U) defined by: (x, y) € U iff y is an arc of the transitive
closure of G + x. Furthermore, there is a one-to-one correspondence between the
anti-bases of T and the kernels of H.

Proof. First remark that H is a transitive graph. By Theorem 1.2, it suffices to
check that this graph H represents the theory T". Clearly, (x,y) E U ift y € €(x),
that is, iff x € €'(y). Thus H represents T' and the theorem is proved.

This theorem gives the minimum number of students needed in the problem
raised in the introduction, assuming that they work independently.

3. The unrestricted case

The problem is different if we do not assume that the students work indepen-
dently. For example, consider the graph of implications G represented by the
unbroken lines in Fig. 2. Its complementary graph G, represented by the dotted
lines, has arcs 1,2, ..., 10. The kernel of H is unique and contains four vertices: 5, 6,
7, 9; hence four counter-examples are enough to show that all the arcs of G are bad.
However, there is another way to reach the same conclusions with no more than
four counter-examples: If “arc 1 is bad", then ejther arc 9 or arc 6 is bad (because 1
is an arc of the transitive closure of G +{6,9}). Thus if counter-examples are
obtained for the implications 1, 5, 7, we need only one more counter-example to
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show that arcs 1, 5, 6, 7. 9 are all bad, and consequently that all the arcs in G are
bad.

Now, a new problem arises: for the unrestricted case, is it true that a kernel of H
gives always an optimal solution ?

As in Section 2, let G =(P.I) be a transitive directed graph whose vertices
represent propositions and arcs represent implications. Assuming that one counter-
example can be used to disprove several implications in G, we now determine the
minimum number of counter-examples needed to show that all the arcs in G are
bad.

From G, construct a graph G, as follows. The vertices of Gy are all the nonempty
subsets of P. There is an arc going from A to B in G, if either A D B or A ={p,}.
B = {p,} and (p, p,) € G. Let G, be the graph obtained from G, by adding as many
arcs as possible using the following rules repeatedly.

(i) If (A, B) and (A, C) are arcs, then (A, B U C) is an arc.

(ii) If (A, B) and (B, C) are arcs, then (A, C) is an arc.

It is not difficult to see that G, gives all the implications between the various subsets
of P that follow from G. Also G is (isomorphic t0) a subgraph of G,. Now construct
the graphs G, and H, corresponding to G, as in Section 2. It is easy to see that H is
(isomorpbhic to0) a subgraph of H,. If H. is the subgraph of H, generated by the
transitive closure of the vertices in H, then 1o show that all the arcs of G are bad, it
is sufficient to disprove the implications represented by the vertices in any kernel of
H,. Again H, is transitive, and, consequently, all the kernels of H, have the same
cardinality.

This gives a solution to the problem of the minimum number of students required
when they work not necessarily independently.
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